

Efficient Associating Mining Approaches for
Compressing Incrementally Updatable Native

XML Databases
Chin-Feng Lee, Chia-Hsing Tsai

Abstract—XML-based applications widely apply to data

exchange in EC and digital archives. However, the study of
compressing Native XML databases has been surprisingly
neglected, especially for the huge amount of data and the rapidly
updatable database. These two factors give rise to our interest,
and motivate us to develop an approach to efficiently compress
native XML databases and dynamically maintaining a set of
compression rules when insertion, deletion, or modification
functions in databases. This approach is to utilize data mining
technology and association rules, to mine all frequent patterns.
We proposed a frequent tag and character data pattern split tree
(FTCP-split tree) to fast generate the set of association patterns.
Then we convert these frequent patterns into compression rules,
which would be used to compress native XML databases. The
question which we must consider next is how to dynamically
maintain XML database compression when XML documents are
inserted, deleted, or modified. We propose a compression
approach with dynamic maintenance on native XML databases to
deal with it. The results of preliminary experiment indicate that
the compression rate of our research is higher than the common
compression software as ZIP and RAR.

Index Terms—Compression, Data Mining, Incremental data
Mining, Native XML Database.

I. INTRODUCTION
 Due to the extensive application of XML technology in

different fields, such as digital archive, geographic information
system, e-commerce, and health industry, an enormous number
of XML documents have been created. For the last few years,
more and more manufacturers began to develop and design
native XML databases that enable direct storage and
management of XML document. We confronted with two
difficulties. The first is the data storage capacity. The second is
the data variation. In this study, we improve the problems
mentioned above. Our attempts are:

Manuscript received April 6, 2006.
Chin-Feng Lee is with the Department of Information Management,

Chaoyang University of Technology, No. 168, Jifong E. Rd., Wufong
Township, Taichung Country 41349, Taiwan (R.O.C.)

 E-mail: lcf@cyut.edu.tw
Chia-Hsing Tsai is with the Department of Information Management,

Chaoyang University of Technology, No. 168, Jifong E. Rd., Wufong
Township, Taichung Country 41349, Taiwan (R.O.C.)

 E-mail: s9314641@cyut.edu.tw

A. Raise the efficiency of compression rate
Our main purpose is to develop and design a more efficient

compression technique for native XML databases. We apply
the association rule mining in this research to generate a set of
compression rules. In order to reach this goal we adopt the
structure of FTCP-split tree to preserve our frequent patterns.
The features of this structure are fast in tree construction, which
is the core phase to generate a set of compression rules. This
method leads the process to efficiency.

B. Dynamically maintain the compressed databases
When insertion, deletion, or modification functions in the

database, the compression rules need to be changed. For this
reason, we develop an approach to dynamically maintain the
compressed databases. In our research, we use two thresholds
proposed by Hong et al. to obtain a set of pre-frequent tag and
character data for maintaining the set of compression rules [[6]].
This approach will reduce compression time since we do not
regenerate a set of compression rules for dynamic XML
databases.

In mining process, the traditional FP-growth was only used
for mining transaction items which appear one time in a
transaction record. In this research, we not only improve the
above drawback but to deal with the repeatable transaction
items in transaction database and native XML database.
Therefore, Then exploit the FTCP-split tree proposed by us to
compress the data in a tree structure and enhance the mining
efficiency. In this process, we can greatly reduce the time cost
of rescanning database and reduce the candidate itemset.

II. LITERATURE REVIEW

A. Compress Data with Data Mining Technique
XML is widely and frequently used for data exchange, which
makes the data volume growing over time. Consequently,
database compression is the key to solve this problem. In recent
years, some scholars apply the data mining techniques for
database compression such as: Apriori algorithm & ID3
algorithm (Goh et al., 1998), Decision Tree (Babu et al., 2001),
CIT algorithm (Lee et al., 2001), and FUP&FUP2 algorithm
(Lee & Tang, 2004) are notable examples
[[1]][[2]][[3]][[4]][[8]][[9]].

