Select the Best Surface Fitting Approach for the Reconstruction of High Quality 3-D Objects from Range-image Data

Ralph W. L. Ip, Angela C. W. Yeung, Felix T. S. Chan and Henry C. W. Lau

Abstract— Applying surface fitting models to reconstruct 3-D objects with free-form features is widely employed from toy industry to medical surgery. However, reconstruction of free-form surfaces from range-image data always prone to intensive manual operations, and some technical skills are always needed. Recently, research focus on the studies of improving surface reconstruction results to achieve better quality with simple processing procedures. The research aims to report some strategies that provide guidelines to select appropriate surface fitting models for achieving the required quality at the shortest time. The surface fitting models including Extrusion, Revolution, Sweeping, Coons and Loft were detailed examined and compared with their abilities in the reconstruction of primitive 3-D objects. Findings of the research illustrated that the listed fitting models could work well for a specific group of object surfaces. A shorter surface reconstruction time and better fitting result can be achieved from the recommended fitting models. A table categorizes surface fitting models provide the best fitting to various shape primitive 3-D objects. Successfully apply the proposed surface fitting selection approach can simplify intensive learning of various surface modelling tools, and also build up confidence for unskilful designers in the using sophisticated computer-aided surface modelling software.

Index Terms— Fitting, Free-form shape, Range-image data, Surface reconstruction

I. INTRODUCTION

Select an appropriated surface modelling method for the fitting of a group of range-image data is an important research

Manuscript received May 12, 2006. This work was supported by the University Grant Committee under Competitive Earmarked Research Grant No. 9040710 (CityU 1156/02E). The authors would like to thank for all financial supports from the grant committee.

Ralph W. L. Ip is with the Department of Manufacturing Engineering and Engineering Manufacturing, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR (Tel. No. 852-2788 9529, Fax No. 852-2788 8423, e-mail: <u>mewlraip@cityu.edu.hk</u>).

Angela C. W. Yeung is with the Department of Manufacturing Engineering and Engineering Manufacturing, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR.

Felix T. S. Chan is with the Department of Industrial & Manufacturing Systems Engineering, University of Hong Kong, Haking Wong Building, Pokfulam, Hong Kong SAR (e-mail: <u>ftschan@hkucc.hku.hk</u>).

Henry C. W. Lau is with the Department of Industrial and System Engineering, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR (e-mail: <u>mfhenry@inet.polyu.edu.hk</u>). topic for surface design work. There are some fitting models can be used in reconstruction of surfaces, and the simplest and commonly used include extrusion, revolution, sweep, Coons and Loft. Recently, some research study the enhancement of surface modelling principle [1]-[3], little research focus on selecting appropriated models to give the best fitting of object surfaces. Geometrical shape of the modelled objects will dominate which surface fitting models to be used. Skilful designers will spend less time in model selection but it always cause problems for non-skilful people. In order to facilitate the decision-making process on surface model selection, a research was conducted to work out the dependences on choosing an appropriated fitting model. Firstly, characteristics of the five common surface fitting models were studied. Then, a group of five primitive 3-D objects was identified and fitted by the models. A comparison was performed to find out deviations in terms of accuracy, computing time and numbers of information required for different fittings by the five models. Findings from the research suggested some guidelines in assisting the chosen of an appropriated fitting model for the best result of the given range-image data, and to form a good 3-D object surface.

II. COMPARISON WITH DIFFERENT SURFACE FITTING MODELS

Generation of surfaces always is starting from points and curves. Curves can be generated from points, and surfaces can be generated from curves [4]-[5]. There are some developed fitting models to generate a curved surface, and each model has its own characteristics and requirements. A selection of five common range-image data fitting models; and their differences in surface generation are given in Table I.

T 11 T C	•	C [*]	c	C 1 1
Toble I ()	omnoricon	on tive co	mmon curtoco	titting module
	OHIDALISOIL		HILLION SULLAGE	
1401010	ompanoon	011 11 10 00	minon barrate	income incoments

Fitting models	Surface generation methods	Information required
Extrusion	A curve moves in a specified direction	A 3-D curve
Revolution	A curve rotates along a primary axis	1 primary axis and 1 3-D curve
Sweep	A generator moves along a path curve	2 or 3 3-D curves

(Advance online publication: 12 November 2006)

Fig. 1 A generation chart for 3-D objects.

It is true that some 3-D object surfaces can be generated by two or more different fitting models. Fig. 1 shows a generation chart of some 3-D objects that were developed from five primitive objects, and they can be created by one of the five fitting models, i.e. extrusion, revolution, sweep, Coons and Loft. Surface shape of the discussed primitive objects in this research is classified as cylinder, elbow, bottle, cone and free-form. The 1st generated objects are formed from mixed features of two primitive objects. The 2nd generated objects are formed from combined features of two 1st generated objects. It can be seen that more fitting models can be used for the primitive objects, and only the Coons and Loft are used for the 2^{nd} generated objects. Information as illustrated in Fig. 1 shows that some kind of 3-D object surfaces can only be created from unique fitting models. The aim of the research is to find out what rules or principles can be based upon in the choosing of appropriate fitting models for each specific kind of primitive 3-D objects.

