
 

 

Abstract— In this paper, we introduce the concept of minimum 

dominating quotient ceil energy of graph, denoted by    
̅̅ ̅̅  ( ) 

and compute this energy for several families of graphs. 

Furthermore, we establish bounds for the minimum 

dominating quotient ceil energy. 

 

Index Terms: Minimum Dominating Set, Quotient Ceil Energy, 

Quotient Ceil Matrix, Dominating Quotient Ceil Matrix 

I. INTRODUCTION 

Let   (   ) be a graph with   nodes and   edges. The 

degree of    written by  (  ) is the number of edges 

incident with   . The maximum node of degree is denoted 

by  ( ) and the minimum node of degree is denoted by 

 ( ). The adjacency matrix   ( ) of   is defined by its 

entries as       if       ( )            (   ) where 

  is a dominating set of   and   otherwise. The eigenvalues 

of graph   are the eigenvalues of its adjacency 

matrix  ( ), denoted by           . A graph   is 

considered singular if it has at least one eigenvalue equal to 

zero. In the case of singular graphs, it is clear that    ( )  
 . A graph is considered singular if it has at least one 

eigenvalue equal to zero. A graph   is referred to be k-

regular if every node in   has degree  . 

The energy of a graph   is defined as  ( )  
∑ |  | 

 
    This concept was introduced by I. Gutman in 1978 

[3]. Initially, the concept of graph energy went largely 

unnoticed by mathematicians. However, once its importance 

was recognized, it became a subject of global mathematical 

research. Today, similar energy-related quantities are also 

being studied for other types of matrices. 

In this paper, we are defining a matrix, called the 

minimum dominating quotient ceil matrix, denoted by 

  
̅̅ ̅̅  ( ) and we study its eigenvalues and the energy. 

Further, we study the mathematical aspects of the minimum 

dominating quotient ceil energy of a graph. The graphs we 

are considering are assumed to be finite, simple, undirected 

having no isolated vertices, and of order at least two.  
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For more details in quotient ceil energy of a graph refer 

[8]. 

 

 Theorem 1.1 [9] Let    and   ,       be positive real 

numbers, then 
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Theorem 1.2 [10] Let    and   ,       are positive real 

numbers then  
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Theorem 1.3 [10] Let    and   ,       are positive real 

numbers then  
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To prove our results we make use of the following 

inequalities: 

(i) Hardy's inequality: 

If *  + is a sequence of positive real numbers, then for every 

real number    , 
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(ii) Cauchy's - Schwarz inequality: 

(∑    

 

   

)

 

 (∑  
 

 

   

)(∑  
 

 

   

) 

I.I. QUOTIENT ENERGY OF GRAPHS 

For a graph  , the quotient matrix  ̅   ̅( )      is a 

     matrix defined as  
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 ̅   ,
⌈
 (  )

 (  )
⌉              

                                

 

The characteristic polynomial of  ̅( )) is  (   )  

    ( ̅     ). The quotient spectrum of the graph   is the 

eigenvalues of the matrix  ̅ and is denoted as ̅      ( ).  

I.II THE MINIMUM DOMINATING ENERGY OF A 

GRAPH 

Given a simple graph   (   ) of order  , where   

refers to the number of vertices in the graph  ( )  
*              + is the set of vertices. Let    ( ) be a 

subset that is said to dominate the graph   if for every 

    (       ) in     is connected to some    in  .  

Such a set   with minimum number of vertices is known as 

a minimum dominating set.   Corresponding to this we 

obtain a matrix for a graph   of order      and is denoted 

by   ( ) whose entries are defined as follows: 

       

 ,

                                                                  

                                                                      

                                                                       

  

 

The characteristic polynomial of the matrix   ( )  is 

denoted by   (   )      (      ( ))   The minimum 

dominating eigenvalues of the graph   are the eigenvalues 

of   ( ). Since   ( ) is real and symmetric, its 

eigenvalues are real numbers and are labeled in non-

increasing order           . The minimum 

dominating energy [7] of   is defined as 

  ( )  ∑|  |

 

   

 

