

Abstract—Information System security is often assimilated to a

set of software solutions (Firewall, data encryption,..) but rarely
consider the organizational security rules as a fundamental part
of the IS security policy. With the increasing use of new IS
architectures (Open architecture, distributed database, web
server, multi-tier application servers) security leaks become
crucial and every security problem is harmful to the organization
business continuity. To reduce and detect major security risks at
an earlier step of the IS project, our approach is based on
different knowledge exchange between end users, analyst,
designers and developers. The knowledge is mainly oriented to the
detection of weak signals inside the organization. In this paper, we
present the different knowledge surroundings an IS project and a
knowledge pattern structure that can be used for the
formalization aspects of the established exchange that should be
established during the IS project between the different
participants

Index Terms—Distributed IS, Project life cycle, Knowledge
pattern, Security.

I. INTRODUCTION
 The fast evolution of Information System’s architectures

and of the corresponding technologies has not been followed
by an adequate adaptation of SA&D methodologies for the new
requirements of these new forms. The commonly used
methodologies keep focused on representing the virtual world
as close to the real world of the organization as possible. This is
done without taking into account the resulting risks taken by
using these new architectures. Indeed, the opening of the IS
represents an informational danger: the data, process and
results security might be violated at any time. That violation
can occur during any phase of informational production,
information exchange, data collection phase, process execution
or the results transmission and can be either internal or external.
To cope with these risks, a global security SA&D approach is
needed. This approach must cover the entire SA&D process
and ensure the continuity of the security policy.

Manuscript received April 10, 2006. This work was supported in part by the

Swiss National research fund. This project was supported by the Swiss Federal
Government unsder the SER project 03.0391-1 in the frame of the EU Network
of Excellence INTEROP : Interoperability Research for Networked Enterprise
applications

Dr. SNENE Mehdi is a senior researcher in the university of Geneva. He is
leading research on Information systems security. Author is with the Database
research lab, cui- 24 rue du general dufour 1204 Geneva Switzerland (phone:
0041 22379 7773; fax: 0041 22379 7780; e-mail: snene@ cui.unige.ch).

PARDELLAS Jorge is a Phd student in the university of Geneva. Author is
with the database research lab. Pardellas@cui.unige.ch.

Basically, existing approaches such as intrusion detection,
listening detection, exploits scan, etc. are commonly used to
make the running IS secure. These tools do not induce a
coherent and continuous process that ensures the global
potentiality of the IS. Indeed, these tools are used subsequently
to the deployment and are considered as a software suite which
remains external to the IS. Upstream of the deployment, these
tools cannot be considered or integrated within the IS life cycle
because they protect the execution platform rather than the IS
itself. From this postulate, two major issues remain crucial for
the survival of opened IS. The first one is how to make sure that
the tools guarantee the global security of the IS without
exposing their survival and restricting its functionalities. The
second issue concerns the efficiency of these tools applied to
answer the security needs of an IS that was not conceived and
developed while taking into account the secure dimension of
data and process [1].

In commonly used methodologies, the differentiation between
procedure and process remains implicit. Both are generally
used together; however the distinction is essential in order to
define the scope of security. Indeed, the security approach is
different whether the procedure or the process is considered. A
procedure is defined as a formalism of data treatment. It is in
fact a set of steps, means and methods used in the execution of a
task in order to achieve a predefined result. Hence, the security
policy must be applied at the different levels composing the
procedure. We define a process as an arranged succession of
operations performed in order to realize a procedure in an
automated manner. Existing security solutions provide answers
to process security through key exchange, data encryption, etc.
[2]. Different studies underline the fact that security problems
are generally due to a misunderstanding of the organizational
security needs or an inadequate system solution. In fact,
implementing a set of security process for an IS that has been
designed and developed without taking into consideration the
internal security procedures, which should be integrated in it,
will leads to a patching maintenance policy. Such security
policy is considered as a downstream solution that reacts after
vulnerabilities detection or attacks. The presented approach is
based on the early detection of security leak at the different IS
project life cycle and on the analyze and the integration of user
informal security procedures. The main purpose of such
approach is to obtain an upstream security policy that enables
us to detect major vulnerabilities before IS deployment [2].

