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Abstract—XML-based applications widely apply to data 

exchange in EC and digital archives. However, the study of 
compressing Native XML databases has been surprisingly 
neglected, especially for the huge amount of data and the rapidly 
updatable database. These two factors give rise to our interest, 
and motivate us to develop an approach to efficiently compress 
native XML databases and dynamically maintaining a set of 
compression rules when insertion, deletion, or modification 
functions in databases. This approach is to utilize data mining 
technology and association rules, to mine all frequent patterns. 
We proposed a frequent tag and character data pattern split tree 
(FTCP-split tree) to fast generate the set of association patterns. 
Then we convert these frequent patterns into compression rules, 
which would be used to compress native XML databases. The 
question which we must consider next is how to dynamically 
maintain XML database compression when XML documents are 
inserted, deleted, or modified. We propose a compression 
approach with dynamic maintenance on native XML databases to 
deal with it. The results of preliminary experiment indicate that 
the compression rate of our research is higher than the common 
compression software as ZIP and RAR. 
 

Index Terms—Compression, Data Mining, Incremental data 
Mining, Native XML Database. 
 

I. INTRODUCTION 
  Due to the extensive application of XML technology in 

different fields, such as digital archive, geographic information 
system, e-commerce, and health industry, an enormous number 
of XML documents have been created. For the last few years, 
more and more manufacturers began to develop and design 
native XML databases that enable direct storage and 
management of XML document. We confronted with two 
difficulties. The first is the data storage capacity. The second is 
the data variation.  In this study, we improve the problems 
mentioned above. Our attempts are: 
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A. Raise the efficiency of compression rate 
Our main purpose is to develop and design a more efficient 

compression technique for native XML databases. We apply 
the association rule mining in this research to generate a set of 
compression rules. In order to reach this goal we adopt the 
structure of FTCP-split tree to preserve our frequent patterns. 
The features of this structure are fast in tree construction, which 
is the core phase to generate a set of compression rules. This 
method leads the process to efficiency. 

B. Dynamically maintain the compressed databases 
When insertion, deletion, or modification functions in the 

database, the compression rules need to be changed. For this 
reason, we develop an approach to dynamically maintain the 
compressed databases. In our research, we use two thresholds 
proposed by Hong et al. to obtain a set of pre-frequent tag and 
character data for maintaining the set of compression rules [[6]]. 
This approach will reduce compression time since we do not 
regenerate a set of compression rules for dynamic XML 
databases. 

In mining process, the traditional FP-growth was only used 
for mining transaction items which appear one time in a 
transaction record. In this research, we not only improve the 
above drawback but to deal with the repeatable transaction 
items in transaction database and native XML database. 
Therefore, Then exploit the FTCP-split tree proposed by us to 
compress the data in a tree structure and enhance the mining 
efficiency. In this process, we can greatly reduce the time cost 
of rescanning database and reduce the candidate itemset. 

II. LITERATURE REVIEW 

A. Compress Data with Data Mining Technique 
XML is widely and frequently used for data exchange, which 
makes the data volume growing over time. Consequently, 
database compression is the key to solve this problem. In recent 
years, some scholars apply the data mining techniques for 
database compression such as: Apriori algorithm & ID3 
algorithm (Goh et al., 1998), Decision Tree (Babu et al., 2001), 
CIT algorithm (Lee et al., 2001), and FUP&FUP2 algorithm 
(Lee & Tang, 2004) are notable examples 
[[1]][[2]][[3]][[4]][[8]][[9]]. 
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Figure 1: The flow chart of the proposed compression approaches XML DB. 

 (a) Part : Static compression (b) Part : Ⅰ Ⅱ Dynamic compression 
 
The first scholar to give much attention to dynamically 
maintain compressed databases with Data Mining Technique 
was Lee & Tang. In our research, we develop this idea a little 
further. Lee & Tang adopted FUP& FUP2 to compress 
databases [[2]][[3]]. Lee & Tang used an Apriori-like approach 
so that their approach will incurred the bottleneck in generating 
large amount of candidate itemset [[8]]. 

