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Abstract—In this work, we introduce an algorithm leveraging
an optimality-preserving operator to address multi-objective
optimization challenges. Following a comprehensive review of
prior research, we formalize the methodology through an
operator designed to retain optimal solutions in multi-objective
settings without relying on scalarization techniques. Under
explicitly stated conditions, we establish that all solutions
produced by our framework correspond to Pareto optimal
outcomes for the original problem. To validate the algorithm’s
efficacy, we assess its performance using benchmark problems
widely recognized in the literature. Quantitative metrics are
employed to measure its behavior, and the results are bench-
marked against those of a prominent evolutionary algorithm,
NSGA-II, serving as a reference standard.

Index Terms—Multiobjective Method, Penalty function,
Alienor , Pareto front, OPO.

I. INTRODUCTION

MULTI-OBJECTIVE optimization consists of simulta-
neously optimizing several objective functions. Thus,

for such multi-objective optimization problems, no unique
solution simultaneously optimizes all objective functions.
The goal in addressing these problems across disciplines
such as economics [23], computer science [26], physics [25],
transportation [29], and social choice theory [3], [7], among
others, is to identify high-quality compromise or Pareto
optimal solutions.

Several methods have been proposed in the literature,
which are grouped into two main categories : exact methods
[19], [20] that have a theoretical foundation on the optimality
of solutions, and stochastic methods [1], [2], [25]most of
which do not have a theoretical foundation.

Among the various existing methods, a substantial number
are based on scalarization techniques, which aim to transform
multi-objective optimization problems into equivalent single-
objective formulations. An illustrative case is the Multiobjec-
tive Metaheuristic based on the Aliénor method (MOMA)
[11], which combines the Optimum Preserving Operator
(OPO) and the Aliénor transformation to simplify the prob-
lem into a one-variable decision model. This method was
later extended and enhanced by Kounhinir et al. [14], [15],
[18] led to the development of MOMO-Plus, an enhanced
variant utilizing an optimized version of OPO denoted as
OPO*. This refined approach has been applied across diverse
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operational research domains, including fuzzy optimization
problems [4], [5], followed by transportation challenges [15].
The computational efficacy of MOMO-Plus was rigorously
validated in [17].

In this study, we present a new non-scalar approach
to tackle multi-objective optimization problems. The main
contributions and distinctive features of this research are as
follows:

• design and implementation of an innovative non-
scalar technique employing an operator to tackle multi-
objective optimization problems;

• comprehensive theoretical analysis examining the con-
vergence properties of solutions produced by the pro-
posed technique;

• empirical comparison of the proposed approach against
established methods found in the literature.

In the remainder of the article, we will cover the prelim-
inaries in Section 2, where the basic concepts, properties,
and definitions regarding multi-objective optimization will
be presented. Section 3 outlines the principal outcomes of
this study, first introducing the method ”Multi-objective Op-
erator Preserving Optimum” (M-OPO) and the algorithm for
numerical resolution, as well as the theoretical convergence
results of M-OPO. We subsequently illustrate the application
of the M-OPO algorithm to structural optimization prob-
lems, supported by a comprehensive numerical convergence
analysis. Finally, Section 4 provides concluding remarks and
outlines potential directions for future research.

II. PRELIMINARIES

A. Basic concepts

Consider the multi-objective optimization problem formu-
lated as follows:

minF (x) =
(
f1(x), . . . , fm(x)

)
, m ≥ 2

s.t.
{

gj(x) ⩽ 0, j = 1, ..., p
x ∈ Rn ;

(1)

where:
◦ x = (x1, . . . , xn) represents the vector of n decision

variables;
◦ fi, i = 1,m, represent the objective functions;
◦ gj , j = 1, p, are the constraint functions governing the

optimization of fi, i = 1,m.
We denote D = { x ∈ Rn : gj(x) ≤ 0; j = 1, p}. as the
feasible domain of problem (1).

By the following definitions, we characterize an optimal
and weakly optimal solution in the Pareto sense.

Definition 1 ([18], [22]). A point x∗ ∈ D is said to be
a weakly efficient or weakly optimal solution in the Pareto
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sense of the problem (1) if and only if there does not exist
another x ∈ D such that:

fi(x) < fi(x
∗), ∀i = 1,m.

Definition 2 ([5], [18]). A point x∗ ∈ D is referred to
as an efficient (or Pareto optimal) solution to the problem
(1) if no x ∈ D exists such that fi(x

∗) ≥ fi(x) for all
i ∈ I = {1, . . . ,m}, with at least one index k ∈ {1, · · · ,m}
satisfying fk(x

∗) > fk(x).

From Definitions 1 and 2, we characterize an optimal and
weakly optimal Pareto solution by the following lemma.

