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Abstract— The study of the common intracluster correlation in 
simple linear regression is well developed ([1] and [2]). For the 
situation involving various intracluster correlation coefficients, 
the issues become more complicated. The prime objective of this 
study is to compare the loss of efficiency in using the intracluster 
correlation structure of common form to that in Toeplitz form for 
simple linear regression using generalised least squares. 
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correlation, Toeplitz form. 
 

I. INTRODUCTION 
For the simple linear regression model, observations are 

usually assumed to be statistically independent. Often, however, 
in practice there may be physical constraints which lead to the 
violation of this assumption. For example, in studying human 
populations for genetic traits, one may select units out of 
families and then members in each family unit is observed. This 
would result in clusters in the sample. In repeated measures 
regression analysis, several pairs of observations  are 
generally taken on the same subject. In the analysis, all the 
observations on all the subjects are considered. In this case, all 
pairs of observations are not statistically independent. 
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Suppose that a sample of N elements arises from a two-stage 
sampling scheme. At the first stage of sampling, k clusters are 
drawn and at the second stage  elements are drawn from the 
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Consider the repeated measures regression model in which 
several pairs of observations  are taken on each k 
subjects, 
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We assume that the errors  are normally distributed with 

mean 0 and common variance . Further, the covariance 
between any two errors is given by  where f is a 
real-valued function. That is, 
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In the standard regression model, ordinary least squares 
(OLS) estimation is used to estimate the slope parameter 1β  
and the intercept term 0β . For the repeated measures 
regression model, the assumption of uncorrelated errors is no 
longer satisfied, and it may be misleading to examine the 
relationship of Y on X using OLS. Therefore, it is 
recommended to use generalized least squares (GLS). 
Although the correlation coefficient  is not usually known in 
practice, it can be estimated and a GLS performed. Some have 
termed this a pseudo-generalized least squares method. Our 
primary concern is not to estimate  but to compare the loss of 
efficiency between two distinct error structures in the above 
model based on GLS estimation. The first error structure 
involves the common intracluster correlation. The results for 
this error structure are well investigated by [1] and [2]. 
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However, the second error structure in Toeplitz form is not easy 
to handle. The results involve many algebraic computations 
and the matrices are complicated.  This paper attempts to use 
reasonable notation to develop and simplify the results for this 
error structure and to compare the efficiencies based on the two 
structures. In the matrix notation, the model is, 
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Also,  is a  vectors of zeros and  is a 
N~

0 1N ×
in~

1 1ni ×  

vectors of ones. It is assumed that observations from different 
clusters are uncorrelated but those in the same cluster are 
correlated. The covariance matrix is of the form 
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II. ERROR STRUCTURE 

A. Common Intracluster Correlation 
For the first structure considered, observations in the same 

cluster are correlated with a common intracluster correlation 
ρ . For the types of applications envisioned,  is assumed to be 
non-negative.  The covariance matrix for i

ρ
th cluster given by [1]  

is 
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(a) It is well known that the best linear unbiased estimator 
(BLUE) for 

~
β  is the generalized least squares estimator ([1]) 
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(b) The variance-covariance matrix of  and  is given by )1(
0β̂ )1(

1β̂
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(c) Variance Inflation Factor 
Even if the OLS estimator is reasonably efficient, the 
adjustment of OLS inferences for the clustering effect can 

still be made. In general the covariance matrix of  in (1) 

is given by 
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which is equivalent to , the covariance matrix of  
under OLS model. D represents the inflation that is needed to 
adjust the effect of incorrectly omitting the intracluster 
correlation from the model and is conditional on the observed 
X. From [1], 
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Since 0Z.. = , D is also known as the “misclassification 
effect”. 

B. Intracluster Correlation in Toeplitz Form 
If observations are collected over time or space, adjacent 

observations on a subject may be more highly correlated than 
observations further apart. In this case, it would seem more 
appropriate to assume that observations in the same cluster are 
correlated with coefficient, , . For this 
structure, the correlation at any two points depends on the 
distance between the points involved. The covariance matrix 
for the i