IAENG International Journal of Computer Science, 33:1, IJCS_33_1_14
__

(Advance online publication: 13 February 2007)

Figure 1: The flow chart of the proposed compression approaches XML DB.

 (a) Part : Static compression (b) Part : Ⅰ Ⅱ Dynamic compression

The first scholar to give much attention to dynamically
maintain compressed databases with Data Mining Technique
was Lee & Tang. In our research, we develop this idea a little
further. Lee & Tang adopted FUP& FUP2 to compress
databases [[2]][[3]]. Lee & Tang used an Apriori-like approach
so that their approach will incurred the bottleneck in generating
large amount of candidate itemset [[8]].

B. Dynamic Mining
Rescanning a changed database will consume much time and

cost, to reduce the cost of database rescan, many incremental
data mining are proposed to maintain a set of frequent itemsets.
Those approaches can be divided into two categories –
Apriori-like and Non Apriori-like approaches. Apriori-like
approaches such as FUP or FUP2 need to repeat scanning the
database several times [[2]][[3]]; while Non Apriori-like
approaches utilize information structures, such as AFPIM
adjust the FP-tree to mine frequent itemsets without repeating
scanning the database [[5]][[7]]. However, the previous
approaches are still suffered from the problem of [[2]][[3]].

C. FP-split tree
FP-split algorithm (Lee & Shen, 2005) constructs FP-split

tree by adopting the divide-and-conquer strategy by means of
intersection and difference of itemsets [[11]]. This approach
could rapidly generate a set of associated patterns since the
structure of FP-split tree formed by scanning the database only
once. The tree construction time and I/O cost were much less
than those of FP-tree (Han et al., 2000), because the FP-growth
approach based on FP-tree requires scanning the database twice
[[5]]. FP-split approach was only applicable to static data
mining. However, when a database are inserted, deleted, or
modified, the updatable database should be rescanned to
constructing a new FP-split tree [[11]].

D. Pre-large itemsets
Hong et al. proposed a novel incrementally mining algorithm

using two thresholds [[6]]. This research solves the

problem of case 3 in FUP algorithm [[2]]. That is, the case 3

problem is the situation when a database is changed without
saving the enough information (non-frequent itemsets). The
solution is to rescan the original database frequently. However,
this will reduce the database performance. The Pre-large
itemsets play a buffer role to avoid rescanning the original
database even if data are inserted, deleted, or modified. The
results of Hong’s experiment proved the maintenance time
could be reduced.

III. THE PROPOSED COMPRESSION METHOD
Our research composes of the static compression phase and

dynamic compression phase. It is shown in Figure 1.

A. PhaseⅠ Static compression
Step 1 Parse a set of XML documents defined by a given
DTD

The way we parse every XML documents by a given DTD is
to encode these structures as follows. In a XML database for a
specific DTD structure (say D in Figure 2), an approach is
proposed to encoding all tags and character data of XML
documents which is defined by D.

Figure 2: An example of DTD Structure (called D)

Approach to encoding all XML document Xk:
The approach has two kinds of cases：
Case (1) For the k-th XML document with a n-level

hierarchy, the node at the first level is the root and can be
encoded as k.

Case (2) From level 2 to level n-1, we can encode each tag as
follows. Let the tag which we want to encode be q. Its parent
tag is p. If the code of p is x then the code of q is x.y . In
addition, the leaves at the nth level can inherit the codes from
the (n-1)th level.

1<A>
1.1 D
1.2 D
1.3 F

X1

2<A>
2.1 D
2.2 <C>E</C>

X2

 (a) (b)
3<A>
3.1 D
3.2 E
3.3 F
3.4 <C>E</C>

X3

(c)

4<A>
4.1 <C>E</C>

X4

(d)

Figure 3: Four coded XML documents（a）X1（b）X2（c）
X3（d）X4

Example 1: Take Figure 3(a~d) as an example to show the
result of the encoding procedure. With regard to some
Collection Ci and its structure of DTD Di, we use DFS
(Depth-First-Search) to scan all XML documents defined by Di
and then encode all of them.
Step2 Extract a set of frequent element and a set of
pre-frequent element of length one.