B. Dynamic Mining 
Rescanning a changed database will consume much time and 

cost, to reduce the cost of database rescan, many incremental 
data mining are proposed to maintain a set of frequent itemsets. 
Those approaches can be divided into two categories – 
Apriori-like and Non Apriori-like approaches. Apriori-like 
approaches such as FUP or FUP2 need to repeat scanning the 
database several times [[2]][[3]]; while Non Apriori-like 
approaches utilize information structures, such as AFPIM 
adjust the FP-tree to mine frequent itemsets without repeating 
scanning the database [[5]][[7]]. However, the previous 
approaches are still suffered from the problem of [[2]][[3]]. 

C. FP-split tree 
FP-split algorithm (Lee & Shen, 2005) constructs FP-split 

tree by adopting the divide-and-conquer strategy by means of 
intersection and difference of itemsets [[11]]. This approach 
could rapidly generate a set of associated patterns since the 
structure of FP-split tree formed by scanning the database only 
once. The tree construction time and I/O cost were much less 
than those of FP-tree (Han et al., 2000), because the FP-growth 
approach based on FP-tree requires scanning the database twice 
[[5]]. FP-split approach was only applicable to static data 
mining. However, when a database are inserted, deleted, or 
modified, the updatable database should be rescanned to 
constructing a new FP-split tree [[11]]. 

D. Pre-large itemsets 
Hong et al. proposed a novel incrementally mining algorithm 

using two thresholds [[6]]. This research solves the  
 
problem of case 3 in FUP algorithm [[2]]. That is, the case 3 

problem is the situation when a database is changed without 
saving the enough information (non-frequent itemsets). The 
solution is to rescan the original database frequently. However, 
this will reduce the database performance. The Pre-large 
itemsets play a buffer role to avoid rescanning the original 
database even if data are inserted, deleted, or modified. The 
results of Hong’s experiment proved the maintenance time 
could be reduced. 

III. THE PROPOSED COMPRESSION METHOD 
Our research composes of the static compression phase and 

dynamic compression phase. It is shown in Figure 1. 

A. PhaseⅠ Static compression 
Step 1 Parse a set of XML documents defined by a given 
DTD 

The way we parse every XML documents by a given DTD is 
to encode these structures as follows. In a XML database for a 
specific DTD structure (say D in Figure 2), an approach is 
proposed to encoding all tags and character data of XML 
documents which is defined by D. 

 
Figure 2: An example of DTD Structure (called D) 

Approach to encoding all XML document Xk: 
The approach has two kinds of cases： 
Case (1) For the k-th XML document with a n-level 

hierarchy, the node at the first level is the root and can be 
encoded as k. 

Case (2) From level 2 to level n-1, we can encode each tag as 
follows. Let the tag which we want to encode be q. Its parent 
tag is p. If the code of p is x then the code of q is x.y . In 
addition, the leaves at the nth level can inherit the codes from 
the (n-1)th level. 

1<A> 
1.1 <B>D</B> 
1.2 <B>D</B> 
1.3 <B>F</B> 

X1 
 
 
 

2<A> 
2.1 <B>D</B> 
2.2 <C>E</C> 
</A> 

X2
 
 
 



 
 

 

</A> (a) (b) 
3<A> 
3.1 <B>D</B> 
3.2 <B>E</B> 
3.3 <B>F</B> 
3.4 <C>E</C> 
</A> 

X3 
 
 
 
(c) 

4<A> 
4.1 <C>E</C> 
</A> 

X4
 
 
 
(d) 

Figure 3: Four coded XML documents（a）X1（b）X2（c）
X3（d）X4

Example 1: Take Figure 3(a~d) as an example to show the 
result of the encoding procedure. With regard to some 
Collection Ci and its structure of DTD Di, we use DFS 
(Depth-First-Search) to scan all XML documents defined by Di 
and then encode all of them. 
Step2 Extract a set of frequent element and a set of 
pre-frequent element of length one. 

We adopt a concept of two support threshold proposed by 
Hong et al.[[6]]. The purpose is to find frequent element set 
more efficiently. 
DEFINITION The equivalence class of elements 

Given an element setΩ =<ε1, ε2,…, εk>, the term “the 
equivalence of elements” forΩ  can be defined as EC Ω =
｛ 1 2( , ,..., )j kd d d d , which is presented as code correspond to 

εi, and the code is the position where εi locates. If the size of Ω 
is k, and then we will call ECΩ as an equivalence class with 
length of k. 