ρ 1)-(n , ... 1, ,0 i=

th cluster is 
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It can be shown ([3]) that the inverse of  for the above iiV th 
cluster is: 
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III. LOSS OF EFFICIENCY 
The efficiency of the estimators based on the common 

intracluster correlation error structure and the intracluster 
correlation structure in Toeplitz form, will be compared.  For 
fixed values of ρ  ( )0.9 0.5, 0.3, 0.2, 0.1, 0.05, ,01.0=ρ , one 

may calculate the ratio of  to  for an 

arbitrary coefficient vector , where  denotes the GLE of 
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and  denotes the GLE of  with respect to common 

intracluster correlation.  The following lemma given by [4] will 
be used in the efficiency comparison. 
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In particular, ,  is the smallest and largest eigenvalue of 

 respectively. 
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IV. SIMULATION STUDY 
 

In order to compare the loss of efficiency between two 
different error structures, a simulation study was conducted 
using various correlation coefficients, 

, different k (the number of 
clusters) and  (the cluster size). For illustrations, 

0.9 0.5, 0.3, 0.2, 0.1, 0.05, ,01.0=ρ

in 5k =  and 
 were selected with different values of  over three 

different intervals: ,  and [ ] . 
10k = in

[ ]2,6 [2,10] 2,22
For given 1k ≥ ,  and 1ni ≥ 10 ≤ρ≤ , matrices  (an 

 covariance matrix in the  cluster corresponding to 
the second error structure),  (an  covariance matrix in 

the  cluster corresponding to the first error structure),  (an 
 covariance matrix for the second error structure) and 

 (an  covariance matrix for the first error structure) 
were calculated.  The eigenvalues of the product UV were 
obtained to yield the upper and lower bounds.  Finally, the loss 
of efficiency was evaluated.  Table I shows the run with 
unequal cluster sizes. 
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Table I. Unequal cluster sizes 

Case k in ,  k , ... 2, ,1i =

(i) 5 2, 3, 4, 5, 6 
(ii) 10 2, 2, 2, 3, 2, 4, 2, 5, 2, 6 
(iii) 5 2, 4, 6, 8, 10 
(iv) 10 2, 2, 2, 4, 2, 6, 2, 8, 2, 10 
(v) 5 2, 7, 12, 17, 22 
(vi) 10 2, 2, 2, 7, 2, 12, 2, 17, 2, 22 

 
Simulation was also run for equal cluster size, 

 (6 cases) with different values of k. 
In order to obtain the eigenvalues of UV we only need to 
compute the eigenvalue corresponding to the  block of UV, 

. This is expected since U and V are symmetric and 
so the product UV is symmetric. More precisely, we consider 
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Since the eigenvalues of the matrix UV only depend on the 
cluster size , the number of clusters k and the arrangement of 
different  can be discarded. For example, repeated 
eigenvalues are observed in the case of equal cluster size. In 
fact, we run the program for 

in

iV

1k =  with  (total of 
19 cases) we find out that we only need to calculate the 
eigenvalues corresponding to the  matrix with largest 
cluster size. 

20 , ... ,2ni =

iV

V. RESULT AND DISCUSSION 

A. Upper bound on efficiency for combined cases 
Fig. 1(a) and 1(b) present upper bound for equal cluster size 

and unequal cluster size respectively. We investigated that the 
upper bound on efficiency only depends on cluster size . It is 
independent of the number of clusters k.  It is quite obvious in 
Fig. 1(b) that the graphs are upper bound on efficiency for 
Cases (i) and (ii), Cases (iii) and (iv), and Cases (v) and (vi) 
respectively. For 

in

5k =  or 10, the same graph is obtained but as 
 increases, the bound increases. For both plots, we know that 

when cluster size is large and 
in

ρ approaches 1, the efficiency on 
upper bound is infinite. 
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Fig. 1(a). Upper bound on efficiency (equal cluster size) 
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Fig. 1(b). Upper bound on efficiency (unequal cluster size) 
 

B. Lower bound on efficiency for combined cases 
Fig. 2(a) and Fig. 2(b) present lower bound for equal cluster 

size and unequal cluster size respectively. We got the same 
pattern from the above plots, the lower bound on efficiency 
does not depend on cluster size  very much.  It does not 
depend on the number of clusters k. As 

in
ρ  increases, the lower 

bound decreases. As ρ approaches 1, the efficiency tends to 
zero. 
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Fig. 2(a). Lower bound on efficiency (equal cluster size) 
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Fig. 2(b). Lower bound on efficiency (unequal cluster size) 
 

