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Abstract—This paper applies two Artificial Intelligence (AI) 

techniques, fuzzy logic and expert system, to enhance the Kalman 
filter-based MEMS INS/GPS integration. For better INS error 
control, the expert knowledge on vehicle dynamics is utilized to 
simplify dynamics models and to extend measurement update 
schemes in the velocity filter. To optimize position fusion, a fuzzy 
inference system is developed to provide GPS signal degradation 
information for modification of the innovation-based adaptive 
measurement covariance in the position filter. The effectiveness of 
the proposed AI-based enhancement methods is demonstrated 
through several field tests. 
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I. INTRODUCTION 
Today, the Global Positioning System (GPS) has been used 

by most navigation systems to a wide range of applications. 
GPS however is still subject to severe performance degradation 
in the presence of signal blockage, diffraction and multipath 
and its application in signal-degraded environments such as 
urban areas remains a significant challenge. With operational 
characteristics complementary to GPS, the self-contained 
Inertial Navigation System (INS) has been widely adopted to 
assist GPS-based navigation systems. An INS/GPS integrated 
navigation system is able to provide improved navigation 
performance in terms of accuracy, availability, and reliability 
over GPS-only systems.  

Kalman filtering methodology has been extensively applied 
for optimal fusion of data from GPS and INS sensors and the 
bridging of GPS outages [1][2][3][4]. As the increasing use of 
low-cost Micro-Electro-Mechanical System (MEMS) inertial 
sensors to land vehicle applications, however, the traditional 
Kalman filter methodology was found insufficient due to poor 
quality of the MEMS inertial measurements [5][6]. In MEMS 
INS/GPS integration, the Kalman filter processes the 
low-quality inertial data which have large bias variation, high 
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noise level, and large random error due to flicker noise, random 
walk and etc. In this case, sensor errors are much difficult to 
realistically model using stochastic processes and thus the 
imperfect modeling resulted from mis-modeling, non-modeling 
and non-white properties of input data is obvious. In addition, 
when the navigation system operates in GPS challenging 
environments such as urban canyons, GPS solutions are 
characterized by large noise and multipath error and GPS 
accuracy is much difficult to assess properly [7][8]. As a result, 
inevitably using the inaccurate dynamics and statistical models 
for both system and measurement states, the Kalman filter has 
degraded estimation accuracy and even divergence problems. 

In this paper a modified integration methodology using 
adaptive Kalman filtering and artificial intelligence (AI) 
techniques is developed to provide improved integration 
performance. Two cascaded Kalman filters, velocity and 
attitude filter and position filter, are employed separately in the 
loosely coupled closed-loop integration scheme. In the velocity 
and attitude filter we develop a dynamics knowledge aided 
inertial navigation algorithm to simplify filter dynamics models 
and to extend measurement updates. This technique provides 
continuous error control for INS velocity and attitude even 
during GPS outages. In the position filter the corrected velocity 
and attitude are integrated with GPS position using the 
innovation-based adaptive filtering technique incorporated 
with vehicle dynamics knowledge and a fuzzy logic rule-based 
GPS data classification system. Vehicle dynamics knowledge 
is used to identify the slowly changing GPS position error so 
that they wouldn’t affect the integration solution. The GPS data 
classification system is designed to classify GPS signal 
degradation conditions based on GPS signal and geometry 
information. Correlated to GPS position performance, the 
identified signal degradation condition is further applied to 
weight the innovation-based adaptive measurement noise 
covariance for better characterizing GPS performance. 