Lemma 3 ( [20]).
1) A point x∗ ∈ D is said to be a Pareto optimal solution

of problem (1) if and only if there exists no x ∈ D such
that all of the following conditions hold:

a) max
i=1,...,m

{fi(x)− fi(x
∗)} > 0;

b) min
i=1,...,m

{fi(x)− fi(x
∗)} ≥ 0;

2) A point x∗ ∈ D is a weakly Pareto optimal solution
of problem ( (1)) if and only if for all x ∈ D, we have
max

i=1,...,m
{fi(x)− fi(x

∗)} ≥ 0.

B. Alienor transformation

If we consider a function with n continuous variables
defined on Rn, a reducing transformation (called Alienor
transformation) allows expressing all variables as a function
of a single variable ϱ

xi = hi(ϱ), ϱ ∈ R+.

This transformation was developed by Yves Cherruault,
Arthur Guillez, and Blaise Somé [18], enabling the reduction
of any multivariate function to a single-variable function
through the use of the Archimedean spiral.

Definition 4 ( [12]). Let f be a function of n variables.
A reductive transformation associated with f is defined as
any mapping that converts f into a function depending on a
single specified variable.

The reducing transformation is based on the introduction
of a curve that fills the space in the sense of alpha-density.

Definition 5 ([5]). A subset S ∈ Rn is said to be α-dense
in Rn if

∀K ∈ Rn, ∃M ′ ∈ S such that d(K,K ′) ≤ α.

Thus, if we consider a function with n variables
f(x1, x2, ..., xn), continuous and defined on Rn, a re-
ducing transformation allows expressing all variables as
a function of a single variable ϱ by using xi =
hi(ϱ),∀i = 1, · · · , n. Therefore f(x1, x2, ..., xn) becomes
f(h1(ϱ), h2(ϱ), ..., hn(ϱ)). This reducing transformation has
several variants, the one we are interested in is the Konfé-
Cherruault transformation [11]. It’s defined as h(ϱ) =(
h1(ϱ), h2(ϱ), ..., hn(ϱ)

)
where hi(ϱ), i = 1, · · · , n are

defined as follows:

hi(ϱ) =
1

2

[
(ubi − lbi) cos(ωiϱ+φi)+ubi + lbi

]
= xi; (2)

where (ωi)i=1,n and (φi)i=1,n are slowly increasing se-
quences, xi ∈ [lbi, ubi] and ϱ ∈ [0, ϱmax] with ϱ1 =
2π − φ1

ω1
and ϱmax =

(ub1 − lb1)ϱ
1 + (ub1 + lbi)

2
.

C. Optimum-preserving operator and Optimum-preserving
operator*

In 2003, G. Mora, Y. Cherruault, and A. Benabidallah
[16] proposed a new operator called Optimum-Preserving
Operators (OPO), which allows for the elimination of minima
and obtaining a global minimum in a very short time, even
with n variables.

Proposition 6 ([16]). Let ϱ0 be an arbitrary point in I =
[0,+∞[, A a constant, and H a Heaviside function. Let f be
a Lipschitz function with constant L and Φ : R → (0,∞), a
bijective function of class C1, with Φ

′ ̸= 0, then the operator
T ϵ
f defined by:

T ϵ
f (ϱ) = Φ−1[ϵ+Φ(f(ϱ)−f(ϱ0)+A)]+

1

ϵ
ϱH[f(ϱ)−f(ϱ0)]

with 0 < ϵ < 1 is an Optimum-Preserving Operator (O.P.O).

where H is a Heaviside function that takes the value 0 for
x < 0 and 1 for x ≥ 0.

Definition 7 ([8], [12]). Let f be a continuous function
from I to R and r a real number. The level set, denoted by
Nf (r), is defined as Nf (r) =

{
ϱ ∈ I : f(ϱ) ≤ r

}
.

Theorem 8 ([8]).
1) The operator T ϵ

f converges to f , up to an additive
constant, within the level set Nf (f(ϱ0)).

2) Furthermore, all extrema of T ϵ
f lie within Nf (f(ϱ0)).

In March 2004 [11], a much simpler operator called
Optimization-Preserving-Operators* (OPO*) was proposed
by B. Konfé.

Definition 9 ([11]). Let f∗ : I → R denote the objective
function under consideration. Suppose that f∗ is Lipschitz
and satisfies the growth condition at infinity. Let ϱ0 be an
arbitrary element of I.

The application T : F → Tf∗ ∈ C(0)(I) defined by:

Tf∗
ϱ0
(ϱ) =

1

2

[
f∗(ϱ)− f∗(ϱ0)+ | f∗(ϱ)− f∗(ϱ0) |

]
is called the new Optimum-Preserving Operator, denoted as
OPO*.