Fig. 2 Five primitive 3-D objects used for trials on comparison with different surface fitting models.

Fig. 3 The laser scanning machine used for range-image data capturing.

III. GENERATION OF PRIMITIVE 3-D OBJECTS BY DIFFERENT FITTING MEODELS

Research studies have performed to find differences among the primitive 3-D objects created from the five different surface fitting models as discussed.

As illustrated in Fig. 2, a group of five primitive 3-D objects were manufactured and used for a comparison with surface generation from various surface fitting models. Surfacer [6] was used as the computing-aided modelling tool for each of the surface generation. In the trials, half of the object surfaces were scanned on a 3-axis laser scanner as shown in Fig. 3. The captured range-image data were used to generate the object surfaces by various fitting models including extrusion, revolution, sweep, Coons and Loft. Results of surface fitting are illustrated in the following figures, and a comparison among the accuracy, computing processing time and information required is listed.

a. The cylindrical shape primitive (P1)

Figs. 4(a)-4(e) illustrated results of fitting for the primitive object 1 (P1) as shown in Fig. 2. Five of the fitting models were employed. The computing time and average error of each fitted surface are listed in Table II.

Fig. 4(a) Error plot of object type P1 created by extrusion.

Fig. 4(b) Error plot of object type P1 created by revolution.

Fig. 4(c) Error plot of object type P1 created by sweep.

Fig. 4(d) Error plot of object type P1 created by Coons.

Fig. 4(e) Error plot of object type P1 created by Loft.

Table II Result summary of each fitting for object type P1					
Fitting	Time	Information	Average		
models	(s)	provided	errors (mm)		
Extrusion	15	One curve	0.115540		
Revolution	28	One curve and	0.087960		
		an axis			
Sweep	30	One generator	0.085685		
		one path curve			
Coons	46	Four boundary	0.037010		
		curves			
Loft	45	Three cross	0.029670		
		sectional curves			

Fig. 5 is the statistical chart to show trial results as listed in Table II. It indicates the average errors of the fitted surfaces using Coons and Loft models are less than extrusion, revolution and sweep models, but more computing time is needed.

Fig. 5 Statistical chart of trial for the fitting of P1 objects.

b. The bottle shape primitive (P4)

Trials for bottle shape primitive 3-D object (P4) are given in Fig. 6(a)-6(d).

Fig. 6(a) Error plot of object type P4 created by revolution.

Fig. 6(b) Error plot of object type P4 created by sweep.

Fig. 6(c) Error plot of object type P4 created by Coons.

Fig. 6(d) Error plot of object type P4 created by Loft.

Bottle shape primitive object surfaces can be created by four fitting models that include revolution, sweep, Coons and Loft.

Table III lists computing time and average errors of each surface generation result from the four fitting models. Results show that Loft fitting model provides the best result in comparison with the others, and the computing time is still the longest.

Table III Result summary of each fitting for object type P4					
Fitting models	Time (s)	Information provided	Average errors (mm)		
Revolution	32	One curve and	0.117215		
		an axis			
Sweep	36	One generator	0.111335		
		and one path			
		curve			
Coons	51	Four boundary	0.091274		
		curves			
Loft	62	Ten cross	0.014945		
		sectional curves			

c. The free-form shape primitive (P5)

Fig. 7(a) Error plot of object type P5 created by Coons.

Fig. 7(b) Error plot of object type P5 created by Loft.

Figs 7(a) and 7(b) compare fitting errors between Coons and Loft models for the free-form shaped primitive (P5). Results as listed in Table IV show that the computing time for Loft model is nearly double of Coons, and the accuracy is about ten times of Coons.

Similar trials have also been done for primitive objects P2 (elbow) and P3 (Cone). Results for these two kinds of primitive objects are listed as shown in Tables V and VI.

Table IV Result summary of each fitting for object type P5

Fitting models	Time (s)	Information provided	Average Errors (mm)
Coons	55	Four boundary curves	0.26822
Loft	96	Twenty cross sectional curves	0.02934

Table V Resu	lt summary c	of each fitting	g for ob	ject type	Ρ2
	2				

	2	U	J 71
Fitting models	Time (s)	Information provided	Average Errors (mm)
Sweep	40	One generator curve and two path curves	0.250310
Coons	46	Four boundary curves	0.266295
Loft	55	Ten cross sectional curves	0.027450

Table vi Result summary of cach mung for object type is

Fitting	Time (s)	Information	Average
models		provided	Errors
			(mm)
Revolution	n 31	One curve	0.21849
		and an axis	
Sweep	39	One generator	0.09787
		curve and two	
		path curve	
Coons	54	Four	0.03201
		boundary	
		curves	
Loft	63	Ten cross	0.02938
		sectional	
		curves	