 Next section presents the Weak Signal concept that we

Global SA&D Approach for New Information Systems
Architectures Security

Snene Mehdi, Pardellas Jorge, Database Lab, University of Geneva

IAENG International Journal of Computer Science, 33:1, IJCS_33_1_1
__

(Advance online publication: 13 February 2007)

consider as the cornerstone of our approach. Then we present
the different security aspects that must be taken into account
while the IS is designed and developed. Finally we adapt the
different aspects to the new IS architectures and we define a
knowledge pattern structure that will be used for the IS project
partners communication establishment.

II. RETHOUGHT IS LIFE CYCLE:

A. Weak Signal
The proposed approach is based on weak signal detection.

We define a weak signal inside an organization as information
or knowledge, which cannot be explicitly expressed during the
requirements analysis by actors involved in the creation,
diffusion and the use of such information or knowledge. A
security weak signal is an implicit information or knowledge
existing inside the organization, which can be harmful to the
system security if not detected. In fact, such security
vulnerability cannot be resolved during the final system life
cycle steps because it requires a complete rethinking of the
system.

 A common case of security weak signals appears during

confidential documents exchange automation. Indeed, such
exchange in the real world involves different security rules
based on human responsibility and vigilance. For example, in
the case of a document exchange, actors ensure that copies of
the document do not exist and guarantee by their presence that
the right person receives the document. The exchange life cycle
is closed and any leak is easily identifiable. The adaptation of
this human document exchange process to an electronic process
(email, ftp, etc.), only the common security rules applying to
the data flow are implemented if no more requirements are
specified by actors. However these security rules basically
address process issues but do not consider procedure issues.

These procedure issues are constituted by the different

elements surrounding the exchange, which we identify as
security weak signals. For example, existing security
frameworks do not guarantee that there is no other copy of the
document. In the case of an email exchange, the sender and the
recipient keep by default a copy of the document in their email
application. This multiplication of copies greatly increases the
risk of security break. This is the kind of security weak signals
the proposed approach tried to identify and to circumscribe.

B. IS Life Cycle
During the users’ needs analysis phase of common design

methodologies, the security dimension of IS is still not well
specified due to the fact that the organizational security is not
considered as an autonomous procedure. Indeed, the security
dimension is generally delegated to development and
deployment steps where they consider the system security
instead of the organizational security, which must take place at
analysis and design steps. The rethinking of the different

phases composing the life cycle take into consideration the
security dimension from the first phase to the last one in a
continuous way (see Fig 1.).

 The analysis of users’ needs must emphasize the risk level

linked to each category of data and process. It is also primordial
that the users’ requirements in term of confidentiality and
security and the constraints determine the system runtime.
Indeed, user actions implicitly trigger security policy decisions
[3], thus the activities of a user and the weak signals
surrounding these activities have to be clearly defined. The
design phase must take into account the technical platform and
the development environment to obtain an adaptable schema
that preserves the security specificities relative to the latter. It
must also express the users’ needs gathered during analysis
phase. Finally, it has to express the different security
components relative to data process and to the data itself. The
development of the IS adapts the security requirements of the
platform while respecting the schema specifications. In the
deployment level, it’s imperative to validate the technical
platform along with the system constraints and the processes in
order to ensure that the system answers correctly to the security
criteria.

Figure1. Security dimension into Information System Project Life Cycle

The maintenance phase guarantees the global security of the

system through the platform updates and the adaptation of the
IS and of its security rules to modifications and new needs.

The proposed approach aims to elaborate an IS with a global

security context that takes place at the first steps of the design

phase and continuously during the next phases. Indeed, it is

primordial to determine the different characteristics of every
phase to obtain a global knowledge of the system.

At every level of the life cycle, the responsible actor extracts

the inherent local constraints. These constraints represent
critical information that must be diffused to the other levels.
Indeed, they represent guidelines for the elaboration of each

step [4]. This emphasizes the necessity for other actors to be
aware of the global system constraints to adapt to the other
phases’ needs thus maintaining the good continuity of the
project. In order to gather all the required characteristics at the
different phases, a strict collaboration between the different
actors of the project is needed. Therefore technical and
conceptual constraints have to be communicated both upstream
and downstream of the IS life cycle (see Fig.2).

 Figure 2. Information System Project Life Cycle exchange

III. ADAPTATION TO DIS LIFE CYCLE
Among the different emerging architectures, special

attention is brought on the Distributed Information System
(DIS). Because of its collaborative nature, this type of systems
is potentially more sensitive to threats and requires therefore a
particular attention. Due to its physical and logical structure,

the Distributed Information System needs to reach a high
security level to ensure the confidentiality of the transiting
information. Indeed, the inherent communication between the
different sites, due to the data exchange, increases the risk to
encounter information leaks or to undergo an attack. This
underlines the need to take into consideration the security along
with the distribution.