III. MAIN RESULTS

A. Operator Preserving Optimum for multiobjective cases

Let us set I = [0,+∞[ and consider the following
problem:

min
ϱ∈I

Fi(ϱ) = (f∗
1 (ϱ), f

∗
2 (ϱ), ..., f

∗
m(ϱ)) (3)

If ∀ i = 1, ...,m, f∗
i is Lipschitz continuous and satisfies the

growth conditions at infinity, then M-OPO for problem (3)
is defined as follows:

T : F →
[
C(0)(I)

]m
F → Tf∗(ϱ) =

(
Tf∗

1
(ϱ), . . . , Tf∗

m
(ϱ)
) (4)
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where C(0)(I) is the set of continuous functions wich

F ⊂
[
C(0)(I)

]m
and Tf∗

i
(ϱ) =

1

2

[
f∗
i (ϱ)−f∗

i (ϱ0)+ | f∗
i (ϱ)−

f∗
i (ϱ0) |

]
,∀ i. As by hypothesis f∗

i , ∀ i = 1, ...,m, satisfy
the conditions of infinite growth, we have the following
results.

Proposition 10. Let ϱ0 ∈ I, we have:

min
x∈I

Tf∗
i
(ϱ) = 0, ∀ i = 1, . . . ,m.

Proof: It is established that, for every i ∈ {1, 2, · · · ,m}

Tf∗
i
(ϱ) =

{
0 if f∗

i (ϱ) ≤ f∗
i (ϱ0)

f∗
i (ϱ)− f∗

i (ϱ0) if f∗
i (ϱ) > f∗

i (ϱ0)

Using the definition, Tf∗
i
(ϱ) ≥ 0, i = 1, ...,m,

∀ϱ ∈ I. Since Tf∗
i
(ϱ0) = 0 ≤ Tf∗

i
(ϱ) in this case

max
i=1,...,m

{f∗
i (ϱ) − f∗

i (ϱ0)} > 0 then ϱ0 is a Pareto op-

timal solution of the system. Furthermore, Tf∗
i
(ϱ) = 0

if f∗
i (ϱ) ≤ f∗

i (ϱ0) then min
ϱ∈I

Tf∗
i
(ϱ) = 0. Consequently,

min
ϱ∈I

Tf∗
i
(ϱ) = min

ϱ∈I
Tf∗

i
(ϱ0) = 0.

Proposition 11. Tf∗
i

and f∗
i have at least one common

Pareto optimal solution ∀ i = 1, ...,m.

Proof: Suppose that ϱ∗ is a Pareto optimal solution of
f∗
i , but not a solution of Tf∗

i
. Since ϱ∗ is a Pareto optimal

solution of f∗
i , there necessarily exists an element ϱ0 ∈ I

such that:

f∗
i (ϱ

∗) < f∗
i (ϱ0), ∀ i = 1, . . . ,m.

This is equivalent to the following statements:

⇒f∗
i (ϱ

∗)− f∗
i (ϱ0) < 0, ∀i;

⇒f∗
i (ϱ

∗)− f∗
i (ϱ0)+ | f∗

i (ϱ
∗)− f∗

i (ϱ0) |= 0, ∀i;

⇒1

2

[
f∗
i (ϱ

∗)− f∗
i (ϱ0)+ | f∗

i (ϱ
∗)− f∗

i (ϱ0) |
]
= 0, ∀i;

⇒1

2

[
f∗
i (ϱ

∗)− f∗
i (ϱ0)+ | f∗

i (ϱ
∗)− f∗

i (ϱ0) |
]
= 0,∀i;

⇒Tf∗
i
(ϱ∗) = 0,∀i;

⇒min
ϱ∗∈I

Tf∗
i
(ϱ∗) = 0, ∀ i.

Thus ϱ∗ is a solution of Tf∗
i
, ∀ i = 1, ...,m. Now suppose

that ϱ∗ is a solution of Tf∗
i

but not a Pareto optimal solution
of f∗

i . ϱ∗ is a solution of Tf∗
i

is equivalent to min
ϱ∗∈I

Tf∗
i
(ϱ∗) =

0, ∀ i = 1, ...,m. That can be rewritten as the following
lines:

⇒1

2

[
f∗
i (ϱ

∗)− f∗
i (ϱ0)+ | f∗

i (ϱ
∗)− f∗

i (ϱ0) |
]
= 0, ∀i

⇒f∗
i (ϱ

∗)− f∗
i (ϱ0)+ | f∗

i (ϱ
∗)− f∗

i (ϱ0) |= 0, ∀i
⇒f∗

i (ϱ
∗)− f∗

i (ϱ0) = − | f∗
i (ϱ

∗)− f∗
i (ϱ0) |, ∀i

⇒f∗
i (ϱ

∗)− f∗
i (ϱ0) < 0, ∀i

⇒f∗
i (ϱ0)− f∗

i (ϱ
∗) > 0, ∀i

⇒ max
i=1,...,m

{f∗
i (ϱ0)− f∗

i (ϱ
∗)} > 0.