IV. GUIDELINES FOR THE CHOOSING OF APPROPRIATED FITTING MODELS

Results as demonstrated in Fig. 1 show that complicated shape surfaces can be generated from a crossed mixing between any two primitive objects of P1 to P5. The five primitive 3-D objects can also be generated from the five surface fitting models. However, results of each fitting will be different among the applied models in terms of accuracy, computing time and information required. Designers can refer to the listed trial results in this research to select an appropriate fitting model. A summary of a comparison with different fitting models used for different primitive objects is given in Table VII. A set of guidelines as deduced from information of Table VII are listed as follows:

- (a) If *time* is not restricted, then 'Loft' model is suggested for all kinds of primitive objects due to its accurate properties.
- (b) If *time* is restricted and *accuracy* is a must, then '*Coons*' model is suggested for primitive objects P1 and P4.
- (c) If *time* is restricted and *accuracy* is concerned, *'sweep'* model can be considered for objects P1 to P4 although its fitting accuracy cannot as good as *"Coons"* and *'Loft'*.
- (d) If '*time*' is restricted, '*extrusion*' and '*revolution*' models can also be used for the corresponding primitive objects.

Fitting models	Extrusion	Revolution	Sweep	Coons	Loft
Primitive objects					
P1	 The fastest and simplest Require 1 fitting curve Large fitting errors 	 Second fast Requires 1 curve and 1 axis Fairly accurate of fitting 	 Computing time similar to revolution Require 2 curves Fitting accuracy similar to revolution 	 A longer computing time Requires 4 curves Accurate fitting results 	 Computing time similar to Coons Requires 2 or more curves Highly accurate fitting results
P2	 Cannot be applied for such primitive objects 	 Cannot be applied for such primitive objects 	 The fastest Requires 2 curves Less accurate than Coons and Loft 	 Second fast Requires 4 curves Less accurate than Loft 	 Computing time is the longest Requires 10 or more curves Highly accurate fitting results
P3	 Cannot be applied for such primitive objects 	 The fastest and simplest method Requires 1 curve and 1 axis Less accurate than others 	 A slightly faster than revolution Requires 3 curves A slight accurate than revolution 	 Requires fairly much of time Requires 4 curves Accurate similar to sweep 	 Requires a longer time than Coons Requires 10 or more curves Highly accurate of fitting
P4	 Cannot be applied for such primitive objects 	 The fastest Requires 1 curve and 1 axis Less accurate than others 	 The second faster method Requires 3 curves Moderate accurate 	 Require fairly much of time Requires 4 curves A fairly high accuracy 	 Requires a longer time Requires 10 or more curves Highly accurate of fitting
P5	 Cannot be applied for such primitive objects 	 Cannot be applied for such primitive objects 	Cannot be applied for such primitive objects	 Require less time Requires 4 curves Less accurate 	 Require a longer time Requires 20 or more curves Accurate of fitting

	c ·	C 1 1	10 10	C	· · · · · · · · · ·
Table VII Summar	v of various	titting models	used for the tive	groung of t	nrimitive 3-1) object
	y or various	intung mouchs	used for the five	groups or	\mathcal{D}
	-				

V. CONCLUSION

Research on recommending the best fitting models to common shape primitive 3-D objects is studied. Five basic groups of primitive objects were examined, and they include cylinders, elbows, bottles, cones, and free-form shape. In fact that by mixing these basic primitive objects, complex shape object surfaces can be produced. Therefore, research study has investigation on the fitting of the five primitive objects using five common surface fitting models. A surface model tool namely Surfacer was used to facilitate each of the fitting process. Trial results for the primitive objects are listed in tables for further analysis on the chosen of appropriate fitting models. It is clear that Coons and Loft model can be used for all kinds of primitive objects but a longer computing time is generally required. Extrusion, revolution and sweep models will be suitable for specified groups of object, and provide an acceptable accuracy at the shortest computing time. No unique model is provided for each group of object surface, designers should define the basic criteria including computing time, accuracy and available information for surface generation before the chosen of the fitting models. Guidelines as provided

by this research are an analytical summary from all trials, and form a reference to shorten the surface design cycle time, especially for the inexperienced designers.

ACKNOWLEDGMENT

The authors also thank for Mr. S. W. Cheng, technician of MEEM laboratory, of his supports in operating the laser scanning machine and all relative technical issues.

REFERENCES

- [1] G. Farin, *Curve and surfaces for computer aided geometric design*, Academic Press, 1988.
- [2] M. A. Garcia and L. Basanez, "Efficient free-form surface modelling with uncertainty," *IEEE international Conference on Robotics and Automation*, Minneapolis, USA, 1996.
- [3] K.C. Hui, "Shape blending of curves and surfaces with geometric continuity," *Computer-Aided Design*, Vol. 31, 1999, pp. 819–828.
- [4] J. Y. Lai and W. D. Ueng, "Reconstruction of surfaces of revolution from measured points, "Computer in industry, Vol. 41, 1999, pp. 147-161.
- [5] W. D. Ueng and J. Y. Lai, "A sweep-surface fitting algorithm for reverse engineering," *Computers in Industry*, Vol. 35, 1997, pp. 261-273.
- [6] Surfacer, Imageware, 2001, http://www.mayametrix.com/surfacer