The Distributed information System is a collection of

distributed data and process over multiple sites that are
connected with some kind of distributed system architecture
commonly known as middleware. It exposes a common set of
services across platforms and provides a homogenous
computing environment in which distributed information
applications can be built. Today several middleware are
available. The most used ones are CORBA (Common Object
Request Broker Architecture) from OMG and EJB (Enterprise
Java Beans) from Sun [5].

The existing gap between current information system design

methodologies and the distributed system design models,
forced developers to operate modifications on the design
models to adapt them to the technology specification. Every

middleware specification has its own implementation
constraints and generally, designers do not have enough
knowledge about the implementation process to realize a
well-designed system that corresponds to the implementation
model without major modifications [6].

In fact, methodologies for the design of information systems

have usually paid modest consideration to distribution and
communication characteristic of systems. However, this
situation has improved: information systems have noticeably
grown in dimension and range, organizations want many of
their separate systems to be integrated and consequently the
number and the variety of geographically distributed users of
these systems have become wide. The distributed systems
community has produced methodologies for the design of
distributed systems [7]. However, these methodologies pay
little attention to the information aspects of distributed
information system; instead their strength is in the distribution
and communication aspects of these systems. The information
aspect still not well specified in these methodologies despite its
importance for the distributed information system survival [8].

Firstly, in the analysis level, we extract the users’ needs that

the DIS has to answer. These different needs are categorized
into different functional parts that will be distributed among the
distribution sites. The subdivision of the system into
sub-systems inherently creates data exchange inter or
extra-sites. Thus, the DIS must be secured from internal and
external threats. Indeed, the subdivision into subsystems
generates the need to focus into confidentiality and access
restrictions to data flow. The separation into functional parts
has to be followed by security rules that ensure confidentiality
between these parts.

In the analysis level, the deployment platforms must be

specified, because every site may have its own architecture.
These platform architectures have their own security
framework, which are determining for the global security
design of the DIS done at the following level. At the design
level, the distribution decisions and the DIS schema are
conceived taking into account the development environment
and the distribution specifications made by the developer, the
required deployment platforms and their security constraints.
Indeed, the developer has to specify the distribution
possibilities in order to optimize data flow between the
different sites. In this level, critical decisions related to
performances, security and distribution are made. These
decisions determine the complexity of the system. At the
development step, the design schema is applied while
implementing the security constraints, using the platforms
security frameworks and creating the different sites for
distribution. At the deployment level, it is imperative to verify
that the communication between the sites respects both design
and deployment platform specifications and that the security
constraints apply correctly to the distribution. These conditions
ensure the DIS integrity, correctness and both local and global

Fig3. Security requirements of a Distributed IS

security. At the maintenance step, any modification in the DIS
has to be followed carefully to ensure the needed continuity of
the system hence avoiding any data or security violation. That’s
why the schema must be adapted and rethought through
changes. Moreover, the deployment platform has to be
up-to-date in order to prevent any attack through exploits or
known bugs (see Fig.3).

IV. KNOWLEDGE PATTERN
We define a set of interaction pattern between the various

participants in the life cycle of a distributed information
system. These patterns initially treat the exploited knowledge
by each one of these participants. Then, these patterns will be
the intermediary of communication to establish a form of
formal communication between them to allow a better
comprehension of the system and thus to ensure a better
continuity between the various levels [9]. These patterns are
divided into three categories corresponding to three knowledge
interaction levels [10]. The first is the designers’ knowledge
needed by developers to capture the design environment and to
well understand the purposed conceptual diagram. For
example, in some special case designers need to fix some
critical data on some specific sites to ensure its availabilities in
case of network shutdown. Developers usually
adapt the purposed conceptual diagram to the technical
environment to increase the distributed information system
performance and can, if not noticed, move these data from the
specified site to another one without informing designers [11].
The second category is the developers’ knowledge pattern that
regroups the different implementation parameters and the
technical environment specificities. This pattern is useful for
designers and assists them in adapting their purposed
conceptual diagram to the technical environment. For example,
some application servers used to develop distributed
information system (Tomcat, J2EE, …) have their own security
framework. Any security approach used to design the
distributed information system must fit into this framework.
Finally we purpose a knowledge overlap pattern that
encapsulates the common knowledge between the designers
and the developers. An example of this knowledge is to
exception treatment. The technical behavior of each used
technical environment is different from others and its
integration in the conceptual diagram must be discussed and
approved by both developers and designers.