From Lemma 3, ϱ∗ is a Pareto optimal solution of f∗
i .

Theorem 12. Let ϱ0 be an arbitrary point in I. Let S be the
set of solutions of Tf∗

i
(ϱ) = 0, ∀ i = 1, ...,m. For any fixed

ϱ0 ∈ I, if S = {ϱ∗}, then ϱ∗ is a Pareto optimal solution of
f∗
i .

Proof: Let ϱ∗ ∈ S such that Tf∗
i
(ϱ) = 0 and let

ϱ0 ∈ I be an arbitrary point. By definition, we have
ϱ∗ ∈ D. Assume, for contradiction’s sake, that ϱ∗ fails
to be a Pareto optimal solution of the problem.Then, there
exists ϱε ∈ D such that Tf∗

i
(xε) = 0 and f∗

i (ϱε) <
f∗
i (ϱ

∗), ∀ i = 1, ...,m. According to Lemma 2.3, we
have min

i=1,...,m
{f∗

i (ϱε) − f∗
i (ϱ

∗)} ≤ 0. Since by hypothesis

Tf∗
i
(ϱ∗) = 0 and Tf∗

i
(ϱε) = 0, ∀ i = 1, ...,m we have

f∗
i (ϱ

∗) − f∗
i (ϱ0) = − | f∗

i (ϱ
∗) − f∗

i (ϱ0) |, ∀ i = 1, ...,m
and f∗

i (ϱε)−f∗
i (ϱ0) = − | f∗

i (ϱε)−f∗
i (ϱ0) |, ∀ i = 1, ...,m

According to the previous equations, we have the following
result: f∗

i (ϱε) − f∗
i (ϱ

∗) =| f∗
i (ϱ

∗) − fi(ϱ0) | − | f∗
i (ϱε) −

f∗
i (ϱ0) | which is the negative quantity. And then, we obtain
| f∗

i (ϱ
∗)−f∗

i (ϱ0) | − | f∗
i (ϱε)−f∗

i (ϱ0) |< 0; ∀ i = 1, ...,m.
Therefore, we have min

i=1,...,m
{f∗

i (ϱ
∗) − f∗

i (ϱε)} ≤ 0. This

contradicts equation hypothesis.

B. Multiobjective Operator Preserving Optimum method (M-
OPO)

1) Principle of M-OPO: The Multi-Objective Optimum
Preserving Operator (M-OPO) consists of directly transform-
ing a multi-objective optimization problem with constraints
by penalizing the objectives to obtain a multi-objective
problem without constraints. Then, using the Alienor trans-
formation, this multi-objective problem with several variables
is reduced to a single-variable multi-objective problem. Sub-
sequently, OPO is applied to this single-variable problem.

In the following, we will present the different steps of the
proposed M-OPO method.

2) Steps of M-OPO: The Multiobjective Operator
Preserving Optimum method proceeds in four steps:

Step I: For a multiobjective optimization problem with
constraints, this step involves directly penalizing the problem
to transform it into an unconstrained multiobjective problem.
From equation (1), we get:

min{Li(x), i = 1, ...,m.}

ηi ≥
Mi − fi(x)

p∑
j=1

gj(x)

, 1,m.

Mi = max
x∈D

fi(x), i = 1,m.

x ∈ Rn,

(5)

with Li(x) = fi(x) + ηi

[ p∑
j=1

(gj(x) + |gj(x)|
]

Theorem 13. For problem (5), any Pareto optimal solution
x ∈ D is also a non-dominated solution (Pareto optimal
solution) to the problem (1), and vice versa.

Proof: Suppose x∗ is a solution on the Pareto front of
problem (5), then ∀x ∈ D, max

i=1,...,m
{Li(x) − Li(x

∗)} > 0

thus max
i=1,...,m

{
fi(x) + ηi

[ p∑
j=1

(gj(x) + |gj(x)|
]
−fi(x

∗) −
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ηi

[ p∑
j=1

(gj(x
∗) + |gj(x∗)|

]}
> 0. Since x and x∗ be-

long to the feasible domain D, we have gj(x) ≤ 0 ⇒
gj(x) + |gj(x)| = 0, ∀x ∈ D, j = 1, p and gj(x

∗) ≤
0 ⇒ gj(x

∗) + |gj(x∗)| = 0, ∀x∗ ∈ D, j = 1, p;

Thus, ηi

[ p∑
j=1

(gj(x
∗) + |gj(x∗)|

]
= 0, ∀i = 1, . . . ,m;

and ηi

[ p∑
j=1

(gj(x) + |gj(x)|
]
= 0, ∀i = 1, . . . ,m; hence

∀x ∈ D, max
i=1,...,m

{fi(x) − fi(x
∗)} > 0. Thus, x∗ is the

global minimum of problem (1).
Conversely, assume that x∗ ∈ D is a global solution of
problem (1), and we aim to prove that x∗ is also a global
solution of problem (5):

∀x ∈ D, max
i=1,...,m

{fi(x)− fi(x
∗)} > 0.