The designed integration algorithm has been evaluated with 
field tests using a van driven in downtown Calgary, Canada. 
The test results show that the low-cost MEMS INS/GPS system 
applying the proposed AI-enhanced integration algorithm can 
provide continuous and reliable navigation solutions with about 
9 m root-mean-square (RMS) of the across-track error in urban 
areas. The average maximum across-track position error has 
been maintained within around 37 m while the GPS-only 

IAENG International Journal of Computer Science, 33:1, IJCS_33_1_11 
______________________________________________________________________________________

(Advance online publication: 13 February 2007)

mailto:wangjh@ucalgary.ca


 
 

 

system suffers from the position error at a hundred-meter level. 
The paper is organized as follows. Section 2 describes the 

AI-based methods for integration enhancement including a 
dynamics knowledge aided inertial navigation algorithm and a 
fuzzy rule-based GPS data classification system. Section 3 
explains how these AI-based methods are applied to modify the 
Kalman filter for better INS/GPS integration. Section 4 
presents the field test results and discussions. The conclusions 
are given finally in Section 5. 

 

II. AI-BASED METHODS FOR INTEGRATION ENHANCEMENT  
In reasoning about a system, the precision inherent in our 

models of the system depends on the degree of complexity 
(uncertainty) of the system and the understanding about the 
problem (precision of measurement) [9]. For the complex 
systems with only ambiguous or imprecise information 
available, the AI-based methods provide a nonlinear, adaptive, 
and knowledge-based approach to understand the system’s 
behavior by using human reasoning and intelligence. AI 
technologies, such as expert systems, fuzzy logic and neural 
networks, have found successful applications in a wide variety 
of fields such as nonlinear mapping, data classification, and 
decision analysis [10][11][12]. AI methods can be seen as the 
advanced versions of the estimation, the classification, and the 
inference methods [13]. As mentioned previously, the major 
limitation of using the model-based Kalman filter for low-cost 
MEMS INS/GPS integration lies on the processing of the 
low-quality INS and corrupted GPS data. Thus, with the 
advantages of processing ambiguous or imprecise data and the 
capabilities of formulating human intelligence, AI methods are 
applied in this research to enhance the Kalman filter-based data 
fusion by adding functionalities of navigation error 
compensation, data quality assessment, and fusion scheme 
optimization. 

A. Dynamics Knowledge Aided Inertial Navigation 
Algorithm 
The first AI-based enhancement method is to apply expert 

knowledge on vehicle dynamics into inertial navigation 
algorithm so that the simplified dynamics model and the 
extended measurement update scheme can be used in the 
Kalman filter to reduce INS error drift. The first vehicle 
dynamics knowledge adopted is the use of the vehicle motion 
constraints proposed by Brandt and Gardner (1998). In a 
normal driving condition, the vehicle can be assumed with no 
motion along the transverse direction and the direction normal 
to the road surface [14]. These vehicle motion constraints can 
be applied to simplify the mechanization equations and reduce 
the navigation errors. The constrained motion model describing 
how to obtain the vehicle velocity and position in the 
navigation frame (north-east-down) from accelerometer and 
gyro measurements of the body frame 
(forward-transverse-vertical) is defined as follows [14]: 
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where Bxω , Byω  and Bzω  are angular velocities of the body 

frame measured by gyros. The attitude of the vehicle is 
represented by three Euler angles, roll (φ ), pitch (θ ) and yaw 
(ψ ), which are the rotation angles about the x, y and z axes in 
the body frame, respectively.  is the vehicle forward 

velocity. ,  and   are the body frame accelerations 

measured by accelerometers.  and  are the vehicle 
coordinates in the north and east direction in the navigation 
frame. 
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The second benefit from vehicle dynamics knowledge is the 
ability to directly estimate some navigation states under some 
specific dynamics based on the specific physical characteristics 
of inertial sensors. These dynamics-derived estimates can be 
used as the virtual measurement updates for the INS Kalman 
filter to control and correct the stand-alone navigation error. 
The specific vehicle dynamics and the corresponding dynamics 
dependent estimation can be categorized as: stationary mode, 
straight-line motion mode, and cornering motion mode. 

