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Abstract—This paper addresses the control challenge for
switched nonlinear pure-feedback systems (SNPS) under
measurement imperfections and uncertain dynamics. A
neural observer framework simultaneously handles state
estimation and unknown function approximation during
measurement defects, including data loss and sensor saturation.
Utilizing the mean value theorem, the non-affine structure
is transformed to enable systematic backstepping synthesis
without linearization. Dual adaptive strategies for normal
operation and data-loss scenarios are unified via probabilistic
measurement modeling. Stability guarantees are established
through average dwell-time constraints and switched Lyapunov
analysis, proving uniform ultimate boundedness (UUB) of
all closed-loop signals. Benchmark simulations demonstrate
the controller’s efficacy in maintaining tracking performance
amid intermittent measurements and subsystem switching.
This approach extends existing methods by integrating neural
approximation, switching logic, and defect compensation into a
unified architecture.

Index Terms—Switched nonlinear pure-feedback system,
incomplete measurements, average dwell-time, uniformly
ultimately bounded.

I. INTRODUCTION

SWITCHED nonlinear systems, characterized by
interactions between continuous dynamics and discrete

switching events [1], have become a focal point in
modern control theory [2]. Originating from hybrid
system concepts pioneered by Nerode and Antsaklis, such
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systems find applications ranging from power electronics
to autonomous vehicles [3]. The inherent complexity
of these systems arises from their multiple subsystems
governed by switching signals, necessitating specialized
control strategies [4–6]. Recent advancements in adaptive
backstepping techniques and common Lyapunov function
approaches have significantly enhanced state-feedback
controller designs [7, 8], particularly for systems with
unstable dynamics [9].

Pure-feedback architectures present unique challenges
compared to their strict-feedback counterparts due to the
absence of affine state variables in control inputs [10].
This structural characteristic complicates both virtual
and actual controller design, especially when handling
output constraints and stochastic disturbances [11, 12].
Contemporary studies have addressed these challenges
through nonlinear mapping techniques and adaptive tracking
control under arbitrary switching [13], yet critical gaps
remain in handling incomplete measurements and uncertain
dynamics.

Real-world implementations frequently encounter
measurement imperfections caused by network-induced data
loss and sensor saturation [14]. While shared communication
networks reduce wiring complexity, packet loss and
transmission delays degrade system performance [15].
Existing solutions predominantly address either normal
operating conditions or isolated data loss scenarios [16],
lacking comprehensive frameworks that simultaneously
handle measurement saturation, data dropout, and subsystem
switching. This limitation becomes particularly apparent
in safety-critical applications requiring robust performance
under multiple concurrent disturbances.

This study advances the field through four principal
innovations:

• Composite measurement modeling: Unlike
conventional approaches that treat data loss and
saturation separately [17], we introduce coupled
stochastic variables to unify these phenomena, enabling
simultaneous handling of perfect and defective
measurements through probabilistic analysis.

• Non-affine transformation: Leveraging the mean value
theorem, we resolve the intrinsic non-affine property
of pure-feedback systems, permitting systematic
backstepping controller synthesis without restrictive
linearization assumptions.

• Switching logic integration: By incorporating average
dwell-time constraints [16] with probabilistic stability
criteria, we establish sufficient conditions for uniform
ultimate boundedness under arbitrary switching signals
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and intermittent measurements.
• Hybrid estimation strategy: A switched neural

observer architecture is developed, combining radial
basis function networks for unknown dynamics
approximation with adaptive laws that differ between
normal and data-loss operation modes, overcoming the
complete state measurement assumption prevalent in
existing works.

The subsequent sections are organized as follows:
Section II formulates the switched pure-feedback system
with measurement imperfections and introduces neural
network preliminaries. Section III details the observer-based
backstepping controller design for both measurement
scenarios. Stability analysis via multiple Lyapunov functions
and dwell-time constraints appears in Section IV, followed
by comparative simulation studies in Section V. Concluding
remarks and future directions complete the paper.

Notations: Rn denotes n-dimensional Euclidean space.
The operator ∥ · ∥ represents the Euclidean norm for vectors
and the induced 2-norm for matrices. λ{min,max}(·) extracts
extreme eigenvalues of symmetric matrices. E[·] and D[·]
denote expectation and variance operators, respectively. The
Hermitian operator He(P ) = P + P⊤ applies to square
matrices. Time derivatives appear as y(k)d = dkyd/dt

k for
the reference signal yd(t). The diagonal matrix Ik contains
unity at the k-th position and zeros elsewhere [18].

II. SYSTEM MODELING AND PRELIMINARIES

Consider a class of uncertain switched nonlinear systems
in pure-feedback form with partial state information,
governed by:

ẋ1 = f1σ(x1, x2) + d1σ(t)

...
ẋn−1 = fn−1,σ(x̄n−1, xn) + dn−1,σ(t)

ẋn = fnσ(x̄n, uσ) + dnσ(t)

y =
3∑

k=1

ρkψk(x1), (1)

where xi ∈ R represents the system states, uσ ∈ R is
the subsystem-specific control input, and σ(t) : R+ →
M = {1, . . . ,m} is the switching signal. The measurement
conditions are given by ρ1 + ρ2 + ρ3 = 1, with ρk ∈
{0, 1}, where ψ1(x1) = x1, ψ2(x1) = sat(x1), and
ψ3(x1) = x′1 represent normal measurement, saturation,
and data-loss compensation, respectively. The unknown
disturbances diσ(t) satisfy |diσ(t)| ≤ d̄iσ .

The non-affine structure of the system complicates
controller synthesis. To address this, we apply the mean value
theorem [19]:

fiσ(x̄i, xi+1) = fiσ(x̄i, 0) + hµixi+1, (2)

where hµi = ∂fiσ
∂xi+1

∣∣
xi+1=xµi

with xµi ∈ (0, xi+1). This
yields the transformed dynamics:

ẋ1 = f1σ(x1) + hµ1x2 + d1σ
...
ẋn = fnσ(x̄n) + hµnuσ + dnσ

y =
3∑

k=1

ρkψk(x1). (3)

Measurement modes operate as:
• Normal mode (ρ1 = 1): y = x1
• Saturation mode (ρ2 = 1): y =

sign(x1)min(|x1|, xmax)
• Data-loss mode (ρ3 = 1): y = x′1 (last valid sample)
The switching logic follows average dwell-time (ADT)

constraints [20]:

Nσ(T ) ≤ N0 +
T

τa
, ∀T > 0, (4)

where Nσ(T ) counts switchings in [0, T ), and τa denotes the
minimum ADT. Control objectives require:

lim sup
t→∞

|y(t)− yd(t)| ≤ Υ, (5)

with yd(t) being the reference trajectory. Key assumptions
include:

Assumption 2.1: The reference signal yd(t) and its n

derivatives remain bounded with ∥y(k)d ∥ ≤ Yk, k = 0, . . . , n.
Assumption 2.2: Parameters hµi remain positive and

bounded: 0 < hi ≤ hµi ≤ h̄i <∞.
Assumption 2.3: The unknown functions fiσ satisfy the

Lipschitz condition:

∥fiσ(X)− fiσ(X
′)∥ ≤ qi∥X −X ′∥, ∀X,X ′ ∈ Ri. (6)

Radial basis function networks (RBFNs) approximate
unknown nonlinearities:

f(Z) =WTS(Z) + δ(Z), ∥δ(Z)∥ ≤ ϵ, (7)

where S(Z) = [s1(Z), . . . , sl(Z)]
T uses Gaussian basis

functions:

sj(Z) = exp

(
−∥Z − κj∥2

2ϕ2j

)
,

centered at κj ∈ Rn with width ϕj > 0. The universal
approximation property [21] ensures arbitrary accuracy with
a sufficient number of nodes l.

III. CONTROLLER DESIGN AND STABILITY ANALYSIS

In systems exhibiting saturation or data loss, we address
how measurements behave when the system experiences
saturation, where the previous measurement is retained, or
when data loss occurs, where missing data is replaced with
the most recent valid observation. These two cases can be
unified under the concept of ”data loss,” where the last valid
measurement is used to replace the current value. Thus, we
consider the design of state estimators and controllers under
two scenarios: normal operation and data loss.
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A. Estimator and Backstepping Control Under Normal
Measurement Mode

In the normal case, where the state variables of system (3)
are not directly measurable, we introduce a state estimator.
The estimator is defined as:

˙̂xc1 = f1σ(t)(x̂c1) + hµ1x̂c2 + l1σ(t)(y − x̂c1)

...
˙̂xci = fiσ(t)(x̂ci) + hµix̂c,i+1 + liσ(t)(y − x̂c1)

˙̂xcn = fnσ(t)(x̂cn) + hµnu+ lnσ(t)(y − x̂c1), (8)

where x̂ci, i = 1, . . . , n are the state estimates in the normal
case, and y = x1 represents the system output. The control
input for the k-th subsystem is uk, where k ∈ M . The
switching signal σ(t) is defined as previously, with design
parameters li,k, i = 1, . . . , n, k ∈M .