Since x ∈ D and x∗ ∈ D with the last equations,

we know max
i=1,...,m

{
fi(x) + ηi

[ p∑
j=1

(gj(x) + |gj(x)|
]

−

fi(x
∗) − ηi

[ p∑
j=1

(gj(x
∗) + |gj(x∗)|

]}
> 0. Thus ∀x ∈

D, max
i=1,...,m

{Li(x) − Li(x
∗)} > 0. Therefore, x∗ ∈ D is

a global solution of problem (5).

Step II: This step entails reformulating problem (5) by
converting it from a multi-variable optimization framework
into a single-variable optimization formulation. An Aliénor
transformation allows expressing all variables in terms of a
single variable ϱ, where ϱ ∈ [0, ϱmax], xi = hi(ϱ) thus,

min{Li(ϱ), i = 1, ...,m};

ηi ≥
Mi − fi(h(ϱ))

p∑
j=1

gj(h(ϱ))

, i = 1, ...,m.;

Mi = max
h(ϱ)∈D

fi(h(ϱ)), i = 1, ...,m;

ϱ ∈ [0, ϱmax];

(6)

where Li(ϱ) = fi(h(ϱ)) + ηi

[ p∑
j=1

(gj(h(ϱ)) + |gj(h(ϱ))|
]

Theorem 14. If ϱ∗ ∈ [0, ϱmax] is a Pareto optimal solution
of problem (6), then all x∗

i = hi(ϱ
∗) ∈ D are a non-

dominated solutions of problem (5), and vice versa.

Proof: Suppose ϱ∗ is an optimal solution of problem (6).
Then, ∀ϱ ∈ [0, ϱmax], max

i=1,...,m
{Li(h(ϱ))− Li(h(ϱ

∗))} > 0.

Therefore, max
i=1,...,m

{
fi(h(ϱ)) + ηi

[ p∑
j=1

(gj(h(ϱ)) +

|gj(h(ϱ))|
]

− fi(h(ϱ
∗)) − ηi

[ p∑
j=1

(gj(h(ϱ
∗)) +

|gj(h(ϱ∗))|
]}

> 0; As we have gj(h(ϱ
∗)) < 0, j = 1, · · · , p,

then
n∑

j=1

(gj(h(ϱ
∗))+|gj(h(ϱ∗))|) = 0; At the same time, we

have also gj(h(ϱ)) < 0 ⇒
n∑

j=1

(gj(h(ϱ)) + |gj(h(ϱ))|) = 0.

Thus, ∀ϱ ∈ [0, ϱmax], max
i=1,...,m

{fi(h(ϱ)) − fi(h(ϱ
∗))} > 0;

where h(ϱ) = x and h(ϱ∗) = x∗. Therefore,
∀ϱ ∈ [0, ϱmax], max

i=1,...,m
{fi(h(ϱ)) − fi(h(ϱ

∗))} > 0

This implies that ∀x ∈ D, max
i=1,...,m

{fi(x) − fi(x
∗)} > 0.

Using of the last equations, we can write this inequality

as max
i=1,...,m

{
fi(x) + ηi

[ p∑
j=1

(gj(x) + |gj(x)|)
]
− fi(x

∗) −

ηi

[ p∑
j=1

(gj(x
∗) + |gj(x∗)|)

]}
> 0; Then, we have

⇒ ∀x ∈ D, max
i=1,...,m

{Li(x) − Li(x
∗)} > 0; Therefore,

x∗ ∈ D is a Pareto optimal solution of problem (5).
Now, consider x∗ ∈ D as a Pareto optimal solution of

problem (5), i.e. ∀x ∈ D, max
i=1,...,m

{Li(x) − Li(x
∗)} > 0;

which implies max
i=1,...,m

{
fi(x)+ ηi

[ p∑
j=1

(gj(x)+ |gj(x)|)
]
−

fi(x
∗)−ηi

[ p∑
j=1

(gj(x
∗)+|gj(x∗)|)

]}
> 0 also, using the last

equations, we obtain ∀x ∈ D, max
i=1,...,m

{fi(x)−fi(x
∗)} > 0.

Since h(ϱ) = x and h(ϱ∗) = x∗, we have
∀ϱ ∈ [0, ϱmax], max

i=1,...,m
{fi(h(ϱ)) − fi(h(ϱ

∗))} > 0

and thus, max
i=1,...,m

{
fi(h(ϱ)) + ηi

[ p∑
j=1

(gj(h(ϱ)) +

|gj(h(ϱ))|)
]

− fi(h(ϱ
∗)) + ηi

[ p∑
j=1

(gj(h(ϱ
∗)) +

|gj(h(ϱ∗))|)
]}

> 0; with these equations, we can write
∀ϱ ∈ [0, ϱmax], max

i=1,...,m
{Li(h(ϱ)) − Li(h(ϱ

∗))} > 0, thus

ϱ∗ ∈ [0, ϱmax] is a Pareto optimal solution of problem (6).