We adopt a concept of two support threshold proposed by
Hong et al.[[6]]. The purpose is to find frequent element set
more efficiently.
DEFINITION The equivalence class of elements

Given an element setΩ =<ε1, ε2,…, εk>, the term “the
equivalence of elements” forΩ can be defined as EC Ω =
｛ 1 2(, ,...,)j kd d d d , which is presented as code correspond to

εi, and the code is the position where εi locates. If the size of Ω
is k, and then we will call ECΩ as an equivalence class with
length of k.

Example 2: Take the two elements “A” and “F” from Figure
3(a~d) as an example. Ω={A, F} means that tags “A” and
character data “F” occur in one XML document at the same
time. The equivalence class of these two elements can be
represented by EC<A, F>=｛(1, 1.3), (3, 3.3)｝. It means an
equivalence class with length of two.
DEFINITION An equivalence class with recurrent
elements

We call an element ε is recurrent if it occurs more than one
time in one document.

d1.d2.. . ..di-1.[di,1 , di,2, … ,di,k] is a general expression for the
position code of element ε. It means ε appear in the l locations
where are d1.d2.. . ..di-1.di,1 , d1.d2.. . ..di-1.di,2 , … ,d1.d2.. . ..di-1.di,l ,
respectively.

Example 3: Take the tag “B” from Figure 3(a) as an example.
Tag “B” is recurrent because it appears in the first XML
document three times and is coded as “1.1”, “1.2” and “1.3”,
respectively. The position code for tag “B” can be presented as
1.[1, 2, 3].

Example 4: Take the two tags “A” and “B” from Figure
3(a~d) for example. Let Ω=｛A, B｝. The equivalence class of
these two tags are shown as EC<A, B>=｛(1, 1.[1, 2, 3]), (2, 2.1),

(3, 3.[1, 2, 3])｝. Besides, the equivalence class count (ΩEC)

for EC<A, B> is 3.
A procedure MSL is developed to return a list L, which

indicates the element set Ω actually appear in what documents.

Procedure MSL（ECΩ）

{ L = ∅；
While（ ε∀ in ECΩ and ε is NOT NULL）

()L f Lε← ∪ ； //Given an equivalence class ECΩ for
element set Ω. For each element x in Ω, function
f can output x’s most significant locators.//

Return（ ）； L
}
Example 5: Take the character data “F” from Figure 3(a~d)

for example. Given EC<F>=｛ 1.3 , 3.3｝ . Therefore, the
MSL(EC<F>)=｛1 , 3｝.

DEFINITION Count
Given an element εi, cik is the occurrence times in the k-th

document. So, C=
1

n

ik
k

c
=

∑ is the total count for element εi in

database XDB.
Example 6: Take the tag “B” from Figure 3(a~d) for example.

Given EC=｛1.[1, 2, 3] , 2.1 , 3.[1, 2, 3]｝. Therefore, the
count of EC returns 3 in the first document, 1 in the second
document, and 3 in the third document. The count of
EC=3+1+3=7.
DEFINITION Support

The support of Ω can be defined as which

states the occurrence times for the set Ω of elements.
1

min(,)
n

ik jk
k

c c
=

∑

Example 7: The equivalence class for Ω=｛A, E｝ is EC<A,

E>=｛(2 , 2.2) , (3 , 3.[2, 4]) , (4 , 4.1)｝. Therefore, the support
of EC<A, E> =3.
DEFINITION Fk (Frequent element set)

Fk means the set of frequent element of length k from XDB.
So, Fk=｛(ε1, ε2,…, εk)｝. That is, for given a set of k- element Ω,
Their support is greater than Su.
DEFINITION PFk (Pre-Frequent element set)

A Pre-Frequent element set is not really frequent, but is
promising to be frequent in the future. Therefore, for given a set
of k- element Ω, and Ω is said to be pre-frequent, then their
support is less than or equal to Su and greater than or equal to Sl.