When a vehicle is static, accelerometer measurements 
containing only the local gravity field can be used to directly 
derive vehicle pitch and roll angles as follows: 
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 According to (9) and (10), no integration is required and 

therefore the tilt estimation error will not increase with time. 
Compared to the gyro-derived tilt with high error drift rates, the 
accelerometer-derived tilt is accurate enough to provide direct 
tilt error control. Another observation available during 
stationary periods is the constant heading constraint. Since the 
vehicle is not moving, the vehicle heading can be considered 
unchanged. The forth direct measurement during stationary 
periods is the well-known zero velocity update (ZUPT). ZUPT 
provides a very accurate velocity observation, as the vehicle is 
static. The last benefit from the stationary mode is the 
availability of gyro bias estimation. For automotive-grade 
MEMS INS, the stationary outputs of gyroscopes themselves 
can be considered as biases [15]. This is because the earth 
rotation is at the senor noise level for automotive-grade MEMS 



 
 

 

INS and thus the true angular rate of the body frame during 
stationary periods can be assumed as zero. By averaging all 
gyro measurements during stationary periods, we can remove 
the noise effects and use this average value as the gyro bias 
estimate. 

When a vehicle is moving straight, no significant motion 
acceleration along the transverse direction exists. Thus, mostly 
containing the local gravity field, the accelerometer output 
along the transverse direction can be used to determine the 
approximate roll angle. Although the approximation errors 
induced by sideslip or vibration may exit, they can be mostly 
reduced by moving average. When a vehicle is making a turn, 
the cornering motion with strong dynamics in transverse 
acceleration and yawing provides another occurrence for direct 
estimation of the vehicle velocity. Rearranging (5), the forward 
velocity of the vehicle can be directly estimated as follow:  
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It should be noted that the vehicle motion types need to be 

correctly identified in order to provide the aforementioned 
dynamics-dependent observations and estimates. Based on our 
previous studies, a fuzzy expert system can be utilized to 
provide correct vehicle dynamics identification. Readers are 
referred to Wang et al. (2005) for details about the design of the 
fuzzy expert vehicle dynamics identification system [16]. 

B. Fuzzy Logic Rule-based GPS Data Classification 
The second AI-based enhancement method is to classify 

GPS data based on the signal and geometry information using 
fuzzy reasoning so that GPS solutions can be more properly 
weighted in the Kalman filter. The basic idea behind this 
approach is that GPS positioning is based on the tracking of 
more than four line-of-slight satellite signals and its 
performance is affected by signal and geometry conditions. 
Based on our previous studies in [17], the signal and geometry 
conditions are characterized by two geo-signal degradation 
measures, the average fading C/N0 in the horizontal  and 
the fading satellite ratio FR , derived from fading 
carrier-to-noise-ratio and satellite geometry matrix. Shown in 
Fig. 1 is the distribution of the geo-signal degradation measures 
under different GPS environments. The black marks indicate 
the mean of the geo-signal degradation measures for each 
24-hour static test. It can be seen that the signal-degraded 
conditions could be classified based on the clustering feature of 
the geo-signal degradation measures. However, there is an 
overlap of the input feature vectors between different classes 
because the signal degradation condition is changing with time 
according to the user-to-satellite geometry relative to the 
around-receiver obstacles. In addition, there is a dilemma of 
using fading C/N0 to indicate the magnitude of multipath errors 
[17]. Thus, the input data contain uncertain and imprecise terms. 
This motivates the application of fuzzy inference systems for 
GPS data classification. 

Hf

Shown in Fig. 2 is the architecture of the proposed fuzzy 
inference system for GPS data classification. The output of the 
fuzzy inference system is a numeric quality rating (QR) 
between 0 and 1. The QR value, which describes the degree of 
signal plus geometry degradation, is further applied to classify 
GPS data. A higher rating value indicates a higher likelihood of 
having a poor GPS solution. Because GPS receivers use the 
internal filter to smooth position solutions, GPS position 
performance is less sensitive to the short-term or transient 
changing of signal degradation. To consider this filtering 
effect, we use the moving average of the geo-signal 
degradation measures as the system input variables so that the 
QR value can reflect the performance of GPS position more 
appropriately. The size of moving average window is 
empirically chosen as eight seconds. 

 
Fig. 1. Distribution of the geo-signal degradation measures in various signal 
degradation environments. 
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Fig. 2. Architecture of the fuzzy inference system. 