Step III: This step involves solving the single-variable
optimization problem after the preceding three steps. The
principle of OPO* is to list the minima in a level set
and then reduce this set to a single element through suc-
cessive cuts after solving the equation TL∗

i
(ϱ) = 0, i =

1, ...,m. For all fixed ϱ0 ∈
[
0, ϱmax

]
, that is equivalent to:

[L∗
i (ϱ)− L∗

i (ϱ0)+ | L∗
i (ϱ)− L∗

i (ϱ0) |] = 0, i = 1, . . . ,m.

Theorem 15. Let ϱ0 be an arbitrary point in
[
0, ϱmax

]
.

Let S be the set of solutions of the system TL∗
i
(ϱ) = 0,∀i =

1, . . . ,m. If S contains a solution, then this solution is Pareto
optimal for problem (6).

Proof: We can well define a set S as follows: S ={
ϱ ∈ [0, ϱmax]

∣∣ TL∗
i
(ϱ) = 0, ∀i = 1, ...,m

}
. TL∗

i
(ϱ) =

0,∀i = 1, ...,m is equivalent to
1

2

[
L∗
i (ϱ) − L∗

i (ϱ0)+ |
L∗
m(ϱ) − L∗

i (ϱ0) |
]

= 0,∀i. That can be rewritten
as follows: L∗

i (ϱ) − L∗
i (ϱ0) = − | L∗

i (ϱ) − L∗
i (ϱ0) |

,∀i. That gives us L∗
i (ϱ) − L∗

i (ϱ0) ≤ 0,∀i = 1. And
then, we obtain L∗

i (ϱ) ≤ L∗
i (ϱ0), ∀i = 1. Therefore,

S = {ϱ ∈ [0, ϱmax] | L∗
i (ϱ) ≤ L∗

i (ϱ0), ∀i = 1, ...,m} . If ϱ∗

is a Pareto optimal solution, then for all ϱ0 ∈ [0, ϱmax],
max

i=1,...,m
{Li(ϱ0) − Li(ϱ

∗)} > 0. Moreover, for all ϱ ∈ S ∩
[0, ϱmax], we have max

i=1,...,m
{Li(ϱ)−Li(ϱ0)} > 0. Therefore,

for all ϱ ∈ S ∩ [0, ϱmax], max
i=1,...,m

{Li(ϱ) − Li(ϱ
∗)} > 0.
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Hence, the solution of the system is a Pareto optimal solution.

Step V: This step consists in computing the values of the
decision variables in the original problem by applying the
previously defined Aliénor transformation. Recall that this
transformation is given by xi = h(ϱ∗), i = 1, . . . ,m.

3) Algorithm of M-OPO: Algorithm 1 is the pseudo-
code of the Multiobjective Operator Preserving Optimum
(MOpPO) method for solving multiobjective optimization
problems.

Algorithm 1 .
Require: min

x∈D
{fi(x)}, i = 1, 2, . . . ,m, Ub, Lb, η.

1: for i = 1, . . . , n do
2: Set ωi = 1500 + 0.005(i+ 1)
3: Set φi = 0.0005(i+ 1)
4: Set hi(ϱ) using equation (2).
5: end for
6: Set ϱmax =

[
(Ub− Lb)

2π − φ1

ω1
+ (Ub+ Lb)

]
/2

7: for i = 1, . . . ,m do
8: Set Li(x) = fi(x) + ηi

[∑p
j=1(gj(x) + |gj(x)|)

]
9: end for

10: for i = 1, . . . ,m do
11: Set Li(ϱ) = fi(h(ϱ)) +

ηi

[∑p
j=1(gj(h(ϱ)) + |gj(h(ϱ))|)

]
12: end for
13: for i = 1, . . . ,m do
14: Set TL∗

i
(ϱ) =

1

2
[L∗

i (ϱ)− L∗
i (ϱ0)+ | L∗

i (ϱ)− L∗
i (ϱ0) |]

15: end for
16: for ϱ0 ∈ [0, ϱmax] do
17: Find ϱ∗, a solution of the system (??).
18: for i = 1, . . . , n do
19: Set xi = hi(ϱ

∗)
20: end for
21: end for

C. Computer Illustration

1) Algorithm parameters and test problems: We imple-
mented our algorithm with the following parameters: η =
10000.

The parameters of the NSGA II method are: Population
100, Number of generations 100, Uniform mutation.

The characteristics of the computer used for the experi-
mentation are as follows: ASUS Processor 11th Gen Intel(R)
Core(TM) i3-1115G4 @ 3.00GHz; RAM Memory 8 GB;
Operating System Windows 11 / 64 bits.