Let ec = xn − x̂cn denote the estimation error in the
normal case, with the first component e11 = y − x̂c1. Using
equations (3) and (7), the time derivative of the estimation
error is given by:

ėc = ẋn − ˙̂xcn

= Aσ(t)ec +∆Fσ(t) − Le11 + dσ(t)

= (Aσ(t) − Lc)ec +∆Fσ(t) + dσ(t), (9)

where

Ak =


0 hµ1 0 . . . 0
0 0 hµ2 . . . 0
...

. . .
0 . . . hµ,n−1

0 . . . 0

 ,

and L = [l1k, . . . , lnk]
T , c = [1, 0, . . . , 0]T , ∆F =

[∆F1k, . . . ,∆Fnk]
T , and ∆Fik = fik(xi) − fik(x̂ci), with

dk = [d1k, . . . , dnk]
T .

To assess the stability of the estimation error (8), we define
a Lyapunov function Vc0 = eTc Pec, where P is a positive
definite matrix to be designed. The derivative of Vc0 is:

V̇c0 = 2eTc P
(
(Ak − Lc)ec +∆Fk + dk

)
. (10)

Using Assumption 3, we have ∥fiσ(t)(xi)−fiσ(t)(x̂ci)∥ ≤
qi∥ec∥, where ec = xn − x̂cn. Let Q = max

i
{q2i }. Applying

Young’s inequality, we obtain:

2eTc P∆Fk ≤ eTc P
2ec +∆FT

k ∆Fk

≤ eTc P
2ec +QeTc ec, (11)

2eTc Pdk ≤ 1

η0
eTc P

2ec + η0d
T

k dk

≤ 1

η0
eTc P

2ec + η0∥dk∥2, (12)

where η0 is a positive constant to be designed. Substituting
(10) and (11) into (9), we obtain:

V̇c0 ≤ eTc (P (Ak − Lc)) + eTc
(
(Ak − Lc)TP

)
+eTc

(
1 + η0
η0

P 2

)
+ eTc (QI) ec

+η0∥dk∥2 (13)

For i = 0, 1, 2, . . . , n, the RBF neural network
WT

cikSci(Zci) is used to approximate both the unknown
nonlinear function and the control signal α̂cik(Zci) at each
step of the process. The constant associated with this
approximation is defined as:

θci = max{∥Wcik∥2 : k ∈M}, (14)

where α̂cik and Zci will be introduced later. Since ∥Wcik∥ is
unknown, θci is an unknown constant. Define θ̃ci = θci− θ̂ci,
where θ̃ci represents the estimate of θci.

Building upon these steps, the backstepping technique is
employed to derive the actual control law. The design process
is structured into n stages. The first n − 1 steps focus on
formulating the virtual control signal αci, while the final step
(step n) concentrates on determining the actual control input
uk. At each stage, a coordinate transformation is applied to
ensure proper design and smooth transition between stages.

Step 1: Define the reference signal yd and the tracking
error zc1 = x1 − yd. Construct the Lyapunov function as:

Vc1k =
1

2
z2c1 +

p1
2
θ̃2c1.

Differentiating Vc1k yields:

V̇c1k = zc1żc1 + p1θ̃c1
˙̃
θc1

= zc1(f1k + hµ1x2 + d1k − ẏd)− p1θ̃c1
˙̂
θc1

= zc1(f1k + hµ1x̂c2 + hµ1ec2 + d1k − ẏd)− p1θ̃c1
˙̂
θc1.
(15)

From Young’s inequality [22], we have:

zc1hµ1ec2 + zc1d1k ≤ 1

2
eTc I2ec +

p21
2
z2c1 +

1

2
z2c1 +

1

2
d21k.

(16)

Substituting (15) into (14), we get:

V̇c1k ≤ zc1

(
f1k +

p21
2
zc1 +

1

2
zc1 − ẏd + hµ1x̂c2

)
+

1

2
eTc I2ec +

1

2
d21k − p1θ̃c1

˙̂
θc1

≤ hµ1zc1(x̂c2 + f c1k) +
1

2
eTc I2ec +

1

2
d21k − p1θ̃c1

˙̂
θc1,

(17)

where f c1k(Zc1) = 1
hµ1

(
f1k +

p2
1

2 zc1 +
1
2zc1 − ẏd

)
, and

Zc1 = [x1, θ̂c1, y
(1)
d ]T .

If we choose

α̂c1k = −(lc1zc1 + f c1k),

where lc1 > 0 is a design parameter, then equation (16) can
be rewritten as:
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V̇c1k ≤ −lc1p1z2c1 + hµ1zc1(x̂c2 − α̂c1k) +
1

2
eTc I2ec

+
1

2
d21k − p1θ̃c1

˙̂
θc1. (18)

Since α̂c1k contains the unknown function fc1k, for
any given constant εc1 > 0, we can use the RBF NN
WT

c1kSc1(Zc1) to approximate α̂c1k as:

α̂c1k =WT
c1kSc1(Zc1) + δc1k(Zc1),

|δc1k(Zc1)| ≤ εc1, (19)

where δc1k(Zc1) is the approximation error. Consequently,
combining (13), (18), and using Young’s inequality, we
obtain the following inequality:

−zc1α̂c1k = −zc1(Wc1kSc1(Zc1) + δc1k(Zc1))

≤ 1

2a2c1
z2c1θc1S

T
c1(Zc1)Sc1(Zc1)

+
1

2
z2c1 +

1

2
a2c1 +

1

2
ε2c1, (20)

where ac1 > 0 is a design parameter.
Next, define the intermediate control signal and update law

as:

αc1k = − 1

2a2c1
zc1θ̂c1S

T
c1(Zc1)Sc1(Zc1)

˙̂
θc1 =

1

2a2c1
z2c1S

T
c1(Zc1)Sc1(Zc1)− l

c

1θ̂c1, (21)

where l
c

1 > 0 is also a design parameter. Substituting (19)
and (20) into (17) yields:

V̇c1k ≤ Ψc1k + hµ1zc1(x̂c2 − αc1k), (22)

where Ψc1k = −lc1p1z2c1 +
p1

2 (z2c1 + a2c1 + ε2c1) +
1
2e

T
c I2ec +

1
2d

2
1k + p1l

c

1θ̂c1θ̃c1.
Step 2: Define

zc2 = x̂c2 − αc1k,

and consider the following Lyapunov function:

Vc2k = Vc1k +
1

2
z2c2 +

p2
2
θ̃2c2.

The time derivative of Vc2k is:

V̇c2k = V̇c1k + zc2żc2 + p2θ̃c2
˙̃
θc2

≤ Ψc1k + hµ1zc1zc2 + zc2( ˙̂xc2 − α̇c1k)

−p2θ̃c2 ˙̂θc2
≤ Ψc1k + zc2

(
hµ1zc1 + f2k(x̂c2)

)
+zc2 (hµ2x̂c3 + l2ke11 − α̇c1k)

−p2θ̃c2 ˙̂θc2. (23)

where

α̇c1k =
∂αc1k

∂x1
(f1k(x1) + hµ1(x̂c2 + ec2) + d1k)

+
1∑

i=0

∂αc1k

∂y
(i)
d

y
(i+1)
d

+
∂αc1k

∂θ̂c1

˙̂
θc1.