 
For the purpose of computational simplicity, the triangle 

membership functions are used in the fuzzy inference system. 
Three membership functions are used for each input variable to 
categorize the geo-signal measures under low, medium and 
high signal-degraded conditions, respectively. The parameters 
of input membership functions are determined based on the 
results of the various environment tests shown in Fig. 1. The 
mean of the geo-signal degradation measures under each signal 
degradation condition is assigned to the core values of the 
corresponding membership function. These mean values are 
well representative of data clustering centers since they were 
calculated from large amount of sampling data. For the output 
membership functions, three triangles with even overlaps 
between sets and even segmentation from zero to one are used 
because in this study GPS data are intentionally classified into 



 
 

 

three classes. Based on the results of the various environment 
tests shown in Fig. 1, the design of the fuzzy rules describing 
the relationship between the input and the output is quite 
straightforward. For example, the GPS positioning solution 
would be poor (QR is large) if the fading satellite ratio and the 
average fading C/N0 in the horizontal are high.  

After membership functions and fuzzy if-then rules are 
defined, an inference procedure is applied to derive the output 
fuzzy set. In this research, the Mamdani type fuzzy inference 
system with max-min composition, which is considered as the 
most commonly seen fuzzy methodology, is used [18]. Then 
the centroid of area defuzzification is applied to extract a crisp 
value from the output fuzzy set as a representative value of the 
final fuzzy output. This crisp value in a range between 0.25 and 
0.75 is further used for data classification. For example, if the 
value of quality rating is smaller than 3.75 (the medium 
between the core value of the ‘Small’ and ‘Medium’ output 
membership functions), data are classified as low 
signal-degraded data. 

 

III. AI-ENHANCED INTEGRATION ALGORITHM 
The architecture of the AI-enhanced integration algorithm 

employed in the loosely coupled closed-loop integration 
scheme is shown in Fig. 3. The INS and the GPS receiver 
operate as independent systems and process data parallelly. 
INS raw measurements (acceleration and angular velocity) are 
processed in the INS mechanization to derive INS attitude, 
velocity and position. GPS raw observations (code, Doppler 
and phase) are processed in the GPS Kalman filter to derive 
GPS velocity and position. Then, in the integration Kalman 
filter the differences between the INS and GPS velocities and 
positions are utilized as measurements and the INS error 
equations are used as the system model. When GPS is available, 
the integration Kalman filter estimates all observable INS 
sensor and navigation errors to compensate system outputs. 
When GPS is unavailable, the INS sensor and navigation errors 
will be predicted based on the system model and corrected by 
dynamics-derived measurements. 
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Fig. 3. Architecture of AI-enhanced integration algorithm. 

 
As shown in Fig. 3, two cascaded filters, the velocity and 

attitude filter and the position filter, are employed separately in 
the integration Kalman filter. This is because for land vehicle 
applications in GPS challenging environments, the 
Doppler-derived velocity is more reliable than the code-derived 
position because multipath and signal degradation have much 
more impact on pseudorange measurements than Doppler 
measurements. In this condition, the Doppler-derived velocity 
is more useful for updating the inertial system while the 
code-derived position would not benefit but deteriorate 
velocity and attitude estimation. 

The velocity and attitude filter is designed to estimate INS 
sensor errors as well as velocity and attitude errors based on 
INS error dynamics and GPS velocity updates. To improve 
estimation performance, system dynamics and measurement 
models are modified based on the dynamics knowledge aided 
inertial navigation algorithm. The simplified system models are 
derived from the land vehicle motion models shown in (1) 
through (4) using perturbation techniques. The extended 
measurement update schemes, which have been described in 
the previous section, are used here to correct the INS velocity 
and attitude states continuously. Then, the corrected velocity 
and attitude will be integrated with GPS position in the position 
filter to output an optimal position estimate. Because only 
horizontal position is interested in land vehicle applications, 
position and velocity in the north and east directions are 
modeled as the system states in the position filter. Obviously, 
the state of position is the integration of velocity and the state of 
velocity is the integration of acceleration. For simplicity, we 
model the vehicle velocity as a constant with an input noise 
driven by the vehicle acceleration. Therefore, the system model 
for the INS position filter is defined as follow: 
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where   and  are the north and east position states; 
 and  are the north and east velocity states; and   and 

 are the driving noise for the north and east velocity states. 