II.  MINIMUM DOMINATING QUOTIENT CEIL ENERGY OF 

GRAPH 

Let   be simple graph of order   with node set   
*            + edge set  . Let   be the minimum 

dominating set of a graph  . The minimum dominating 

quotient ceil matrix of   is the      matrix defined by 

  ( )      where 

    

{
 
 

 
 ⌈

 (  )

 (  )
⌉                          

                         

                                    

 

The characteristic polynomial of   ̅
 ( ) is indicated 

by  (   )      (      ̅
 ( ) ). The minimum dominating 

quotient ceil eigenvalues of the graph   are the eigenvalues 

of   ̅
 ( ). Since   ̅

 ( ) is real and symmetric, its 

eigenvalues are real numbers and are labeled in non-

increasing order              .  The minimum 

dominating quotient ceil energy of   is defined as 

 

  
̅̅ ̅̅  ( )  ∑|  |

 

   

 

 

III. MINIMUM DOMINATING QUOTIENT CEIL ENERGY OF 

SOME STANDARD GRAPHS 

 

Theorem 3.1. If    is the complete graph with   vertices 

then  ̅  ( )  (   )  √       . 

   Proof: Let    be the complete graph with vertex set   
*            +. The minimum dominating set   *  +.  
Then the minimum dominating quotient ceil matrix of    is 

given by 
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 Its characteristic polynomial is 

,   -(   ),   (   )   -  

The minimum dominating quotient Ceil eigenvalues are 
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The minimum dominating quotient ceil energy for a 

complete graph is 
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Theorem 3.2 If      is the star graph with     vertices 

then  ̅  ( )  √      

Proof: Let      be the star graph with vertex set   

*                 +. The minimum dominating set  
*  +.  Then the minimum dominating quotient ceil matrix of 

   is given by 
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       Its characteristic polynomial is 

 (   ),       -  
The minimum dominating quotient ceil eigenvalues are 
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The minimum dominating quotient ceil energy for a star 

graph is 
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Structural formula:   (   )     

 

Theorem 3.3 The minimum dominating quotient ceil energy 

of   (   )     is           

Proof: The minimum dominating quotient ceil matrix of 

  (   )     is given by  
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The characteristic equation is              and the 

minimum dominating quotient ceil eigenvalues are    
                                 Therefore, 

the minimum dominating ceil energy is 

 ̅  (  (   )    )        .  

IV. BOUNDS ON MINIMUM DOMINATING QUOTIENT CEIL 

ENERGY OF GRAPHS 

 

Proposition 4.1 The first two coefficients of   (   ) are 

given as follows: 

(i)     . 

(ii)       . 
 

Theorem 4.1 Let   (   ) be any simple (   ) graph. If 

             are the minimum dominating quotient ceil 

eigenvalues of the matrix, then the following conditions 

hold: 
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Proof: (i) Since sum of the   ̅
 ( ) is same as the trace of 
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(ii) Since the sum of squares of the spectrum of   ̅
 ( ) is 

the trace of (  ̅
 ( ) )
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Theorem 4.2 If *  +        is a sequence of absolute 

values of   ̅spectrum and    , then 
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Proof: Let          denote the sequence the of 

 ̅  spectrum of  . Then, using theorem 1.1, we get  
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Simplifying  this, we get 
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Theorem 4.3 For a graph , let     ̅( )  . Then  

IAENG International Journal of Applied Mathematics

Volume 55, Issue 9, September 2025, Pages 3071-3075

 
______________________________________________________________________________________ 



 

√| |   ∑ ⌈
  

  

⌉

 

   

  (   ) 
 
   ̅  ( )

 √ (| |   ∑⌈
  

  

⌉

 

   

) 

       Proof: Put              in Cauchy's - Schwarz 

inequality then, 
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Since the geometric mean cannot exceed the arithmetic 

mean, we have  
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Theorem 4.4. For any (   ) connected graph   
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Proof: Put              Cauchy's - Schwarz 

inequality then, 
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Theorem 4.5 Let   be a (   ) graph. Then  
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where     and    are the maximum and minimum values 

of      s 

Proof:  Let             be the  ̅ spectrum of  . Put 

             , in Theorem 1.2 we get 
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Theorem 4.6 Let   be a (   ) simple graph. Let    be 

the absolute value of the determinant of the quotient matrix 

 ̅ of . Then, 
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