According to the above definitions, we can extract a set of
frequent element of length one. In the following step, we will
store all the F1 into a head table by the order of their support. In
addition, we also store the set of PFk for dynamic compression
rules maintenance.

Step3. Construct FTCP-split tree
An FP-split algorithm is developed by Lee et al. which

improves the FP growth algorithm in tree construction time
[[11]]. FP-split algorithm is based on the FP-split tree, which
can compress the database by representing frequent tags and
character data into the FP-split tree, but retain the set
association information, and then divide such a compressed
database into a set of conditional databases (a special kind of
projected database), each associated with one frequent item,
and mine each such database separately.

In our research, we adapt a tree called FTCP-split tree

(Frequent Tags and Character data Pattern-split tree) for extract
frequent association patterns which future can be used to be
compressed together.

The nodes in the proposed FTCP-split tree have several
fields. The Content field records the content name of tag or
character data Ω. The field, Count, records the real amount of
which in each documents. The field, Child_link, is a pointer
which links to its child nodes. The field, Split_link, is also a
pointer linking a split node which has the same Content as Ω.
The field, List, stores ECΩ.

We build a FTCP-split tree according to the F1 obtained from
Step 2. We preserve all frequent sets on this tree. We utilize a
head table as an index of each node needed in mining period. In
head table, it includes three fields, Item, Link, and Bit. The
field, Item, records the content name of tags or character data
sorted by Support. The field, Link, records a pointer linked
each node on this tree. The field, Bit, records the node
discriminated between tag and character data (1 or 0). If this bit
equal to 1, then it represents a tag. If this bit equal to 0, then it
represents a character data.
Approach to construct tree as follows:

First, we generate a root node. This node is a dummy node. If
p is a root node and then we execute Case I; else, if p isn’t a root
node and then we execute Case .Ⅱ

CaseI. IF p’s child node=NULL

THEN p.child_link ← n ;
ELSE Compare (p.child_link, n) ;

CaseII. IF p’s child node=NULL
THEN Compare (p, n) ;
ELSE Compare (p.child_link, n) ;

Compare(x,y)
CaseI. IF MSL(y.List) MSL(x.List) ⊂

THEN x.child_link ← y ;
CaseII. IF MSL(x.List) MSL(y.List)= ∅ ∩

THEN IF p is a root
THEN p.child_link ← n ;
ELSE Compare (x.parent_link, y) ;

CaseIII. IF MSL(x.List) MSL(y.List)∩ ≠ ∅ and
MSL(x.List) MSL(y.List) ≠
THEN Split y into two nodes, n1, and n2 ;

α ← MSL(x.List) MSL(y.List) ; ∩
β ← MSL(x.List) MSL(y.List) ; −

iε∀ ∈ y.List
IF MSL(iε) α ⊆
THEN Set iε → n1.List
IF MSL(iε) β ⊆
THEN Set iε → n2.List

n1.split_link ← n2.split_link;
x.child_link ← n1 ;

Compare (x.parent_link, n2) ;
First, generate a virtual root node, and then, by the order of

their support, generate nodes from FTC. Secondly, compare the

MSL of table List in the new node N with the node p in the old
tree.

CaseI. If p does not exist, make n under the root node.
CaseII. If the MSL of table List in n is included in p, then

make n under p.
CaseIII. If the INTERSECT of the MSL of table List in n and

the one in p is ∅ , then check the parent node of p.
CaseIV. If the INTERSECT of the MSL of table List in n and

the one in p is not ∅ but n1 and n2, use split link to
connect these two nodes. Update the INTERSECT of
the MSL of table List in n and the one in p to n1, then
Update the DIFFERENCE of the MSL of table List in
n and the one in p to n2. Make n2 under p. Compare n2
with the parent node of p again.