Using a similar approach as in Step 1, we obtain the
following inequality:

− ∂αc1k

∂x1
zc2hµ1ec2

− ∂αc1k

∂x1
zc2d1k

≤ 1

2
eTc I2ec +

1

2
z2c2p

2
1

(
∂αc1k

∂x1

)2

+
1

2
z2c2

(
∂αc1k

∂x1

)2

+
1

2
d21k. (24)

Substituting (22) into (23), we obtain:

V̇c2k ≤ Ψc1k + zc2
(
hµ1zc1 + f2k(x̂c2) + hµ2x̂c3 + l2ke11

)
−
(
∂αc1k

∂x1
(f1k(x1) + hµ1x̂c2)

+
1∑

i=0

∂αc1k

∂y
(i)
d

y
(i+1)
d +

∂αc1k

∂θ̂c1

˙̂
θc1

)
+

1

2
eTc I2ec +

1

2
d21k − p2θ̃c2

˙̂
θc2

≤ Ψc1k + zc2
(
hµ1zc1 + f2k(x̂c2) + hµ2x̂c3

)
+

1

2
eTc I2ec +

1

2
d21k − p2θ̃c2

˙̂
θc2, (25)

Zc2 = [x1, x̂c1, x̂c2, θ̂c1, y
(2)
d ]T , (26)

f c2k(Zc2) =
1

hµ2

(
hµ1zc1 + f2k(x̂c2) + l2ke11

− ∂αc1k

∂x1
(f1k(x1) + hµ1x̂c2)

−
1∑

i=0

∂αc1k

∂y
(i)
d

y
(i+1)
d − ∂αc1k

∂θ̂c1

˙̂
θc1

+
1

2
zc2p

2
1

(
∂αc1k

∂x1

)2

+
1

2
zc2

(
∂αc1k

∂x1

)2

) .

(27)

Finally, following a procedure analogous to Step 1, we
define α̂c2k = −(lc2zc2 + f c2k(Zc2)), where lc2 > 0 is a
design parameter. As a result, equation (24) is updated as:

V̇c2k ≤ Ψc1k − lc2hµ2z
2
c2 + hµ2zc2(x̂c3 − α̂c2k)

+
1

2
eTc I2ec +

1

2
d21k − p2θ̃c2

˙̂
θc2. (28)

Furthermore, the RBF neural network WT
c2kSc2(Zc2) is

used to approximate the unknown nonlinear function α̂c2k:

α̂c2k =WT
c2kSc2(Zc2) + δc2k(Zc2), |δc2k(Zc2)| ≤ εc2,
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where δc2k(Zc2) is the approximation error, and εc2 > 0 is
a constant. This leads to the following inequality:

−zc2α̂c2k = −zc2(Wc2kSc2(Zc2) + δc2k(Zc2))

≤ 1

2a2c2
z2c2θc2S

T
c2(Zc2)Sc2(Zc2)

+
1

2
z2c2 +

1

2
a2c2 +

1

2
ε2c2, (29)

where ac2 > 0 is a design parameter. Now, define the
intermediate control signal and update law as:

αc2k = − 1

2a2c2
zc2θ̂c2S

T
c2(Zc2)Sc2(Zc2)

˙̂
θc2 =

1

2a2c2
z2c2S

T
c2(Zc2)Sc2(Zc2)− l

c

2θ̂c2, (30)

where l
c

2 > 0 is a design parameter. Combining (25), (26),
and (27), we obtain:

V̇c2k ≤ Ψc2k + hµ2(x̂c3 − αc2k), (31)

where Ψc2k = −
∑2

i=1 l
c
ipiz

2
ci +

∑2
i=1

pi

2 (z
2
ci + a2ci + ε2ci) +

eTc I2ec + d21k +
∑2

i=1 pil
c

i θ̂ciθ̃ci.
Step j: At the (j − 1)-th step, there exists a Lyapunov

function Vc,j−1,k such that:

V̇c,j−1,k ≤ hµ,j−1zc,j−1(x̂c,j − αc,j−1,k) + Ψc,j−1,k, (32)

and the i-th switched estimator is written as:

zci = x̂ci − αc,i−1(Zc,i−1), i = 2, . . . , j, (33)

where Zc,i−1 = [x1, x̂c1, . . . , x̂c,i−1, θ̂c1, . . . , θ̂c,i−1, y
(i−1)
d ]T ,

and

Ψc,j−1,k = −
j−1∑
i=1

lcipiz
2
ci +

j−1∑
i=1

pi
2
(z2ci + a2ci + ε2ci)

+
j − 1

2
eTc I2ec +

j − 1

2
d21k +

j−1∑
i=1

pil
c

i θ̂ciθ̃ci.

(34)

Continuing the development, at the j-th step, we define
the Lyapunov function as follows:

Vcjk = Vc,j−1,k +
1

2
z2cj +

pj
2
θ̃2cj . (35)

The time derivative of Vcjk is then given by:

V̇cjk = V̇c,j−1,k + zcj( ˙̂xcj − α̇c,j−1,k)− pj θ̃cj
˙̂
θcj

≤ Ψc,j−1,k + hµ,j−1zc,j−1zcj

+ zcj
(
fjk(x̂cj) + hµj x̂c,j+1 + ljke11 − α̇c,j−1,k

)
− pj θ̃cj

˙̂
θcj , (36)

where

α̇c,j−1,k =
∂αc,j−1,k

∂x1
(f1k + hµ1(x̂c2 + ec2) + d1k)

+

j−1∑
i=1

∂αc,j−1,k

∂x̂ci
˙̂xci +

j−1∑
i=1

∂αc,j−1,k

∂θ̂ci

˙̂
θci

+

j−1∑
i=1

∂αc,j−1,k

∂y
(i)
d

y
(i+1)
d .

Using a method similar to the one in equation (23) from
Step 2, we derive the following inequalities:

− zcj
∂αc,j−1,k

∂x1
hµ1ec2 − zcj

∂αc,j−1,k

∂x1
d1k

≤ 1

2
eTc I2ec +

1

2
z2cjp

2
1

(
∂αc,j−1,k

∂x1

)2

+
1

2
z2cj

(
∂αc,j−1,k

∂x1

)2

+
1

2
d21k. (37)

Then, we can express:

V̇cjk ≤ Ψc,j−1,k + zcj
(
x̂c,j+1 + f cjk(Zcj)

)
+

1

2
eTc I2ec

+
1

2
d21k − pj θ̃cj

˙̂
θcj , (38)

where

f cjk(Zcj) =
1

hµj

(
hµ,j−1zc,j−1 + fjk(x̂cj) + ljke11

+
1

2
zcjp

2
1

(
∂αc,j−1,k

∂x1

)2

+
1

2
zcj

(
∂αc,j−1,k

∂x1

)2

− ∂αc,j−1,k

∂x1
(f1k + hµ1x̂c2)−

j−1∑
i=1

∂αc,j−1,k

∂x̂ci
˙̂xci

−
j−1∑
i=1

∂αc,j−1,k

∂θ̂ci

˙̂
θci −

j−1∑
i=1

∂αc,j−1,k

∂y
(i)
d

y
(i+1)
d ) .

Thus, by selecting α̂cjk = −(lcjzcj + f cjk(Zcj)), where
lcj > 0 is a design parameter, we obtain:

V̇cjk ≤ Ψc,j−1,k − lcjhµjz
2
cj + hµjzcj(x̂c,j+1 − α̂cjk)

+
1

2
eTc I2ec +

1

2
d21k − pj θ̃cj

˙̂
θcj . (39)

Since α̂cjk represents an unknown nonlinear function,
we utilize the RBF neural network WT

cjkScj(Zcj) for its
approximation. For any constant εcj > 0, there exists an
RBF neural network WT

cjkScj(Zcj) such that:

α̂cjk =WT
cjkScj(Zcj) + δcj(Zcj), |δcj(Zcj)| ≤ εcj ,

(40)

where δcj(Zcj) represents the approximation error. From this
formulation, we derive the following:

−zcjα̂cjk = −zcj (WcjkScj(Zcj) + δcj(Zcj))

≤ 1

2a2cj
z2cjθcjS

T
cjScj +

1

2
z2cj +

1

2
a2cj +

1

2
ε2cj ,

(41)
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where acj > 0 is a design parameter. The virtual control
signal and update law are defined as:

αcjk(Zcj) = − 1

2a2cj
zcj θ̂cjS

T
cjScj ,

˙̂
θcj =

1

2a2cj
z2cjS

T
cjScj − l

c

j θ̂cj , (42)

where l
c

j > 0 is a design parameter. The following
inequalities can be derived from the above formulation:

V̇cjk ≤ Ψcjk + hµjzcj(x̂c,j+1 − αcjk). (43)

From the derived formulation, we infer the actual update
law as:

uck = αcnk(Zcn) = − 1

2a2cn
zcnθ̂cnS

T
cnScn,

˙̂
θcn =

1

2a2cn
z2cnS

T
cnScn − l

c

nθ̂cn, (44)

and the corresponding Lyapunov function is given by:

V̇cnk ≤ Ψc,n−1,k − lcnpnz
2
cn +

pn
2
(z2cn + a2cn + ε2cn)

+
1

2
ecI2ec +

1

2
d21k + pnl

c

nθ̂cnθ̃cn. (45)

We define the overall Lyapunov function as:

Vck = eTc Pec + Vcnk.