Example 2: Take the two elements “A” and “F” from Figure 
3(a~d) as an example. Ω={A, F} means that tags “A” and 
character data “F” occur in one XML document at the same 
time. The equivalence class of these two elements can be 
represented by EC<A, F>=｛(1, 1.3), (3, 3.3)｝. It means an 
equivalence class with length of two. 
DEFINITION An equivalence class with recurrent 
elements 

We call an element ε is recurrent if it occurs more than one 
time in one document. 

d1.d2.. . ..di-1.[di,1 , di,2, … ,di,k] is a general expression for the 
position code of element ε. It means ε appear in the l locations 
where are d1.d2.. . ..di-1.di,1 , d1.d2.. . ..di-1.di,2 , … ,d1.d2.. . ..di-1.di,l , 
respectively. 

Example 3: Take the tag “B” from Figure 3(a) as an example. 
Tag “B” is recurrent because it appears in the first XML 
document three times and is coded as “1.1”, “1.2” and “1.3”, 
respectively. The position code for tag “B” can be presented as 
1.[1, 2, 3]. 

Example 4: Take the two tags “A” and “B” from Figure 
3(a~d) for example. Let Ω=｛A, B｝. The equivalence class of 
these two tags are shown as EC<A, B>=｛(1, 1.[1, 2, 3]), (2, 2.1), 

(3, 3.[1, 2, 3])｝. Besides, the equivalence class count ( ΩEC ) 

for EC<A, B> is 3. 
A procedure MSL is developed to return a list L, which 

indicates the element set Ω actually appear in what documents. 
 
Procedure MSL（ECΩ） 

{ L = ∅；  
While（ ε∀  in ECΩ and ε is NOT NULL） 

( )L f Lε← ∪ ； //Given an equivalence class ECΩ for 
element set Ω. For each element x in Ω, function 
f can output x’s most significant locators.// 

Return（ ）； L
} 
Example 5: Take the character data “F” from Figure 3(a~d) 

for example. Given EC<F>=｛ 1.3 , 3.3｝ . Therefore, the 
MSL(EC<F>)=｛1 , 3｝. 

DEFINITION Count 
Given an element εi, cik is the occurrence times in the k-th 

document. So, C=
1

n

ik
k

c
=

∑ is the total count for element εi in 

database XDB. 
Example 6: Take the tag “B” from Figure 3(a~d) for example. 

Given EC<B>=｛1.[1, 2, 3] , 2.1 , 3.[1, 2, 3]｝. Therefore, the 
count of EC<B> returns 3 in the first document, 1 in the second 
document, and 3 in the third document. The count of 
EC<B>=3+1+3=7. 
DEFINITION Support 

The support of Ω can be defined as  which 

states the occurrence times for the set Ω of elements. 
1

min( , )
n

ik jk
k

c c
=

∑

Example 7: The equivalence class for Ω=｛A, E｝ is EC<A, 

E>=｛(2 , 2.2) , (3 , 3.[2, 4]) , (4 , 4.1)｝. Therefore, the support 
of EC<A, E> =3. 
DEFINITION Fk (Frequent element set) 

Fk means the set of frequent element of length k from XDB. 
So, Fk=｛(ε1, ε2,…, εk)｝. That is, for given a set of k- element Ω, 
Their support is greater than Su. 
DEFINITION PFk (Pre-Frequent element set) 

A Pre-Frequent element set is not really frequent, but is 
promising to be frequent in the future. Therefore, for given a set 
of k- element Ω, and Ω is said to be pre-frequent, then their 
support is less than or equal to Su and greater than or equal to Sl. 

According to the above definitions, we can extract a set of 
frequent element of length one. In the following step, we will 
store all the F1 into a head table by the order of their support. In 
addition, we also store the set of PFk for dynamic compression 
rules maintenance. 

Step3. Construct FTCP-split tree 
An FP-split algorithm is developed by Lee et al. which 

improves the FP growth algorithm in tree construction time 
[[11]]. FP-split algorithm is based on the FP-split tree, which 
can compress the database by representing frequent tags and 
character data into the FP-split tree, but retain the set 
association information, and then divide such a compressed 
database into a set of conditional databases (a special kind of 
projected database), each associated with one frequent item, 
and mine each such database separately. 