According to this approach, the frequent tag and character
data can be stored in FTCP-split tree.

Example 8: Take Figure 3(a~d) for example. We can obtain a
FTCP-split tree as Figure 4. Character data are too less to build
on the FTCP-split tree because the number of documents isn’t
enough in this example.

Figure 4: FTCP-split tree

Step4. Mining association patterns
In this step, we adapt FP-growth algorithm for mine all

frequent tag and character data with length of k (also called
k-patterns) from the FTCP-split tree [[5]]. We defined
k-patterns = (ε1, ε2,…, εk). We adapt the calculation of threshold,
Support. It was defined as above.

Example 9: Take Figure 4 for example. Let Su = 75% =
(4*0.75 = 3) and Sl = 50% = (4*0.50 = 2). We will mine a set of
2- tags and character data ｛A, E｝= {(2 , 2.2), (3 , 3.[2, 4]), (4 ,
4.1)}. The support of ｛A, E｝is 3. Therefore, ｛A, E｝=FTC2
= (ε1, ε2)

In the above step, we only preserve the FTCP-split tree and a
set of pre-frequent tag and character data. The purpose of
preserving FTCP-split tree and PFTC lies in the maintenance of
data insertion, deletion, and modification. The information,
FTCP-split tree and PFTC, would be updated when the time
goes by. When we dynamically maintain the updatable XML
database, we only need to rescan the FTCP-split tree. Since we
do not need to rescan the original database, our process time is
greatly reduced.

The FTCP-split tree is a remarkably thin upper-layer and fat

lower-layer shape. For given a XML database, we can find that
most significantly frequent tags are stored in the upper-layer
because they have greater support. Therefore, the tags stands in
the upper-layer part of FTCP-split tree will be compressed
most.
Step5. Generating compression rules and calculating
compression space

We apply the previously explored frequent tags and
character data sets to establish compression rules of tags and
character data sets, respectively, and to calculate spaces for
compression. In addition, the utilized compression rules of
character data sets and tag sets and corresponding Lists are
stored in the metarule, respectively, and the used compression
rules will be marked.

In our research, we adopt the compression types from the
research of Lee et al to translate all length=1, 2, ..., K frequent
sets into compression rules [[8]]. Next, we calculate the
compression space with the compression rules.
DEFINITION Utilize frequent element set to generate
compression rules

According to the FTCP-split tree, we generate a set of
compression rules. This set of compression rules has their
length of k (k ≥ 1). They can be shown as follows:

t (P1, …, Pj1-1, ε1, Pj1+1, …, Pj2-1, ε2, Pj2+1, …, Pjk-1, εk, Pjk+1, …, Pn)
 t′ (P1, …, Pj1-1, Pj1+1, …, Pj2-1, Pj2+1, …, Pjk-1, Pjk+1, …, Pn)，Γ
The P1, …, Pj1-1, Pj1+1, …, Pj2-1, Pj2+1,

…Pj k-1, …Pjk+1, Pn among
the structure of the DTD represent the variables tag or variables
character data. The εi represents the compressed element, for
i=1, 2, …, k. The Γrepresents the ECΩ of the frequent element

set. The compress space of the rule can be shown as: B(ε∑
=

k

i 1
i) *

C. The Count is the total number of equivalence class
correspond to the total number of times of the εi appear in XML
database. The information of count was stored in the tree. The
B(εi) is the memory space of the εi. For i =1, 2, …, n. The εi is a
set in this rule. Because there would be more than two character
data can hold same tags. For example: Two character data, D
and E, hold same tag, <C >.