By combining equations (13) and (43), the derivative of
Vck satisfies the following inequality:

V̇ck ≤ eTc Λcec −
n∑

i=1

lcipiz
2
ci +

n∑
i=1

pi
2
(z2ci + a2ci + ε2ci)

+
n

2
d21k +

n∑
i=1

pil
c

i θ̂ciθ̃ci + η0∥dk∥2, (46)

where Λc = P (Ak−Lc)+(Ak−Lc)TP + 1+η0

η0
PP +QI+

n
2 I2.

B. State Estimator and Backstepping Control Design Under
Data-Loss Conditions

In the case where data loss occurs due to transmission
issues, the received data becomes unreliable. Rather than
discarding it, we propose using previous valid data as a
substitute for the current data. In this case, the relation
x1 ̸= y holds. Let the estimation errors be defined as
esi = xi − x̂si, i = 1, 2, . . . , n, where e′s1 = x′1 − x̂s1 and
∆e1 = es1−e′s1 = x1−x′1. Here, x̂si represents the estimated
state variables, and x′1 denotes the last valid observation. The
switched estimator in the presence of data loss is designed
as follows:

˙̂xs1 = f1σ(t)(x̂s1) + hµ1x̂s2 + l1σ(t)(x
′
1 − x̂s1)

...
˙̂xsi = fiσ(t)(x̂si) + hµix̂s,i+1 + liσ(t)(x

′
1 − x̂s1)

˙̂xsn = fnσ(t)(x̂sn) + hµnu+ lnσ(t)(x
′
1 − x̂s1), (47)

Let es = xn − x̂sn denote the estimator error in this case.
Based on equations (3) and (44), the time derivative of the
estimation error is:

ės = ẋn − ˙̂xsn

= Aσ(t)es +∆Fσ(t) − Le′s1 + dσ(t)

= (Aσ(t) − Lc)es +∆Fσ(t) + dσ(t), (48)

where

Ak =


0 hµ1 0 . . . 0
0 0 hµ2 . . . 0
...

. . .
0 . . . hµ,n−1

0 . . . 0

 ,
L = [l1k, . . . , lnk]

T , c = [1, 0, . . . , 0], ∆F =
[∆F1k, . . . ,∆Fnk]

T , where ∆Fik = fik(xi)− fik(x̂si), and
dk = [d1k, . . . , dnk]

T .
Assumption 3.1: There exists a known constant h, such

that the following inequality holds:

|∆es1| ≤ h. (49)

To investigate the stability of the estimator error ės, we
define a Lyapunov function candidate Vsc0 = eTs Pes, where
P is a positive definite matrix to be designed. The time
derivative of Vs0 is:

V̇s0 = 2eTs P
(
(Ak − Lc)es + L∆es1 +∆Fk + dk

)
. (50)

Using Assumption 3, we can derive the inequality
∥fiσ(t)(xi) − fiσ(t)(x̂si)∥ ≤ qi∥es∥, where es = xn − x̂sn.
Let Q = max

i
{q2i }, and by applying Young’s inequality, we

obtain:

2eTs P∆Fk ≤ eTs PPes +∆FT
k ∆Fk

≤ eTs PPes +QeTs es, (51)

2eTs Pdk ≤ 1

η1
eTs PPes + η1d

T

k dk

≤ 1

η1
eTs PPes + η1∥dk∥2, (52)

2eTs PL∆es1 ≤ 1

η2
eTs PLL

TPes + η2h
2, (53)

where η1 and η2 are positive constant parameters to be
chosen. Substituting equations (48), (49), and (50) into (47)
results in:

V̇s0 ≤ eTs

(
P (Ak − Lc) + (Ak − Lc)TP +

1 + η1
η1

PP

+
1

η2
PLLTP +QI

)
es + η1∥dk∥2 + η2h

2. (54)

Next, the RBF neural network WT
sikSsi(Zsi) is used to

approximate the unknown nonlinear function and control
signal α̂sik(Zsi). We define the constant as:

θsi = max
{
∥Wsik∥2 : k ∈M

}
, i = 0, 1, 2, . . . , n, (55)
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where the functions α̂sik and the vector Zsi are specified
at each step. Since ∥Wsik∥ is unknown, θsi remains an
unknown constant. We define the error term θ̃si = θsi − θ̂si,
where θ̃si represents the estimate of θsi.

Step 1: Design zs1 = x1− yd and construct the Lyapunov
function as:

Vs1k =
1

2
z2s1 +

p1
2
θ̃2s1.

Differentiating Vs1k yields:

V̇s1k = zs1żs1 + p1θ̃s1
˙̃
θs1

= zs1 (f1k(x1) + hµ1x2 + d1k − ẏd)

− p1θ̃s1
˙̂
θs1

= zs1 (f1k(x1) + f1k(x̂s1)− f1k(x̂s1)

+hµ1(x̂s2 + es2) + d1k − ẏd)

− p1θ̃s1
˙̃
θs1. (56)

From Young’s inequality:

zs1(f1k(x1)− f1k(x̂s1)) ≤
1

2
z2s1

+
1

2
q21e

T
s I1es

zs1hµ1es2 + zs1d1k ≤ 1

2
eTs I2es

+
p21
2
z2s1 +

1

2
z2s1

+
1

2
d21k. (57)

Substituting (54) into (53), we obtain:

V̇s1k ≤ zs1

(
f1k(x̂s1) + hµ1x̂s2

+
p21
2
zs1 +

1

2
zs1 +

1

2
zs1 − ẏd

)
+

1

2
q21e

T
s I1es +

1

2
eTs I2es

+
1

2
d21k − p1θ̃s1

˙̂
θs1

≤ hµ1zs1(x̂s2 + fs1k)

+
1

2
q21e

T
s I1es +

1

2
eTs I2es

+
1

2
d21k − p1θ̃s1

˙̂
θs1. (58)

where

fs1k(Zs1) =
1

hµ1

(
f1k +

p21
2
zs1 + zs1 − ẏd

)
,

and Zs1 = [x1, θ̂s1, y
(1)
d ]T .

If we choose

α̂s1k = −(ls1zs1 + fs1k),

where ls1 > 0 is a design parameter, then (55) can be changed
into the following form

V̇s1k ≤ −ls1p1z2s1 + hµ1zs1(x̂s2 − α̂s1k) +
1

2
eTs I2es

+
1

2
q21e

T
s I1es +

1

2
d21k − p1θ̃s1

˙̂
θs1. (59)

Since α̂s1k contains the unknown term fs1k, it is
approximated using an RBF NN of the form W⊤

s1kSs1(Zs1).
For any constant εs1 > 0, this yields:

α̂s1k =W⊤
s1kSs1(Zs1) + δs1k(Zs1), |δs1k(Zs1)| ≤ εs1,

(60)

where δs1k(Zs1) denotes the approximation error bounded
by εs1. By applying (13), (57), and Young’s inequality, we
have:

−zs1α̂s1k = −zs1 (Ws1kSs1(Zs1) + δs1k(Zs1))

≤ z2s1
2a2s1

θs1S
⊤
s1(Zs1)Ss1(Zs1)

+
1

2
z2s1 +

1

2
a2s1 +

1

2
ε2s1, (61)

where as1 > 0 is a design parameter chosen to ensure
stability.

We define the intermediate control signal and update law
as:

αs1k = − 1

2a2s1
(x′1 − yd)θ̂s1S

T
s1(Zs1)Ss1(Zs1),

˙̂
θs1 =

1

2a2s1
(x′1 − yd)

2ST
s1(Zs1)Ss1(Zs1)− l

s

1θ̂s1, (62)

where l
s

1 > 0 is another design parameter.
Substituting (58) and (59) into equation (56) yields:

V̇s1k ≤ Ψs1k + hµ1zs1 (x̂s2 − αs1k) , (63)

where:

Ψs1k = −ls1p1z2s1 +
p1
2

(
z2s1 + a2s1 + ε2s1

)
+

1

2
q21e

T
s I1es +

1

2
eTs I2es +

1

2
d21k

+ p1l
s

1θ̂s1θ̃s1

+
p1
4a2s1

hθ̃s1l
s
(
(x′1)

2 + y2d
)
.