C. Upper and Lower bound on efficiency 
Fig. 3(a) and Fig. 3(b) present upper and lower bounds for 

2nni ==  (equal cluster size) as well as Cases (i) and (ii) 
(unequal cluster size) respectively. By judging the efficiencies 
on upper and lower bounds in the same plot as shown in Fig. 
3(a) and Fig. 3(b), the upper bound increases dramatically with 
ρ  increases. The lower bound decreases gradually with ρ  
decreases, it approaches 0 and ρ  goes to 1. For larger , 
Cases (iii) and (iv), and Cases (v) and (vi), we obtained similar 

in



 
 

 

pattern of plots but larger upper bound and smaller lower 
bound.  Thus we confirm that we only need to consider the 
largest ith cluster of  and obtain the bounds on efficiency.  
It is not necessary to know all eigenvalues of UV  and the 
bounds are not affected by k or different arrangements of  or 
even the total number of observations, N. 
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Fig. 3(a). Upper and lower bounds on efficiency for 
(equal cluster size) 2nni ==
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Fig. 3(b). Upper and lower bounds on efficiency for Cases (i) 

and (ii) (unequal cluster size) 

 

D. Loss of efficiency for combined cases 
Fig. 4(a) and Fig. 4(b) present loss of efficiency for upper and 

lower bounds for equal cluster size and unequal cluster size 
respectively. From both plots, they reveal that ρ  increases, 

, the upper bound on the loss of efficiency increases. As MAXL
ρ  approaches to 1,  is strictly less than one. This 
indicates that we obtain a gain in efficiency by employing the 
second error structure, Toeplitz form. When 

MAXL

ρ  tends to 1, the 
two distinct error structures are more or less with the same 
efficiency but the second error structure is better. There is not 
much inference on  with different values of . When MAXL in
ρ  is small, we find out that there is more gain in the efficiency 
of the second structure since  approaches 0. As  gets 
larger,  becomes more accurate. Moreover, when 

MAXL in

MAXL ρ  
approaches to zero, the loss of efficiency tends to zero. This 
simply means that we almost have an exact gain in our 
constructed error structure. 
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Fig. 4(a). Upper bound on the loss of efficiency  
(equal cluster size) 
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Fig. 4(b). Upper bound on the loss of efficiency  
(unequal cluster size) 

 

VI. CONCLUSION 
The idea of repeated measures regression analysis seems to 

be quite successful to handle inadequate observations which 
may be due to financial or human resources constraint in human 
surveys. In general, the model may deal with more than one 
independent variable. The principle will not change but the 
algebraic calculations are more tedious for multiple 
independent variables. Since the observations are not 
statistically independent, it is recommended to use GLS to 
obtain the best linear unbiased estimator (BLUE) of 

~
β . By 

comparing the loss of efficiency on two distinct error structures 
of common intracluster correlation and intracluster correlation 

in Toeplitz form that ρ increases,  increases.  

is strictly less than 1 or  , cluster size does not 

affect the efficiency very much. 
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In order to compare the GLS estimators  and  in (1), 

which may be equivalently written as 
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The subject effect  represents the observations on a single 
subject to be high or low. We therefore generate  and  as 

random variables from a normal distribution means 0 and 
variances  and  respectively.  can also be generated 

from a symmetric multinormal distribution having 
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’s are evaluated by putting the values of ijY 0β , 1β , ,  

and . Then we perform some tests for comparison of 

estimation properties and significance test properties. 

ijX id

ije

 

REFERENCES 
[1] A.J. Scott & D. Holt, “The effect of two-stage sampling on Ordinary Least 

Squares Method,” Journal of the American Statistical Association, vol. 
77, no. 380, 1982, pp. 848–854. 

[2] A.P. Donner & G.A. Wells, “A comparison of confidence interval 
methods for the intracluster correlation coefficient,” Biometrics, vol. 42, 
no. 2, 1986, pp. 401–412. 

[3] D.F. Morrison, Multivariate Statistical Methods. New York: 
McGraw-Hill, 1976. 

[4] C.S. Wong, Linear Algebra. New Jersey: Prentice Hall, 1976. 
 


	I. INTRODUCTION 
	II. Error Structure 
	A. Common Intracluster Correlation 
	B. Intracluster Correlation in Toeplitz Form 
	III. Loss of Efficiency 
	IV. Simulation Study 
	V. Result and Discussion 
	A. Upper bound on efficiency for combined cases 
	B. Lower bound on efficiency for combined cases 
	C. Upper and Lower bound on efficiency 
	D. Loss of efficiency for combined cases 

	VI. Conclusion 