As explained above, three knowledge categories are

distinguishable in a distributed information system project.
These zones are called Knowledge zone. In fact, every zone is
characterized by its own knowledge that is needed by other
partner to successfully achieve the project. To put this
knowledge under a formalized form comprehensible by
different project partners who do not share the same technical
and knowledge language, we define it as knowledge pattern
form. These patterns will contain and express the different

needed knowledge contributing to ensure a normal continuity
for the project. Three different pattern categories are identified.

The first pattern category is the distributed information
system design knowledge pattern. This pattern conceptualizes
the diverse knowledge used to design the system and to
produce it under the form of schema. As this schema is the
result of a transformation of different information collected
from end users, this transformation, as any other
transformation, causes some data loss. Two domains are
concerned by this data loss: the conceptual domain and the
process domain. The first domain represents the different data
that make up the system. They are represented under the form
of a design schema. But, some of the collected data cannot be
represented under this form due to their particularity.
Nevertheless, these data can be important for developers for a
better understanding of the given schema. For example, on a
database table, designers can specify a user-address attribute
under many fields, which are street-number, street, and town.
This specification can result from a user need, such statistical
use or for a further evolution. At the development step, as these
needs are not clearly expressed in the design schema, developer
for better performance and to decrease the answering time can
unify the different fields in a unique one that represents the
same data. In this case, the obtained information system will
provide users with the same data then the wanted information
system. But at the time when the end users will try to get the
statistical information which concern only a part of the global
address such as the street, this information will be unavailable
and the information system will be unable to satisfy the users’
requirements. The second domain is the process domain that
represents the different information system functionalities.
These functionalities are represented under the form of
functions and transactions. At the design step, designers
usually do not specify the runtime manner and site needed for
each transaction. However, this information can be vital for
some critical functions. The term critical does not indicate their
system aspect but the organizational one. In fact, if we suppose
that the statistical functionalities mentioned in the example
above will be used for each new data entry, and if we take the
case of an international interim worker company, the location
of this functionality runtime is crucial to determine the system
answering time and its quality of services.

The second pattern category is the distributed information

system development knowledge pattern. This pattern regroups
structural and technical information related to the development
languages and the runtime platforms. Such information is
generally extracted from the different specifications of the used
technologies. This information is expressed through the
developed system but still hard to get at the design step. In fact,
designers usually ignore the technical constraint that can be
transgressed by their produced design schema. This obliges the
developers to adapt the design schema to their used
technologies and by the way to carry out some modifications
that can be harmful to the system objectives. The different

knowledge that must be considered by these patterns concern:
security, performance and availability.

The security knowledge is of two kinds. The first is the data
security framework defined and requested by the technical
platform. Indeed, according to the used platform different
protocols exist and must be respected at the design step. This
special requirement must be expressed at the beginning of the
design step by a clear and formal specification. Different forms
can be used to express this specification, but the most
comprehensible one is to provide the designer with a
conceptual schema that must be integrated in the system
schema. For example, the Tomcat server obliges the designer to
use a unique security framework defined by the Tomcat
specification. The security data that are: User, Login, Password
and Session must be defined as fields of a unique table called
security. Otherwise, even the data are protected by other
control checks and constraints; the transition from the login
step to the session step cannot be done. In fact, if the requested
data are expressed under another form than the one that the
platform specifies, they cannot be treated.

The second security knowledge form is the system security

Knowledge. In fact, any distributed information system needs
to be protected from external or internal attacks. For this
purpose, developers use different technologies and define
different lockers on the system. This set of technical
information must be transmitted to designers by indicating the
security constraints that will be applied to the design schema at
the development step. For example, using distributed databases
must be accompanied by a data flow restrictions. This means
that the critical data will be used just on a defined site and
cannot be called by non-authorized sites. If designers distribute
the different process without taking in account this fact, the
security can be transgressed and the critical data are doomed to
be in danger.

The third pattern category is the distributed information

system knowledge overlap pattern. By overlap we designate the
overlapping zone between the design and the development step.
This knowledge results from the mixture of different kinds of
information kinds related to both domains. It is composed
mainly of three different components that are: data location,
site relation and integrity constraint.