NnP NeP

NnV NeV
nVw

EVw

Based on the above dynamics model, the position filter is 
actually performing a linear combination between GPS 
position and the corrected INS velocity using the Kalman gain 
weighting. To compute the correct Kalman gain, GPS position 
error must be modeled properly. For land vehicle applications 
under various signal degradation conditions, however, GPS 
measurement is likely corrupted by multipath and high code 
noise so that GPS position error is changing quickly with 
environments and the accurate estimation of a priori knowledge 
about the position errors and noise statistics becomes a 
challenge. To model GPS position error more appropriately, an 
innovation-based adaptive filtering algorithm with unknown 



 
 

 

measurement noise covariance, a fuzzy logic rule-based GPS 
data classification system and vehicle dynamics knowledge are 
integrated here to adapt the covariance of GPS position error. 

More specifically, for each channel, we decrease the 
innovation-based adaptive measurement noise covariance to 
the power of 0.5 and 0.75 when GPS position is obtained under 
low and medium signal-degraded conditions. Therefore, when 
good GPS position is available, the adaptive measurement 
noise covariance is reduced to better characterize the real GPS 
performance. When vehicle is stationary, the vehicle position 
should be unchanged but GPS position may drift and change 
slowly over time due to the smoothing feature provided by the 
in-receiver filter. To prevent the drift effect on the filter 
position, we assign an extremely large measurement noise 
covariance for GPS position when vehicle is stationary. Table 1 
lists the AI-based modification of the adaptive measurement 
noise covariance for GPS positions based on signal degradation 
condition and vehicle dynamics. 

kR̂  denotes the 
innovation-based adaptive measurement noise covariance. 
Details about the innovation-based adaptive Kalman filter can 
be found in [19]. 

 
Table 1. AI-enhanced adaptive measurement noise covariance for GPS position 
 

Vehicle dynamics Non-stationary Stationary 

Signal degradation condition Low Medium High All 

Measurement covariance 50.
kR̂  750.

kR̂  kR̂  6
 10

 

IV. EXPERIMENTAL RESULTS 
To examine the AI-enhanced integration algorithm, several 

road tests in downtown Calgary, Canada have been performed. 
A low-cost Xsens MT9 MEMS inertial sensor and a SiRF Star 
II GPS receiver were mount on a land vehicle for road tests. 
The MT9 is a miniature inertial measurement unit providing 
serial digital output of 3D acceleration, 3D rate of turn and 3D 
earth-magnetic field data with the sensor specifications shown 
in Table 2. The SiRF GPS receiver is a low-cost 
single-frequency 12-channel receiver which provides 
code-based single point positioning solutions. The data output 
rate of the MEMS inertial sensor and GPS receiver was chosen 
as 20 Hz and 1 Hz, respectively. 

The test route was chosen to have a variety of spatial urban 
characteristics as shown in Fig. 4. Four data collection runs on 
the route were performed, each starting in a nearly open-sky 
area to obtain good GPS position fix. Then the vehicle moved 
into the core of downtown areas and took about 10 minutes to 
finish a loop of about 2 km in length. During the test the vehicle 
frequently stopped on the traffic lights and had the speed varied 
from 0-40 km/h. A digital map of downtown Calgary provided 
by the city of Calgary was used as reference for position 
accuracy analysis. The map provides the coordinates of a road 
centerline with several meters accuracy. 