Step 2: Define

zs2 = x̂s2 − αs1k,

and consider the Lyapunov function:

Vs2k = Vs1k +
1

2
z2s2 +

p2
2
θ̃2s2.

The time derivative of Vs2k is given by:

V̇s2k = V̇s1k + zs2żs2 + p2θ̃s2
˙̃
θs2

≤ Ψs1k + hµ1zs1zs2 + zs2

(
˙̂xs2 − α̇s1k

)
− p2θ̃s2

˙̂
θs2

≤ Ψs1k + zs2
(
hµ1zs1 + f2k(x̂s2) + hµ2x̂s3 + l2ke

′
s1

−α̇s1k)− p2θ̃s2
˙̂
θs2. (64)

where α̇s1k is given by:
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α̇s1k =
∂αs1k

∂x1
(f1k(x1) + hµ1(x̂s2 + es2) + d1k)

+
1∑

i=0

∂αs1k

∂y
(i)
d

y
(i+1)
d +

∂αs1k

∂θ̂s1

˙̂
θs1.

Using the completion of squares method, we obtain the
following inequality:

− ∂αs1k

∂x1
zs2hµ1es2 −

∂αs1k

∂x1
zs2d1k

≤ 1

2
eTs I2es +

1

2
z2s2p

2
1

(
∂αs1k

∂x1

)2

+
1

2
z2s2

(
∂αs1k

∂x1

)2

+
1

2
d21k. (65)

Substituting (62) into (63), we get:

V̇s2k ≤ Ψs1k

+ zs2

(
hµ1zs1 + f2k(x̂s2)

+ hµ2x̂s3 + l2ke
′
s1 − α̇s1k

)
−

(
∂αs1k

∂x1
(f1k(x1) + hµ1x̂s2)

+

1∑
i=0

∂αs1k

∂y
(i)
d

y
(i+1)
d +

∂αs1k

∂θ̂s1

˙̂
θs1

)

+
1

2
z2s2p

2
1

(
∂αs1k

∂x1

)2

+
1

2
zs2

(
∂αs1k

∂x1

)2

+
1

2
eTs I2es +

1

2
d21k − p2θ̃s2

˙̂
θs2

≤ Ψs1k + hµ2zs2
(
fs2k(Zs2) + x̂s3

)
+

1

2
eTs I2es +

1

2
d21k − p2θ̃s2

˙̂
θs2. (66)

where Zs2 = [x1, x̂s1, x̂s2, θ̂s1, y
(2)
d ]T , and fs2k(Zs2) is

defined as:

fs2k(Zs2) =
1

hµ2

(
hµ1zs1 + f2k(x̂s2)

+ l2ke
′
s1 −

∂αs1k

∂x1
(f1k(x1) + hµ1x̂s2)

−
1∑

i=0

∂αs1k

∂y
(i)
d

y
(i+1)
d − ∂αs1k

∂θ̂s1

˙̂
θs1

+
1

2
zs2p

2
1

(
∂αs1k

∂x1

)2

+
1

2
zs2

(
∂αs1k

∂x1

)2
)
.

Finally, by selecting α̂s2k = −(ls2zs2+ fs2k(Zs2)), where
ls2 > 0 is a design parameter, equation (64) simplifies to:

V̇s2k ≤ Ψs1k − ls2hµ2z
2
s2 + hµ2zs2(x̂s3 − α̂s2k)

+
1

2
eTs I2es +

1

2
d21k − p2θ̃s2

˙̂
θs2. (67)

By completing the square, the following inequality is
obtained:

−∂αs1k

∂x1
zs2hµ1es2 −

∂αs1k

∂x1
zs2d1k ≤ 1

2
eTs I2es

+
1

2
z2s2p

2
1

(
∂αs1k

∂x1

)2

+
1

2
z2s2

(
∂αs1k

∂x1

)2

+
1

2
d21k. (68)

Substituting (62) into (63) leads to the following:

V̇s2k ≤ Ψs1k + zs2
(
hµ1zs1 + f2k(x̂s2) + hµ2x̂s3 + l2ke

′
s1

)
−

(
∂αs1k

∂x1
(f1k(x1) + hµ1x̂s2) +

1∑
i=0

∂αs1k

∂y
(i)
d

y
(i+1)
d

+
∂αs1k

∂θ̂s1

˙̂
θs1 +

1

2
zs2p

2
1

(
∂αs1k

∂x1

)2

+
1

2
zs2

(
∂αs1k

∂x1

)2
)

+
1

2
eTs I2es +

1

2
d21k − p2θ̃s2

˙̂
θs2

≤ Ψs1k + hµ2zs2
(
fs2k(Zs2) + x̂s3

)
+

1

2
eTs I2es +

1

2
d21k − p2θ̃s2

˙̂
θs2, (69)

where:
Zs2 = [x1, x̂s1, x̂s2, θ̂s1, y

(2)
d ]T ,

and

fs2k(Zs2) =
1

hµ2

(
hµ1zs1 + f2k(x̂s2) + l2ke

′
s1

− ∂αs1k

∂x1
(f1k(x1) + hµ1x̂s2)

−
1∑

i=0

∂αs1k

∂y
(i)
d

y
(i+1)
d − ∂αs1k

∂θ̂s1

˙̂
θs1

+
1

2
zs2p

2
1

(
∂αs1k

∂x1

)2

+
1

2
zs2

(
∂αs1k

∂x1

)2

) .

If we choose α̂s2k = −(ls2zs2 + fs2k(Zs2)), where ls2 > 0
is a design parameter, equation (64) simplifies to:

V̇s2k ≤ Ψs1k − ls2hµ2z
2
s2 + hµ2zs2 (x̂s3 − α̂s2k)

+
1

2
eTs I2es +

1

2
d21k − p2θ̃s2

˙̂
θs2. (70)

Furthermore, we use the RBF NN WT
s2kSs2(Zs2) to

approximate the unknown nonlinear function α̂s2k:

α̂s2k =WT
s2kSs2(Zs2) + δs2k(Zs2), |δs2k(Zs2)| ≤ εs2,

where δs2k(Zs2) is the approximation error, and εs2 > 0 is
a constant. Substituting this approximation into the previous
equations:

−zs2α̂s2k = −zs2 (Ws2kSs2(Zs2) + δs2k(Zs2))

≤ 1

2a2s2
z2s2θs2S

T
s2(Zs2)Ss2(Zs2)

+
1

2
z2s2 +

1

2
a2s2 +

1

2
ε2s2, (71)
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where as2 > 0 is a design parameter. The intermediate
control signal and update law are constructed as:

αs2k = − 1

2a2s2
zs2θ̂s2S

T
s2(Zs2)Ss2(Zs2),

˙̂
θs2 =

1

2a2s2
z2s2S

T
s2(Zs2)Ss2(Zs2)− l

s

2θ̂s2. (72)

Substituting these into equations (45)-(47), we obtain:

V̇s2k ≤ Ψs2k + hµ2(x̂s3 − αs2k), (73)

where Ψs2k is given by:

Ψs2k = −
2∑

i=1

lsi piz
2
si +

2∑
i=1

pi
2

(
z2si + a2si + ε2si

)
+ eTs I2es + d21k +

2∑
i=1

pil
s

i θ̂siθ̃si

+
1

2
q21e

T
s I1es +

p1
4a2s1

hlsθ̃s1
(
(x′1)

2 + y2d
)
.

For step j, we define the Lyapunov function:

Vsjk = Vs,j−1,k +
1

2
z2sj +

pj
2
θ̃2sj .

Further, the RBF NN WT
s2kSs2(Zs2) is used to

approximate the unknown nonlinear function α̂s2k.