The data location concerns the distribution manner of the

data. Indeed, a part of the data cannot be distributed in a
classical way (fragmentation and allocation [12]). Some data is
needed on specific site because of its importance to the good
running of this site, or due to the end-user request. This
information results both, from designers and developers. It
implies that the design and implementation constraints have to
be resolved jointly. The first pattern component’s aim is to
regroup these different locations’ information in a formal way
to facilitate the resolution of their related different restrictions.

The site relation component is the set of different

information concerning the different existing relations between
the sites. These relations can be of different kinds. The first
relation category is the organizational relation. In fact, some
needs require special connection between the different
organization sites. For example, some distributed information
systems with critical sites are completely replicated due to their
information importance. In such case, each site must inform the
others of its correct management. It has also to maintain its
backup site correctly and continuously. The second relation
category is technical. Indeed, some technical constraints need
some specific relations between the different existing sites. For
example, using the J2EE platform requires the establishment of
a special permanent connection between the different
application containers in order to guarantee their coherences.

The integrity constraint component represents the set of the

different sorts of information needed to design and implement
these constraints correctly between the different sites of the
distributed information system. In this thesis, we have a special
focus on this component due to its major importance and
impact on the system good running. The different data existing
around the integrity constraints are necessary for a good
implementation of these constraints. In fact, as these different
constraints regroup and result from different system
environments such as the organizational, the security and the
technical, it is necessary to classify these data in order to obtain
the best possible level of system integrity.

V. CONCLUSION

The set of Knowledge Patterns extracted from a distributed
information system project are a group of proven reusable
assets that can be used to increase the speed of developing and
deploying distributed applications. These patterns have to help
and to identify the interaction and processes of selecting and
runtime topology. They will provide enterprise developers with
a set of guidelines for building information application,
including performance, technology options, application design,
development and security. These patterns will aim to reduce the
existing gap between information designers and the developers
by providing them with a unified interaction language. This
language will enrich the design step by new concepts, which
help developers manage the distribution step while respecting
the project goals. They will also provide designers with
different information summarizing the technical environment
with its constraints. Such information is important due to the
modification that has to be done on the design schema to be
adapted it to the technical platform. Finally these patterns will
define a formal way of communication between the different
participants of the project. It will be useful specifically in the
overlap domain case.

REFERENCES
[1] Snene M., “Knowledge patterns of distributed information systems- the

case of distribution design and implementation based on integrity
constraints optimisation”, Ph.D thesis, N576, Geneva university, 2004.

[2] Snene M., Pardellas J., Leonard M., “Information system architectures:
where are we?”, Proceedings of the ICTTA Conf, IEEE Press, Syria,
2004.

[3] Snene M., Secure design and implementation of distributed and
interoperable IS based on overlap knowledge pattern, IBEC, Hammamet,
Tunisia 2005.

[4] Snene M., Leonard M., “Distributed Framework for real time web
basedcollaboration:M7TOOL CASE”, Proceedings of AICCSA, IEEE
Press, Tunisia, 2003.

[5] A. Ekberg, Enabling technologies for web centric applications, PhD
thesis, Lund institute of technology, November 1999.

[6] R. Hirschfeld, Three tiers distributed architecture, Proceedings PloP 96,
Allerton Park, IL, 1996.

[7] J.A. Casal, J.A. Garda, R.G Vazquez, S.R. Yarrez, A practical experience
in analysis and design of distributed information systems, I+D
Computation, Vol.1, No.1, July 2002.

[8] H.G. Sol, R.L. Crosslin, Dynamic modelling of information systems II,
North Holland, Amsterdam,1992.

[9] P.I Rivera-Vega, R. Karlapalem, M. Ra, A mixed fragmentation approach
for inintial distributed database design, Proceedings of International
conference on data engineering, IEEE, 1990.

[10] K. Hui, Knowledge Fusion and Constraint Solving in a Distributed
Environment, PhD Thesis, University of Aberdeen, Kings College,
Aberdeen, 2000.

[11] R. Varadarajan, P.I. Rivera-Vega, S.B. Navathe, Data redistribution
scheduling in fully connected networks, Proceedings of 27th Annual
Alberton conference on communication, Control and Computing, 1989.

[12] M.T. Özsu, P. Valduriez, Principles of distributed database systems,
Prentice Hall Edt, New Jersey, 1999.