The set of test problems used in this work are represented
in Table I.

TABLE I
LIST OF MULTIOBJECTIVE OPTIMIZATION PROBLEMS

Function Sources m n Parameters bounds
Minex [7], [8], [10] 2 2 x ∈ [0.1, 1]× [0, 0.5]
BNH1 [6], [7], [10] 2 2 x ∈ [0, 3]× [0, 5]
BNH2 [7], [9], [10] 2 2 x ∈ [0, 5]2

BNH3 [7], [10], [16] 2 2 x ∈ [0, 1]2

Lamda1 [7], [10], [20] 2 2 x ∈ [−2, 2]2

Lamda2 [7], [10], [20] 2 2 x ∈ [−2, 2]2

Lamda3 [7], [10], [20] 2 2 x ∈ [−2, 2]2

SSFYY1 [7], [10], [13] 2 2 x ∈ [0, 1]× [0, 2]
JOS1 [7], [10], [13] 2 2 x ∈ [0, 5]2

VU1 [7], [10], [21] 2 2 x ∈ [−3, 3]2

POL [6], [7], [10] 2 2 x ∈ [−π, π]2

All for the test problems in the Table I are convex and
continuous expect the last (function POL).

2) Metrics and performance profiles: Performance mea-
sures are used to study the efficiency of a new proposed
multiobjective optimization method compared to other exist-
ing resolution methods. In our work, we utilize the purity,
υ-Spread, and Γ-Spread performance profiles.

Purity Metric ([20], [6], [27])
The purity measure is utilized to evaluate the quality of
Pareto fronts obtained from diverse multi-objective optimiza-
tion algorithms. Let S represent the collection of optimiza-
tion solvers and P denote the set of benchmark problems. For
a given solver s ∈ S and a problem p ∈ P , define Fp;s as the
approximate Pareto front generated by solver s for problem p,
and let Fp signify an approximation of the reference Pareto
front for problem p. To proceed, first construct the union⋃

s∈S Fp;s, then remove all dominated solutions from this
aggregated set.

The purity metric computes, for solver s ∈ S and problem

p ∈ P , the ratio tp,s =
C

Fp
p;s

Cp,s
, where C

Fp
p;s = |Fp,s ∩ Fp| and

Cp;s = |Fp,s|. Consequently, the purity metric is defined as
tp,s =

1
tp,s

.
Spread Metrics ([6], [20])

Spread metrics aim to quantify the spread extent of a
computed Pareto front. Two distinct formulas are adopted
for spread evaluation:

The first formula evaluates the maximal size of gaps in
an approximate Pareto front. Consider a solver s ∈ S that
generates, for a given problem p ∈ P , an approximate Pareto
front consisting of N points, indexed from 1 to N . To
ensure boundary completeness, this set is augmented with
two extreme points, indexed as 0 and N + 1.

The Γ metric is defined as:

τp,s = max
j∈(1,...,m)

(
max

i∈(1,...,N)
υi,j

)
(7)

where υi,j = (fi+1,j − fi,j) (assuming objective values are
sorted in ascending order per objective j).

The second formula quantifies the distribution of an ap-
proximate front in higher-dimensional objective space:

υp,s = max
j∈(1,...,m)

(
υ0,j + υN,j +

∑N−1
i=1 |υi,j − υj |

υ0,j + υN,j + (N − 1)υj

)
(8)

Performance Profiles ([6], [20], [26])
Algorithm performance can be compared through perfor-
mance profiles and associated data. These profiles are de-
picted via the cumulative distribution function ρ(τ), which

IAENG International Journal of Applied Mathematics

Volume 55, Issue 9, September 2025, Pages 3062-3070

 
______________________________________________________________________________________ 



captures performance ratios across solvers. Using the pre-
viously defined sets, let ζp,s denote the performance of
algorithm s ∈ S on problem p ∈ P . A performance ratio
rp,s is calculated as:

rp,s =
ζp,s

min {ζp,s | s ∈ S}
.

The performance profile of algorithm s ∈ S corresponds
to the proportion of problems where the performance ratio
does not exceed α (α ≥ 1):

ρ(τ) =
|{p ∈ P | rp,s ≤ τ}|

|P |
. (9)

For sufficiently large τ , ρ(τ) indicates the proportion
of problems where algorithm s satisfies the convergence
criterion.

3) Results Analysis: In this subsection, we begin the
analysis of the results obtained by first presenting the Pareto
fronts of the test problems listed in Table I, generated by our
method.