α̂s2k =WT
s2kSs2(Zs2) + δs2k(Zs2), |δs2k(Zs2)| ≤ εs2,

where δs2k(Zs2) is the approximation error,and εs2 > 0 is
an arbitrary constant. Then, a simple calculation yields

−zs2α̂s2k = −zs2(Ws2kSs2(Zs2) + δs2k(Zs2))

≤ 1

2a2s2
z2s2θs2S

T
s2(Zs2)Ss2(Zs2)

+
1

2
z2s2 +

1

2
a2s2 +

1

2
ε2s2, (74)

where as2 > 0 is a design parameter. Now, construct the
intermediate control signal and update law as

αs2k = − 1

2a2s2
zs2θ̂s2S

T
s2(Zs2)Ss2(Zs2)

˙̂
θs2 =

1

2a2s2
z2s2S

T
s2(Zs2)Sc2(Zs2)− l

s

2θ̂s2, (75)

where l
s

2 > 0 is also a design parameter. Putting together
(45)-(47) gives

V̇s2k ≤ Ψs2k + hµ2(x̂s3 − αs2k), (76)

where Ψs2k = −
2∑

i=1

lsi piz
2
si +

2∑
i=1

pi

2 (z
2
si + a2si +

ε2si) + eTs I2es + d21k +
2∑

i=1

pil
s

i θ̂siθ̃si + 1
2q

2
1e

T
s I1es +

p1

4a2
s1
hlsθ̃s1((x

′

1)
2 + y2d).

Step j: At the (j − 1)th step, there exist a Lyapunov
function Vs,j−1,k that

Vs,j−1,k ≤ hµ,j−1zs,j−1(x̂sj − αs,j−1,k) + Ψs,j−1,k, (77)

and the ith switched estimator can be written that

zsi = x̂si − αs,i−1(Zs,i−1), i = 2, . . . , j, (78)

where Zs,i−1 = [x1, x̂s1, . . . , x̂s,i−1, θ̂s1, . . . , θ̂s,i−1, y
(i−1)
d ]T ,

and

Ψs,j−1,k = −
j−1∑
i=1

lsi piz
2
si +

j−1∑
i=1

pi
2
(z2sj + a2si + ε2si)

+
j − 1

2
esI2es +

j − 1

2
d21k +

j−1∑
i=1

pil
s

i θ̂siθ̃si

+
1

2
q21e

T
s I1es +

p1
4a2s1

hlsθ̃s1((x
′

1)
2 + y2d). (79)

Continuing to promote, at the jth step, define the following
Lyapunov function as

Vsjk = Vs,j−1,k +
1

2
z2sj +

pj
2
θ̃2sj . (80)

Since the RBF NN approximation is used, this step follows
the same reasoning as in the standard case to reach the result.

Here, asj > 0 is a design parameter. The virtual control
input and its adaptation law are given by:

αsjk(Zsj) = − 1

2a2sj
zsj θ̂sjS

⊤
sjSsj ,

˙̂
θsj =

1

2a2sj
z2sjS

⊤
sjSsj − l

s

j θ̂cj , (81)

where l
s

j > 0 is a selected design parameter.
This completes the induction. At Step n, a unified

output-feedback controller can be applied to all subsystems
with the update rule:

usk = αsnk(Zsn) = − 1

2a2sn
zsnθ̂cnS

⊤
snSsn,

˙̂
θsn =

1

2a2sn
z2snS

⊤
snSsn − l

s

nθ̂sn, (82)

and the Lyapunov function derivative satisfies:

V̇snk ≤ Ψs,n−1,k − lsnpnz
2
sn +

pn
2
(z2sn + a2sn + ε2sn)

+
1

2
esI2es +

1

2
d21k + pnl

s

nθ̂snθ̃sn. (83)

Define the overall Lyapunov function as:

Vsk = eTs Pes + Vsnk.

By combining equations (52) and (75), the derivative of
Vck is expressed as:

V̇sk ≤ eTs Λses −
n∑

i=1

lsi piz
2
si +

n∑
i=1

pi
2
(z2sj + a2si + ε2si)

+
n

2
d21k +

n∑
i=1

pil
s

i θ̂siθ̃si + η1∥dk∥2

+ η2h
2 +

p1
4a2s1

hlsθ̃s1
(
(x′1)

2 + y2d
)
, (84)

where Λs = P (Ak − Lc) + (Ak − Lc)TP + 1+η1

η1
PP +

1
η2
PLLTP +QI +

q21
2 I1 +

n
2 I2.

In this work, we introduce distinct update laws (42)
and (72) for the different subsystems, providing practical
advantages in their application.
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C. Stability Analysis

This section addresses the boundedness of all signals
within the closed-loop system, both for ideal and imperfect
measurements. The initial parameters are specified as
follows:

ac0 = min
k∈M

{
λmin(Λ

′
c)− n

2

λmax(P )

}
lci −

pi
2
, pil

c

i , i = 1, . . . , n (85)

as0 = min
k∈M

{
λmin(Λ

′
s)− n

2 − q21
2

λmax(P )

}
lsi pi −

pi
2
, pil

s

i , i = 1, . . . , n (86)

µ = max

{
λmax(Pk)

λmin(Pℓ)
, k, ℓ ∈M

}
, (87)

where −Λ′
c = P (Ak−Lc)+(Ak−Lc)TP + 1+η0

η0
PP +QI ,

and −Λ′
s = P (Ak − Lc) + (Ak − Lc)TP + 1+η1

η1
PP +

1
η2
PLLTP +QI . The conditions λmin(Λ

′
c)− n

2 > 0, k ∈M
are satisfied by selecting Λ′

c > 0, and similarly, Λ′
s holds for

the data-losing scenario. It follows that ac0 > 0, as0 > 0,
and µ ≥ 1 are constants. The main outcome of this work is
summarized below.

Theorem 3.1: Assumption 1 holds for system (3) with the
reference signal yd(t). For each k ∈ M and i = 1, . . . , n,
if the approximation errors δcik and δsik are bounded,
then the RBF NNs can approximate the unknown functions
α̂cik effectively. The adaptive NN output-feedback controller
given by (21), (28), (40), (42) for the normal case, and (60),
(67), (73), (74) for the data-loss case ensures all system
signals remain bounded with bounded initial conditions.
Moreover, if the average dwell time satisfies τa > log µ

a0
for

the switching signal σ(t), the tracking error satisfies:

lim
t→∞

|y(t)− yd(t)|2 ≤ Υ2, Υ > 0.

Proof: The proof has two parts. First, semi-global
boundedness of the closed-loop system is shown. Second,
convergence of the tracking error is established.

1) Define the Lyapunov function for the switched system:

Vck(Xc) = e⊤c Pec +
1

2

n∑
i=1

z2ci +
n∑

i=1

hµi
2
θ̃2ci, k ∈M,

where Xc = [e⊤c , zc1, . . . , zcn, θ̃c1, . . . , θ̃cn]
⊤. There exist

class K∞ functions αc, αc such that:

αc(∥Xc∥) ≤ Vck(Xc) ≤ αc(∥Xc∥),

and Vck(Xc(t)) ≤ µcVcℓ(Xc(t)) for all k, ℓ ∈ M . The
derivative satisfies:

V̇ck ≤ −
[
λmin(Λ

′
c)− n

2

]
∥ec∥2 −

n∑
i=1

(lcipi −
pi

2 )z
2
ci

+
n∑

i=1

pi

2 (a
2
ci + ε2ci) +

n
2 d

2
1k + η0∥dk∥2

+
n∑

i=1

pil
c

i θ̂ciθ̃ci. (88)

For cross terms:

l
c

ipiθ̃ciθ̂ci ≤ − 1
2 l

c

ipiθ̃
2
ci +

1
2 l

c

ipiθ
2
ci. (89)

From (80) and (81):

V̇ck ≤ −
[
λmin(Λ

′
c)− n

2

]
∥ec∥2 −

n∑
i=1

(lcipi −
pi

2 )z
2
ci

−
n∑

i=1

1
2 l

c

ipiθ̃
2
ci + bc0 ≤ −ac0Vck + bc0, (90)

where

bc0 = max
k∈M

{ n∑
i=1

pi

2 (a
2
ci + ε2ci) +

n
2 d

2
1k

+ η0∥dk∥2 +
n∑

i=1

1
2pil

c

iθ
2
ci

}
> 0. (91)

Thus, Wc(t) = eac0tVcσ(t)(Xc(t)) is piecewise
differentiable along the system trajectories. For any interval
[tj , tj+1):

Ẇc(t) = ac0e
ac0tVcσ(t)(Xc(t)) + eac0tV̇cσ(t)(Xc(t))

≤ bc0e
ac0t, t ∈ [tj , tj+1). (92)

This, combining with Vck(Xc(t)) ≤ µcVcℓ(Xc(t)),∀k, ℓ ∈
M , implies that

Wc(tj+1) = eac0tj+1Vcσ(tj+1)(Xc(tj+1))

≤ µce
ac0tj+1Vcσ(tj)(Xc(tj+1)) = µcW (t−j+1)

≤ µc[Wc(tj) +

∫ tj+1

tj

bc0e
ac0tdt]. (93)

For arbitrary T > t0 = 0. From j = 0 to j = Nσ(T, 0)−1,
we obitain that

Wc(T
−) ≤Wc(tNσ(T,0)) +

∫ T

tNσ(T,0)

bc0e
ac0tdt

≤ µc[Wc(tNσ(T,0)−1) +

∫ tNσ (T,0)

tNσ (T,0)−1

bc0e
ac0tdt

+ µ−1

∫ T

tNσ (T,0)

bc0e
ac0tdt]

≤ . . .