In our research, we adapt a tree called FTCP-split tree 



 
 

 

(Frequent Tags and Character data Pattern-split tree) for extract 
frequent association patterns which future can be used to be 
compressed together. 

The nodes in the proposed FTCP-split tree have several 
fields. The Content field records the content name of tag or 
character data Ω. The field, Count, records the real amount of 
which in each documents. The field, Child_link, is a pointer 
which links to its child nodes. The field, Split_link, is also a 
pointer linking a split node which has the same Content as Ω. 
The field, List, stores ECΩ. 

We build a FTCP-split tree according to the F1 obtained from 
Step 2. We preserve all frequent sets on this tree. We utilize a 
head table as an index of each node needed in mining period. In 
head table, it includes three fields, Item, Link, and Bit. The 
field, Item, records the content name of tags or character data 
sorted by Support. The field, Link, records a pointer linked 
each node on this tree. The field, Bit, records the node 
discriminated between tag and character data (1 or 0). If this bit 
equal to 1, then it represents a tag. If this bit equal to 0, then it 
represents a character data. 
Approach to construct tree as follows: 

First, we generate a root node. This node is a dummy node. If 
p is a root node and then we execute Case I; else, if p isn’t a root 
node and then we execute Case .Ⅱ  

 
CaseI. IF p’s child node=NULL 

THEN p.child_link ← n ; 
ELSE Compare (p.child_link, n) ; 

CaseII. IF p’s child node=NULL 
THEN Compare (p, n) ; 
ELSE Compare (p.child_link, n) ; 

   
Compare(x,y) 
CaseI. IF MSL(y.List) MSL(x.List) ⊂

THEN x.child_link ← y ; 
CaseII. IF MSL(x.List) MSL(y.List)= ∅  ∩

THEN IF p is a root 
THEN p.child_link ← n ; 
ELSE Compare (x.parent_link, y) ; 

CaseIII. IF MSL(x.List) MSL(y.List)∩ ≠ ∅  and 
MSL(x.List) MSL(y.List) ≠
THEN  Split y into two nodes, n1, and n2 ; 

α ← MSL(x.List) MSL(y.List) ; ∩
β ← MSL(x.List) MSL(y.List) ; −

iε∀ ∈ y.List 
IF MSL( iε ) α ⊆
THEN Set iε  → n1.List 
IF MSL( iε ) β ⊆
THEN Set iε  → n2.List 

n1.split_link ← n2.split_link; 
x.child_link ← n1 ; 

Compare (x.parent_link, n2) ; 
First, generate a virtual root node, and then, by the order of 

their support, generate nodes from FTC. Secondly, compare the 

MSL of table List in the new node N with the node p in the old 
tree.  

 
CaseI. If p does not exist, make n under the root node. 
CaseII. If the MSL of table List in n is included in p, then 

make n under p.  
CaseIII. If the INTERSECT of the MSL of table List in n and 

the one in p is ∅ , then check the parent node of p.  
CaseIV. If the INTERSECT of the MSL of table List in n and 

the one in p is not ∅ but n1 and n2, use split link to 
connect these two nodes. Update the INTERSECT of 
the MSL of table List in n and the one in p to n1, then 
Update the DIFFERENCE of the MSL of table List in 
n and the one in p to n2. Make n2 under p. Compare n2 
with the parent node of p again. 

According to this approach, the frequent tag and character 
data can be stored in FTCP-split tree. 

Example 8: Take Figure 3(a~d) for example. We can obtain a 
FTCP-split tree as Figure 4. Character data are too less to build 
on the FTCP-split tree because the number of documents isn’t 
enough in this example. 

 
Figure 4: FTCP-split tree 

Step4. Mining association patterns 
In this step, we adapt FP-growth algorithm for mine all 

frequent tag and character data with length of k (also called 
k-patterns) from the FTCP-split tree [[5]]. We defined 
k-patterns = (ε1, ε2,…, εk). We adapt the calculation of threshold, 
Support. It was defined as above.  