TABLE II
PURITY AND DISPERSION VALUES

Methods M-OPO NSGA II

Metrics Purity Γ υ Purity Γ υ

BNH1 0.43 1.88 0.76 0.96 7.19 0.83
BNH2 1.00 0.68 0.70 0.81 1.66 0.74
BNH3 1.00 2.72 0.86 0.69 8.14 0.84
JOS1 1.00 0.03 0.80 0.88 0.09 0.80
Lamda1 1.00 0.48 1.233 0.84 1.14 0.84
Lamda2 0.52 20.11 0.99 0.90 22.26 0.99
Lamda3 0.60 2.98 0.25 0.91 5.12 0.92
Minex 0.81 5.00 0.96 0.99 0.46 0.87
POL 9 0.54 13.65 1.50 1.00 17.20 1.21
SSFYY1 1.00 0.10 0.888 0.68 0.16 0.82
VU1 0.89 1.08 0.93 1.00 1.24 0.92

The Table II presents performance measures for the metrics
applied to both methods, namely M-OPO and NSGA-II, on
the test problems listed in Table I. The best results are high-
lighted in bold in the table. We observe that, for the purity
and υ-Spread metrics, the M-OPO method outperforms the
NSGA-II method on each metric in 45.45% of the problems.
For the Γ-Spread metric, M-OPO dominates NSGA-II across
all 11 problems.

Figure 12, Figure 13 and Figure 14 illustrates the perfor-
mance profile across all test problems presented in Table I.
Using the three metrics mentioned earlier—purity metric, Γ-
Spread, and υ-Spread—we find that for the purity metric, for
an interest factor τ greater than 2.6, both methods show no
significant difference. Regarding the Γ-Spread metric, when
the tolerance factor is less than 3.5, the M-OPO method
outperforms NSGA-II. For a tolerance factor equal to or less
than 4 in the υ-Spread metric, the M-OPO method is superior
to NSGA-II, while for a tolerance factor greater than 4, they
show no significant difference.

Fig. 1. Min-ex problem’s Pareto front

Fig. 2. BNH1 problem’s Pareto front

Fig. 3. BNH2 problem’s Pareto front
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Fig. 4. BNH3 problem’s Pareto front

Fig. 5. Lambda1 problem’s Pareto front

Fig. 6. Lambda2 problem’s Pareto front

Fig. 7. Lambda3 problem’s Pareto front

Fig. 8. SSFYY1 problem’s Pareto front

Fig. 9. JOS1 problem’s Pareto front
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Fig. 10. VU1 problem’s Pareto front

Fig. 11. POL problem’s Pareto front

IV. CONCLUSION

In this paper, we proposed a new algorithm, named M-
OPO, for solving multiobjective optimization problems. This
algorithm directly transforms multiobjective optimization
problems with constraints in multiple variables into single-
variable unconstrained multi-objective optimization prob-
lems. These transformations rely on penalty functions, the
Aliénor transformation, and the application of an OPO. To
assess the performance of this novel algorithm, we applied it
to 11 established benchmark problems drawn from existing
literature. The results demonstrated that M-OPO achieves
satisfactory performance in approximating the Pareto front
for all the test problems used.

Furthermore, performance indicators such as purity met-
rics, υ-Spread, and Γ-Spread were applied to the problem
results, proving the competitiveness of M-OPO compared to
NSGA-II.
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method to solve some fully fuzzy LR triangular multiobjective linear
programs,” Journal Of Mathematics Research, vol. 10, no. 2, pp77-87,
2018.

[6] K. Deb, “Multi-objective optimization using evolutionary algorithms,”
John Wiley & Sons, 2001.

[7] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” In IEEE Transactions On
Evolutionary Computation, vol. 6, no. 2, pp182-197, 2002.

[8] K. Deb, U. Rao, S. Karthik, “Dynamic multi-objective optimization
and decision-making using modified NSGA-II: A case study on hydro-
thermal power scheduling,” Proceedings of The 4th International
Conference on Evolutionary Multi-criterion Optimization, pp803-817,
2007.

[9] K. Deb, A. Sinha, S. Kukkonen, “Multi-Objective Test Problems, Link-
ages, and Evolutionary Methodologies,” GECCO06: Proceedings of
The 8th Annual Conference on Genetic and Evolutionary Computation,
pp1141-1148, 2006.

[10] S. Huband, P. Hingston, L. Barone, L. While, “A review of multi-
objective test problems and a scalable test problem toolkit,” In IEEE
Transactions on Evolutionary Computation, vol. 10, no. 5, pp477-506,
2006.
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nonlinear multi-objective optimization,” Applied Mathematics, vol. 2,
pp217-224, 2011.

[13] M. Parvizi, E. Shadkam, N. Jahani, “A hybrid COA ϵ-constraint
method for solving multiobjective problems,” International Journal
In Foundations Of Computer Science And Technology, vol. 5, no. 5,
pp27-40, 2015.
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gradient and Armijo’s rule concepts for solving convex nonlinear
multiobjective optimization problems,” Applied Analysis and Opti-
mization, vol. 7, no. 3, pp263-278, 2023.
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