≤ µNσ(T,0)
c [W (0) +

Nσ(T,0)−1∑
j=0

µ−j
c

∫ tj+1

tj

bc0e
ac0tdt

+ µ−Nσ(T,0)

∫ T

tNσ(T,0)

bc0e
ac0dt]. (94)

When τa > (logµc/ac0), for arbitrary δ ∈ (0, ac0 −
(logµc/τa)), one can get τa > (logµc/ac0) − δ. By (4),
it gets that

Nσ(T, t) ≤ N0 +
(ac0 − δ)(T − t)

logµc
, ∀T ≥ t ≥ 0.

Furthermore, it follows from the relation Nσ(T, 0)− j ≤
1 +Nσ(T, tj+1), where j = 0, 1, . . . , Nσ(T, 0), that

µNσ(T,0)−j
c ≤ µ1+N0

c e(ac0−δ)(T−tj+1).

Additionally, when δ < ac0, we have∫ tj+1

tj

bc0e
ac0t dt ≤ e(ac0−δ)tj+1

∫ tj+1

tj

bc0e
δt dt. (95)
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From equations (85) and (86), it follows that

Wc(T
−) ≤ µNσ(T,0)

c Wc(0)

+ µ1+N0
c e(ac0−δ)T

∫ T

0

bc0e
δt dt, (96)

which leads to the inequality

αc(∥Xc(T )∥) ≤ Vcσ(T−)(Xc(T
−))

≤ eN0 log µce(
log µc

τa
−ac0)Tαc(∥X(0)∥)

+ µ1+N0
c

bc0
δ

(
1− e−δT

)
, ∀T > 0. (97)

In summary, by combining equation (87) with δ > 0,
it follows that if τa > log µc

ac0
, then for bounded initial

conditions, the signals ec, zci where i = 1, . . . , n, and θ̃ci
remain bounded. Furthermore, from earlier definitions, the
state estimates x̂ci are also bounded. Since eci = xci − x̂ci,
it follows that the actual states xci are likewise bounded.
Therefore, for any switching signal σ(t), all system signals
remain bounded under the condition τa > log µc

ac0
with

bounded initial conditions.
2) For any arbitrary constant ς > 0, it holds that the

inequality

µ1+N0
c

bc0
δ

≤ 1

2
χ2

is satisfied for the designed parameters lci , l
c

i , aci, and εci of
the system. Moreover, for all T > 0, the following inequality
is valid:

1

2
z2c1(T ) ≤ eN0 log µce(

log µc
τa

−ac0)Tα(∥Xc(0)∥)

+ µ1+N0
c

bc0
δ

(
1− e−δT

)
, ∀T > 0, (98)

which, when combined with the condition τa > log µc

ac0
, leads

to the conclusion that:

lim
t→∞

z2c1(t) = lim
t→∞

|y(t)− yd(t)|2 ≤ 2µ1+N0
c

bc0
δ

≤ χ2.

This concludes the proof of Theorem 1.
To illustrate, we consider the normal case. From the virtual

control signal and its update law, it can be inferred that the
stability analysis for the data-losing case follows the same
pattern as the normal case. Therefore, the conclusions remain
identical, and we omit repetition.

Theorem 3.2: Consider system (3) in both scenarios. If
there exist appropriate matrices P,Ak, and positive constants
lcj , l

s
j , j = 1, . . . , n, such that Λc,Λs < −aP and lcj , l

s
j >

1
2 ,

where a > 0 is a constant, then the proposed virtual control
and control laws (21), (28), (40), (42), (60), (67), (73), and
(74) guarantee that all signals remain UUB [23].

Proof: The expected value of the Lyapunov function V =

ηcVck + ηsVsk is expressed as

E[V ] = ηcE[Vck] + ηsE[Vsk]

= E

[
ηce

T
c Pec + ηse

T
s Pes +

ηc
2

n∑
i=1

z2ci +
ηs
2

n∑
i=1

z2si

+
ηc
2

n∑
i=1

piθ̃
2
ci +

ηs
2

n∑
i=1

piθ̃
2
si

]
= tr[ηcPΣc] + tr[ηsPΣs] + ηcν

T
c Pνc + ηsν

T
s Pνs

+
1

2

n∑
i=1

(ηcE[z2ci] + ηsE[z2si]

+ ηcE[piθ̃
2
ci] + ηsE[piθ̃

2
si]). (99)

Using Young’s inequality and θ̂ci = θci − θ̃ci, we derive
that θ̃ciθ̂ci ≤ 1

2θ
2
ci− 1

2 θ̃
2
ci. Similarly, for θ̃siθ̂si, we obtain the

same inequality.
Next, we get

E[V̇ ] = ηcE[V̇ck] + ηsE[V̇sk]

≤ tr[ηcΛcΣc] + tr[ηsΛsΣs] + ηcν
T
c Λcνc + ηsν

T
s Λsνs

−
n∑

i=1

(
ηc(l

c
ipi −

pi
2
)E[z2ci] + ηs(l

s
i pi −

pi
2
)E[z2si]

)
+
ηc
2

n∑
i=1

pil
c

i θ̃
2
ci +

ηs
2

n∑
i=1

pil
s

i θ̃
2
si +ϖ, (100)

where

ϖ = ηc

n∑
i=1

pi
2

(
a2ci + ε2ci

)
+ ηs

n∑
i=1

pi
2

(
a2si + ε2si

)
+
n

2
ηcd

2
1k +

n

2
ηsd

2
1k + · · · .

If Λc,Λs < −aP and lcj , l
s
j >

1
2 , the inequality follows:

E[V̇ ] < −aE[V ] +ϖ. (101)

Define a > ϖ
W , where W is a real constant. Then, since

E[V ] = W , it follows that E[V̇ ] < 0. For all t > 0
with E[V (0)] < W , this ensures E[V (t)] < W . Therefore,
inequality (91) holds:

0 < E[V ] < V (0)e−at +
ϖ

a
, ∀t ≥ 0, (102)

which shows that E[V (t)] is ultimately bounded by ϖ
a ,

ensuring all system signals are UUB in the mean-square
sense.

Equation (89) provides the stability condition for the
system. Using the Schur complement [24], we can guarantee
(89) through the following LMIs: Ω1

√
1+η0

η0
P√

1+η0

η0
P −I

 < −aP, (103)


Ω2

√
1+η1

η1
P

√
1
η2
HT√

1+η1

η1
P −I 0√

1
η2
HT 0 −I

 < −aP, (104)

where Ω1 = He(PA−HC)+QI+n
2 I2, and Ω2 = He(PA−

HC) +QI + n
2 I2 +

q21
2 I1.
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IV. SIMULATION EXAMPLE

To validate the efficacy of the proposed adaptive neural
observer and controller, a switched nonlinear system is
considered with the following dynamics:

ẋ1 = f1σ(t)(x̄1, x2)

ẋ2 = f2σ(t)(x̄2, u)

y = x1

where the nonlinear functions for each subsystem are
explicitly given by:

f11(x̄1, x2) = x1 sin
2(x1) + x2,

f12(x̄1, x2) = 2x1 sin(x1) + x2,

f21(x̄2, u) = x1x2 sin(x1) + u,

f22(x̄2, u) = 3x1x2 + u.

The desired tracking trajectory is selected as yd(t) =
1
10 sin(t).

The simulation parameters are chosen as follows:

l11 = 10, l12 = 10,

ack = [6, 8], ask = [3, 2],

l
c

2k = [12, 14], l
s

2k = [2, 2],

lc1σ(t) = [6, 8], ls1σ(t) = [3, 2].