Example 9: Take Figure 4 for example. Let Su = 75% = 
(4*0.75 = 3) and Sl = 50% = (4*0.50 = 2). We will mine a set of 
2- tags and character data ｛A, E｝= {(2 , 2.2), (3 , 3.[2, 4]), (4 , 
4.1)}. The support of ｛A, E｝is 3. Therefore, ｛A, E｝=FTC2 
= (ε1, ε2) 

In the above step, we only preserve the FTCP-split tree and a 
set of pre-frequent tag and character data. The purpose of 
preserving FTCP-split tree and PFTC lies in the maintenance of 
data insertion, deletion, and modification. The information, 
FTCP-split tree and PFTC, would be updated when the time 
goes by. When we dynamically maintain the updatable XML 
database, we only need to rescan the FTCP-split tree. Since we 
do not need to rescan the original database, our process time is 
greatly reduced.  

The FTCP-split tree is a remarkably thin upper-layer and fat 



 
 

 

lower-layer shape. For given a XML database, we can find that 
most significantly frequent tags are stored in the upper-layer 
because they have greater support. Therefore, the tags stands in 
the upper-layer part of FTCP-split tree will be compressed 
most. 
Step5. Generating compression rules and calculating 
compression space 

We apply the previously explored frequent tags and 
character data sets to establish compression rules of tags and 
character data sets, respectively, and to calculate spaces for 
compression. In addition, the utilized compression rules of 
character data sets and tag sets and corresponding Lists are 
stored in the metarule, respectively, and the used compression 
rules will be marked.  

In our research, we adopt the compression types from the 
research of Lee et al to translate all length=1, 2, ..., K frequent 
sets into compression rules [[8]]. Next, we calculate the 
compression space with the compression rules. 
DEFINITION Utilize frequent element set to generate 
compression rules 

According to the FTCP-split tree, we generate a set of 
compression rules. This set of compression rules has their 
length of k (k ≥ 1). They can be shown as follows: 

t (P1, …, Pj1-1, ε1, Pj1+1, …, Pj2-1, ε2, Pj2+1, …, Pjk-1, εk, Pjk+1, …, Pn) 
 t′ (P1, …, Pj1-1, Pj1+1, …, Pj2-1, Pj2+1, …, Pjk-1, Pjk+1, …, Pn)，Γ 
The P1, …, Pj1-1, Pj1+1, …, Pj2-1, Pj2+1, 

…Pj k-1, …Pjk+1, Pn among 
the structure of the DTD represent the variables tag or variables 
character data. The εi represents the compressed element, for 
i=1, 2, …, k. The Γrepresents the ECΩ of the frequent element 

set. The compress space of the rule can be shown as: B(ε∑
=

k

i 1
i) * 

C. The Count is the total number of equivalence class 
correspond to the total number of times of the εi appear in XML 
database. The information of count was stored in the tree. The 
B(εi) is the memory space of the εi. For i =1, 2, …, n. The εi is a 
set in this rule. Because there would be more than two character 
data can hold same tags. For example: Two character data, D 
and E, hold same tag, <C >. 

Example 10: To follow Example 9. We take the element A 
and E for example. Given EC<A, E>=｛(2 , 2.2) , (3 , 3.[2, 4]) , (4 , 
4.1)｝, We can generate a compression rule as follows: 

t1（A，B，C，D，E）←t1’（B，C，D），｛(2 , 2.2) , (3 , 
3.[2, 4]) , (4 , 4.1)｝ 

This compression rule represent the element A and E appear 
in four documents according to the information of Γ=｛(2 , 
2.2) , (3 , 3.[2, 4]) , (4 , 4.1)｝ and The Count of “A” equals to 
1, 1, and 1 in 2nd, 3rd, and 4th documents. The Count of “E” 
equals to 1, 2, and 1 in 2nd, 3rd, and 4th documents. In the 
compression rule, “B”, “C”, “D” represent variables tag or 
variables character data. They are shown as italic type. “A” and 
“E” represent constant tag or constant character data and are 
shown as regular type. We can compress the frequent tag “A” 
and character data “E” with this rule. 