Shown in Fig. 5 are GPS positions and fuzzy data 

classification results obtained from a sample run. GPS 
positions are marked with different colors and symbols 
according to the data classification results. As shown, GPS 
position accuracy degraded in the core of downtown areas. 
GPS position performance is inconsistent and unstable, i.e., 
some on the track and some off the track by a hundred-meter 
level. Using fuzzy data classification, we have identified the 
erroneous GPS positions as the high signal-degraded data. In 
addition, more accurate and stable position solutions have been 
identified as the low or medium signal-degraded data as shown 
in Fig.5 

 
Table 2. MT9 specifications 

 

Parameter Gyro Accelerometer Magnetometer 
Unit deg/s m/s2 mGauss 

Operating range +/-  900  +/- 20 +/- 750  

Linearity 0.1 0.2 1 
Bias stability 

(1σ) 5 0.02  0.5 

Noise (RMS) 0.7 0.01 4.5 
 

 
Fig. 4. Downtown test route  
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Fig. 5. GPS positions and classification results. 

 
Shown in Fig. 6 is the MT9/GPS integration result obtained 

from the same sample run. The trajectories derived from the 
integration of the dynamics-aided velocity filter outputs with 
GPS positions using the conventional adaptive Kalman filter 



 
 

 

(AKF) and using the AI-enhanced adaptive Kalman filter 
(AI+AKF) are marked with cyan squares and pink diamonds, 
respectively. As shown, the AI+AKF solution keeps on the 
reference trajectory quite well while the AKF solution has 
some position drifts away from the track. This demonstrates the 
advantage of the AI-enhanced AKF in terms of better 
characterizing the real GPS performance and separating the 
slowly changing GPS position error.  

Reference Trajectory

AKF
AI+AKF
Reference Trajectory

AKF
AI+AKF

 
Fig. 6. MT9/GPS integrated positions. 

 
Table 3 lists the obtainable position accuracy of the 

integrated solutions versus GPS solutions from four-run tests. 
Because in our test the digital map is the only available 
reference, the across-track errors are computed for position 
accuracy analysis. As shown, the AI-enhanced integrated 
solution provides the best position accuracy. Compared to the 
stand-alone GPS solution, the average maximum across-track 
error is reduced from a hundred-meter level to about 37 meters. 
Compared to the conventional adaptive position filter, the 
AI-enhanced adaptive position filter provides about 11%, 20% 
and 26% improvement in the average maximum, mean and 
RMS of the across-track error, respectively. 

 
Table 3. Integrated MT9/GPS vs. GPS position accuracy. 

Test Run # 
Across-Track Errors 

1 2 3 4 
Average 

MAX (m) 48.62 216.80 105.55 80.18 112.79  
Mean (m) 7.00 20.91 10.72 12.06 12.67  GPS 
RMS (m) 10.21 45.37 20.29 22.16 24.51  
MAX (m) 35.54 50.23 51.53 31.37 42.17  
Mean (m) 6.32 10.63 9.37 7.34 8.42  AKF 
RMS (m) 9.08 15.62 15.10 10.51 12.58  
MAX (m) 34.72 33.02 42.58 39.75 37.52  
Mean (m) 4.05 7.49 8.36 6.79 6.67  

AI+AK
F 

RMS (m) 5.73 9.64 12.14 9.73 9.31  
 

V. CONCLUSION 
The traditional Kalman filter methodology was found 

insufficient for low-cost MEMS INS/GPS integration due the 
difficulty of controlling INS error drift and charactering the 
corrupted GPS data. This paper has applied the expert 

knowledge of vehicle dynamics to simplify filter dynamics 
models and to extend measurement update schemes so that the 
INS error can be reduced and well controlled. In addition, a 
fuzzy system has been developed to identify GPS signal 
degradation conditions so that GPS performance can be better 
characterized. Incorporating these two AI-based methods with 
adaptive Kalman filter, an enhanced integration algorithm has 
been developed and implemented to a low-cost MEMS 
INS/GPS integrated system. The results of road tests in urban 
areas have shown that the proposed AI-based methods can 
better characterize the real GPS performance and identify the 
slowly changing GPS position error. The AI-enhanced 
integrated system can provide continuous and reliable 
navigation solutions with about 9 m RMS of the across-track 
error for land vehicle applications in urban areas. 
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