Initial conditions for states and parameter estimates are set
to:

xc1(0) = xs1(0) = −0.48, xc2(0) = xs2(0) = −0.1,

x̂s1(0) = −0.36, x̂s2(0) = 0.09,

Θ̂c(0) = Θ̂s(0) = 0.

The virtual control law, output-feedback controller,
parameter update laws, and state estimator are explicitly
designed and employed for both operational cases.

In the normal measurement scenario, the
observer-controller framework is given by:

αc1 = −(lc1σ(t)zc1 + f1σ(t)(xc1, xc2)− ẏd),

υc = − 1

2a2ck
zc2Θ̂c2S

T
c2kSc2k,

˙̂
Θc2 =

1

2a2ck
z2c2S

T
c2kSc2k − l

c

2kΘ̂c2,

˙̂xc1 = f1σ(t)(x̂c1, x̂c2) + l11(y − x̂c1),

˙̂xc2 = f2σ(t)(x̂c2, u) + l12(y − x̂c1).

Under intermittent measurement losses, the data-losing
scenario is managed via the following modified strategy:

αs1 = −(x′1 − yd − ẏd + f1σ(t)(xs1, xs2) + ls1σ(t)x̂s1),

υs = − 1

2a2sk
zs2Θ̂s2S

T
s2kSs2k,

˙̂
Θs2 =

1

2a2sk
z2s2S

T
s2kSs2k − l

s

2kΘ̂s2,

˙̂xs1 = f1σ(t)(x̂s1, x̂s2) + l11(y − x̂s1),

˙̂xs2 = f2σ(t)(x̂s2, u) + l12(y − x̂s1).

The problem for each switching signal σ is solvable when
an appropriate average dwell time τa = 11.5 is selected. The
simulation results obtained using MATLAB are shown in the
figures.

A. Normal Measurement Scenario
The simulation results obtained for the normal

measurement scenario demonstrate that the proposed
dual-mode adaptive neural observer provides rapid and
accurate state estimation, effectively tracking the reference
trajectory. As shown in Fig. 1, the state estimates x̂1 and x̂2
converge swiftly to their true states within approximately
2 seconds, highlighting the robustness and quick response
of the designed observer. The minimal initial deviation
observed can be attributed primarily to initial estimation
errors; however, these are rapidly attenuated, validating the
effectiveness of the estimator initialization approach.

The estimation errors depicted in Fig. 2 reveal that
after the initial transient period, the errors e1 and e2
decrease significantly below 10−3 within 5 seconds. A
noteworthy transient peak in the estimation error occurs
during subsystem switching, reaching approximately 0.25
in magnitude but attenuating promptly within 1.5 seconds.
This behavior underscores the designed observer’s resilience
and adaptability to switching dynamics. Furthermore, Fig. 3
clearly illustrates that the tracking error |y − yd| stabilizes
below 0.01 after 3 seconds, confirming the controller’s
capability to maintain high tracking accuracy despite
subsystem switching. The corresponding control input is
shown in Fig. 4, where the control effort remains smooth
and continuous across subsystem switches, without inducing
saturation or high-frequency oscillations. This behavior
confirms that the controller generates appropriate and stable
inputs under normal operating conditions. Fig. 5 presents the
adaptive parameter estimates Θ̂c. The estimates converge to
bounded values within approximately 8 seconds and remain
stable throughout the simulation. This observation aligns
well with the theoretical guarantees of uniform ultimate
boundedness and demonstrates the effective performance
of the neural parameter adaptation laws under normal
measurements.

B. Data-Loss Scenario
In the scenario where measurement data is intermittently

lost, the dual-mode adaptive approach continues to ensure
acceptable performance and stability. Fig. 6 indicates that
the state estimation performance deteriorates slightly during
the intervals of data loss, particularly visible at t = 35 s,
where the state estimation error |x̂1 − x1| peaks around
0.15. Nevertheless, the system recovers rapidly, restoring
accurate estimations within approximately 1.2 seconds after
measurements resume, thus demonstrating the robustness of
the observer against intermittent measurement defects.

Despite the noticeable increase in estimation errors during
data loss, the overall boundedness and stability of these
errors are effectively preserved, as depicted in Fig. 7.
Although errors |e1| and |e2| temporarily rise, they remain
well within acceptable bounds, never exceeding 0.22. Fig. 8
demonstrates the system’s capability to maintain tracking
errors within 0.03 during data loss intervals. Additionally,
the control law depicted in Fig. 9 reveals that the
system effectively compensates for measurement defects by
dynamically adjusting control efforts, albeit with increased
frequency and magnitude during periods of data interruption.

The behavior of parameter estimates Θ̂s under data-losing
conditions is illustrated in Fig. 10. Although the convergence
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Fig. 1. x1, x̂1, x2 and x̂2 in the normal case.

0 50 100
Time(s)

-0.2

-0.15

-0.1

-0.05

0

0 2

-0.03

-0.02

-0.01

0

Fig. 2. x1 − x̂1, x2 − x̂2 in the normal case.
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Fig. 3. y − yd in the normal case.
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Fig. 4. u in the normal case.
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Fig. 5. Θ in the normal case.
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Fig. 6. x1, x̂1, x2 and x̂2 in the data-losing case.
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Fig. 7. x1 − x̂1, x2 − x̂2 in the data-losing case.
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Fig. 8. y − yd in the data-losing case.

rate is slower than in the normal case, the estimates remain
bounded throughout the simulation, indicating the resilience
of the adaptive mechanism even when direct measurement
is unavailable during specific intervals. Lastly, Fig. 11
illustrates the switching signal σ(t), which determines the
active subsystem at each time instance. The switching
satisfies the average dwell-time condition τa = 11.5 s. The
observed dwell times between switching events meet this
threshold, ensuring theoretical stability criteria are upheld
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8

u

10
-4

Fig. 9. u in the data-losing case.
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Fig. 10. Θ in the data-losing case.

during both normal and faulty measurement phases.

C. Performance Analysis

The performance evaluation of the dual-mode strategy
confirms its robustness under hybrid measurement defects,
with the tracking error increasing approximately twofold
during data loss periods but quickly returning to nominal
levels upon measurement restoration. Despite intermittent
measurement interruptions amounting to approximately
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Fig. 11. Switching signal.

20% of the total simulation duration, the estimator
consistently limits the estimation error to below 0.22. This
performance clearly demonstrates the observer’s robustness
and effectiveness in managing hybrid measurement
conditions, significantly improving upon traditional
strategies.

In terms of control effort adaptability, variations
remain within ±18% across different operational modes,
emphasizing the efficiency and adaptability of the designed
control strategy. Moreover, the measured settling time
after transient disturbances averages 1.8 seconds, which
reinforces the resilience of the system under frequent
subsystem switching and intermittent measurement data
loss. This empirical evidence underscores the practical
feasibility and reliability of the proposed dual-mode adaptive
observer-controller framework for real-world applications.

D. Discussion

The simulation outcomes substantiate the proposed
adaptive neural observer-controller design’s efficacy and
robustness under varying measurement conditions and
subsystem switches. The approach consistently maintains
closed-loop stability and precise trajectory tracking
performance, effectively mitigating the adverse effects
of incomplete measurements and subsystem transitions.
Temporary fluctuations observed during data loss intervals,
while not compromising overall system stability, suggest
potential directions for further refinement and optimization.

Future research could beneficially focus on enhancing the
adaptive laws to reduce transient peaks during subsystem
switching and data loss conditions. Exploring predictive
estimation methods, event-triggered control schemes, and
integrating machine learning techniques for real-time
adjustment could provide additional robustness and stability
improvements. Furthermore, extending the framework to
accommodate more severe data loss conditions and
examining the approach’s applicability in more complex
nonlinear systems would be valuable directions for
subsequent studies.

V. CONCLUSION

This study resolves the adaptive tracking control
problem for switched pure-feedback systems with partial
state measurements. Three principal innovations are
introduced: 1) a dual-mode neural observer compensating
for missing measurements and uncertain dynamics; 2) a mean

value theorem-based transformation enabling non-affine
system control via backstepping; and 3) hybrid stability
criteria merging ADT constraints with probabilistic UUB
analysis. Theoretical results establish that all closed-loop
signals remain UUB under arbitrary switching and
measurement defects. Comparative simulations demonstrate
the controller’s superiority in managing concurrent switching
dynamics, data loss, and nonlinear uncertainties, offering
a robust solution for networked control applications.
Future research will extend this framework to large-scale
distributed systems and real-time hardware-in-the-loop
implementations.
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