The compression space can be calculated as follows: 

∑
=

k

i 1
B(εi) * C → ［（5）*（1+1+1）］+［（1）*（1+2+1）

］＝19（Bytes） if A’s memory space is 5, E’s memory space 
is 1. 
Step6~7. Selecting effective compression rules 

A heuristic compression method is developed to assist 
selecting effective compression rules. The conflicts of 
redundancy compressing have to be resolved by a heuristic 
compression method. During the process of compression, 
several compression rules may apply to the same data. Once a 
rule is chosen because of their potential to reach the greatest 
compression ratio, the remainder of these conflict rules should 
be re-adjust because some of them might not be enough strong 
to compress the data sets. Even if some of the remainder of the 
conflict rule still can used for compression rules, they can not 
compress so many capacity as they used to be. Therefore, the 
compress space should be recalculated. 

Example 11: If The memory space of D is 5, E is 8, and G is 
2. The information of count was stored in the tree. 

t1(a , b , D , E , f) ← t1’(a , b , f)，(1 , 2) 
The count of D separately equals to 2, and 1 in 1st, and 2nd 

documents. 
The count of E separately equals to 1, and 3 in 1st, and 2nd 

documents. 
So, the compression space of t1 → ［5 *（2+1）+8 *（1+3）

］＝47 
t2(a , c , d , E , G) ←t2’(a , c , d)，(2 , 3) 
The count of E separately equals to 1, and 3 in 1st, and 2nd 

documents. 
The count of G separately equals to 1, and 2 in 2nd, and 3rd 

documents. 
So, the compression space of t2 → ［8 *（1+3）+2 *（1+2）

］＝38 
We first choose t1 compression rule. When we choose t2 

compression rule, we need to consider the conflict problem. It 
has to revise the compression space of t2 compression rule. 
Rule t1 and t2 both compress E, which makes E be counted 
twice when it proceeds to Rule t2. That is, E [ 8 * ( 1 + 3 ) ] has 
to be eliminated, and the compressible space of t2 becomes [ 2 * 
( 1 + 2 )] = 6. 

B. Phase Ⅱ An Approach to Dynamic Compression 
An incrementally updatable native XML database means 

that the amount of XML documents will change over time 
when the database occurs insertion, deletion, or modification, 
which makes it an important task to dynamically maintain 
compressed databases. To solve that, we proposed an approach 
to dynamically maintain a set of compression rules. The 
proposed approach is based on an adjusted FTCP-split 
algorithm. This approach can deal with data variation 
efficiently.  

Since the database is incrementally updatable, a ping-pong 
effect will occur and incur the compression performance 
degression, for a set of compression rules will be brought-in 



 
 

 

and then removed-out. Document insertion can possibly bring 
some tags or character data into the set of frequent patterns. On 
the other hand, document deletion can possibly remove some 
tags or character data out from the non-frequent sets. For 
addressing this ping-pong problem, we adopt the concept of 
two thresholds proposed by Hong et al [[6]]. In the phase of 
dynamic compression we adopt the concept of safety number 
proposed by Hong et al [[13]][[14]]. It is precisely on such 
grounds that our research would efficiently reduce the cost of 
data maintenance. For example: time and memory space. 

The following procedure is proposed for adjusting the 
hierarchical positions of tag and character data in the 
FTCP-split tree. when a number of XML documents are 
inserted, deleted, or modified.  

Procedure : Preprocessing data 
Input: a differential XML database  with the size of 
t, the original XML database size d, safety number f, the 
upper threshold Su and the lower threshold S

XDB∆

l. 
 
Step1 : Parse  to obtain a , which is a set of codes 

corresponding to the tags and character data in 
. 

XDB∆ C∆

XDB∆
Step2 : Partition  into , if  comes from the 

FTCP-split tree. 
C∆ FC FC

PC , if PC  is a set of pre-frequent tag and character 
data in the original database. and this set is created 
and stored in the second step of Phase I. 

NC , if  is a set of non-frequent tag and character 
data set in the original database. 

NC

Step3 : Recalculate the support of  and the support of FC PC . 
Step4 : For all patterns in  F PC C∪

Adjust the FTCP-split tree according to the new 
supports calculated by Step3. 

Step5 : Calculate a safety number S, where
( )

1
u l

u

S S d
S

S
−

=
−

 , if 

document insertion 
( )u l

u

S S d
S

S
−

=  , if document deletion 

( u lS S S d= − )  , if document modification. 

Step6 : For all patterns in  NC
Check if t c  then reset  and do 
nothing; 

f+ ≤ c t c= +

  Else rescan the original database and reset 0c = , 
. d d t c= + +

Procedure : Adjust the FTCP-split tree as follows: 
CaseI. If x and c1[x] have identical list contents and c1[x] has 

no child. (x.List= c1[x].List and c1[x].child=null) 
Then call SWAP (x, c1[x]) to alter the hierarchical 
order of both nodes, i.e., make c1[x] become parent 
p[x] of x, as Figure 5. 

 
Figure 5: Case 1 of Adjust FTCP-split tree 

CaseII.  If x and c1[x] have identical list contents and c1[x] has 
children {c1[c1[x]], c2[c1[x]], …, cm[c1[x]]} 
(x.List= c1[x].List and c1[x].child={c1[c1[x]], 
c2[c1[x]], …, cm[c1[x]]}) 

Then call SWAP (x, c1[x]) to exchange the hierarchical 
order of both nodes, i.e., make c1[x] become parent p[x] 
of x and {c1[c1[x]], c2[c1[x]], …, cm[c1[x]]} become 
children of x {c1[x], c2[x], …, cm[x]}, as Figure 6. 

 
Figure 6: Case 2 of Adjust FTCP-split tree 

CaseIII. If x and c1[x] have similar list contents and c1[x] has 
no child nodes except for c1[x]. 
(x.child={c1[x]}and x.List ∩ c1[x].List ≠ ∅ ) 

Then set α as the difference between list contents of x 
and c1[x], i.e., α=x.List - c1[x].List, create a child z 
under the root, and create a point of sibling between 
nodes x and z.  Set β as the intersect between list 
contents of x and c1[x], as Figure 7. 

 
Figure 7: Case 3 of Adjust FTCP-split tree 

CaseIV. If x and c1[x] have similar list contents and x other 
children. (α=x.List-c1[x].List ≠ ∅ and 
x.child={c1[x], c2[x], …, cm[x]}) and 
α⊇ cj[x].List，for j 1) ≠

Then set β as the intersect between list contents of x 
and c1[x].  Create a new child Z under the root, and 
create a point of sibling between nodes x and z. Set 
cj[x] as child of z, i.e., z.chlid={cj[x]}.  Then, make 
x.List=β and call SWAP (x, c1[x]) to exchange the 
hierarchical order of the two nodes, as Figure 8. 



 
 

 

 
Figure 8: Case 4 of Adjust FTCP-split tree 

Example 12: There are four original XML documents (d=4) 
in Example 1. Let a differential XML database XDB∆  {X5, 
X6}. So, t is two. Let Su=75%=6*0.75=5，Sl=50%=6*0.5=3. 
The first step, we will parse the two XML documents and 
obtain the corresponding code for tags and character data as 
shown in the following figure. Therefore, the set of equivalence 
classes for the generated  is ECC∆ <A>= {5, 6}, EC<B>= {6.1}, 
EC<C>= {5.1, 5.2 , 5.3 , 6.2} , EC<D>= {5.1 , 6.1}, EC<F>= {5.2 , 
5.3 , 6.2}. 

5<A> 
5.1 <C>D</C> 
5.2 <C>F</C> 
5.3 <C>F</C> 
</A> 

X5 
 
 
(a) 

6<A> 
6.1 <B>D</B> 
6.2 <C>F</C> 
</A> 

X6

 
 
(b) 

Figure 9: Two encoded XML documents, which are (a) X5 

and (b) X6, respectively. 
The second step, we can partition  into ={A , B , C}, C∆ FC
PC ={F} and = ∅ . For each element in  and NC FC PC , we 

recalculated their corresponding supports. The following step 
is to adjust the FTCP-split tree which is according to the new 
supports calculated as above. After that, we calculate the safety 

number as 

( ) ( )0.75 0.5 4
4

1 1 0.75
u l

u

S S
S

d
f

− −⎢ ⎥ ⎢ ⎥
= = =⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ .  

Owing to the number of inserted XML documents（t＝2）
and the initial parameter（c＝0）, we find that t+c (=2) is less 
than the safety number (f=4). Thus it doesn’t need rescan the 
original database.  

From the above steps, we just analyze the differential XML 
( ) database and need not to rescan the updated database 
( + ), we can also obtain the adjusted FTCP-split 
tree for late compression rule generation. By using the new 
created set of compression rules, we can efficiently 
compressing the incremental updatable native XML database.  

XDB∆
XDB XDB∆

IV. EXPERIMENT ANALYSIS 
In this initial experiment, we will proceed with experimental 

evaluation for compression rate of compressing Native XML 
Database. We have completed compression analysis of the 
character data sets with a length of 1 and details are given as 
follows: 

The develop platform is Java programming language 
(J2SDK 1.4.2) to develop this experiment. The hardware is 
Intel P4-2.8G, with memory of 2GB, and the operating system 
is the Microsoft Windows 2000 Professional. Furthermore, 
Assoc.gen is available from the IBM official website, and is 

used to generate the transaction database for this experimental 
analysis. 
Analysis of experiment analysis 

The transaction records are generated by Assoc.gen, and 
then converted into XML documents for the experiment, where 
each transaction record stands for one XML document and the 
DTD structure is as shown in Figure 2.  
Time of building tree 

As a result of our research adapted the structure of split tree 
from Lee [[11]]. We can preserve whole original XML 
documents in FTCP-split tree without destroying the tree 
structure of original XML documents. It will be clear from the 
experiment of Lee that the time of building tree is less than 
traditional FP-tree approach [[11]]. 
The compression effectiveness of documents with different 
sizes 

In this experiment, there are 2500, 5000, 7000, and 10000 
XML documents simulated for evaluating the compression rate 
with different document sizes and we set the parameter such as: 
the average length of documents as 20, the average length of 
frequent sets as 10, the number of items in the database as 100, 
and the relationship of frequent sets as 1. Figure 10 shows tag, 
character data, and whole compression rate under the different 
amount of documents. Compression ratio is defined by the 
expression of A / B, where A represents the data volume for 
compressed tag or character data or total (tag + character data), 
and B represents the data volume for XML documents and 
compression rules. 
Compare our compression rate with ZIP and RAR 

Figure 11 shows the compression rate compare bar chart 
among our research, ZIP, and RAR under the minimum support 
as 30%. We adopt XML database belonged to the structure of 
the Figure 2 DTD D. This figure indicates that the compression 
rate is higher than ZIP and RAR when we compress the 
length=2 character data sets and the length=1 tag sets. (It can be 
shown as curve B). 
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Figure 10: The effectiveness of min-sup10 (%) 
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Figure 11: The compression rate compare bar chart among our 

research, ZIP, and RAR. 

V. CONCLUSION 
The use of the Internet to exchange electronic business 

documents (eBusiness) is growing exponentially. XML acts as 
the best way to exchange information because it is a standard 
defined language by the World Wide Web Consortium (W3C), 
and is a simple, easy-to-grasp method of encoding information 
in plain text. In addition to being a means for moving data over 
the Internet, XML files provide a good way of moving data 
among applications. Thus, the capacity for storing XML 
documents is growing fast. Database compression can address 
this problem. 

The first purpose of our proposed approach is to utilize 
technology of association rule mining to extract out all frequent 
patterns. The frequent patterns can be stored in a frequent tag 
and character data pattern split tree (FTCP-split tree) to fast 
generate the set of association patterns. Then we convert these 
frequent patterns into a set of compression rules. The 
compression rules can be used to compress native XML 
databases. Moreover, we also can use the association patterns 
to generate a set of association rules which usually are reliable 
and valuable. 

The second purpose of our proposed approach is to solve the 
problem of data maintenance when compressed database occur 
variation. We proposed an efficient approach named as Adjust 
FTCP-split algorithm for incremental mining to solve it. The 
features of this method are fast mining and high compression 
rate. First, since the Adjust FTCP-split approach do not 
generate large amount of candidate set, it can be quicker than 
traditional the traditional Apriori-like approaches. Second, the 
experiment results show that the compression rate of our 
proposed approach is higher than the common compression 
tools such as ZIP and RAR. Third, our proposed approach can 
dynamically maintain compression rules when database occur 
variation such as insertion, deletion, or modification. 
According to the above three features, our proposed approach 
can reach the goal of reducing compression cost and raising 
compression rate. 
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