Example 10: To follow Example 9. We take the element A
and E for example. Given EC<A, E>=｛(2 , 2.2) , (3 , 3.[2, 4]) , (4 ,
4.1)｝, We can generate a compression rule as follows:

t1（A，B，C，D，E）←t1’（B，C，D），｛(2 , 2.2) , (3 ,
3.[2, 4]) , (4 , 4.1)｝

This compression rule represent the element A and E appear
in four documents according to the information of Γ=｛(2 ,
2.2) , (3 , 3.[2, 4]) , (4 , 4.1)｝ and The Count of “A” equals to
1, 1, and 1 in 2nd, 3rd, and 4th documents. The Count of “E”
equals to 1, 2, and 1 in 2nd, 3rd, and 4th documents. In the
compression rule, “B”, “C”, “D” represent variables tag or
variables character data. They are shown as italic type. “A” and
“E” represent constant tag or constant character data and are
shown as regular type. We can compress the frequent tag “A”
and character data “E” with this rule.

The compression space can be calculated as follows:

∑
=

k

i 1
B(εi) * C → ［（5）*（1+1+1）］+［（1）*（1+2+1）

］＝19（Bytes） if A’s memory space is 5, E’s memory space
is 1.
Step6~7. Selecting effective compression rules

A heuristic compression method is developed to assist
selecting effective compression rules. The conflicts of
redundancy compressing have to be resolved by a heuristic
compression method. During the process of compression,
several compression rules may apply to the same data. Once a
rule is chosen because of their potential to reach the greatest
compression ratio, the remainder of these conflict rules should
be re-adjust because some of them might not be enough strong
to compress the data sets. Even if some of the remainder of the
conflict rule still can used for compression rules, they can not
compress so many capacity as they used to be. Therefore, the
compress space should be recalculated.

Example 11: If The memory space of D is 5, E is 8, and G is
2. The information of count was stored in the tree.

t1(a , b , D , E , f) ← t1’(a , b , f)，(1 , 2)
The count of D separately equals to 2, and 1 in 1st, and 2nd

documents.
The count of E separately equals to 1, and 3 in 1st, and 2nd

documents.
So, the compression space of t1 → ［5 *（2+1）+8 *（1+3）

］＝47
t2(a , c , d , E , G) ←t2’(a , c , d)，(2 , 3)
The count of E separately equals to 1, and 3 in 1st, and 2nd

documents.
The count of G separately equals to 1, and 2 in 2nd, and 3rd

documents.
So, the compression space of t2 → ［8 *（1+3）+2 *（1+2）

］＝38
We first choose t1 compression rule. When we choose t2

compression rule, we need to consider the conflict problem. It
has to revise the compression space of t2 compression rule.
Rule t1 and t2 both compress E, which makes E be counted
twice when it proceeds to Rule t2. That is, E [8 * (1 + 3)] has
to be eliminated, and the compressible space of t2 becomes [2 *
(1 + 2)] = 6.

B. Phase Ⅱ An Approach to Dynamic Compression
An incrementally updatable native XML database means

that the amount of XML documents will change over time
when the database occurs insertion, deletion, or modification,
which makes it an important task to dynamically maintain
compressed databases. To solve that, we proposed an approach
to dynamically maintain a set of compression rules. The
proposed approach is based on an adjusted FTCP-split
algorithm. This approach can deal with data variation
efficiently.

Since the database is incrementally updatable, a ping-pong
effect will occur and incur the compression performance
degression, for a set of compression rules will be brought-in

and then removed-out. Document insertion can possibly bring
some tags or character data into the set of frequent patterns. On
the other hand, document deletion can possibly remove some
tags or character data out from the non-frequent sets. For
addressing this ping-pong problem, we adopt the concept of
two thresholds proposed by Hong et al [[6]]. In the phase of
dynamic compression we adopt the concept of safety number
proposed by Hong et al [[13]][[14]]. It is precisely on such
grounds that our research would efficiently reduce the cost of
data maintenance. For example: time and memory space.

The following procedure is proposed for adjusting the
hierarchical positions of tag and character data in the
FTCP-split tree. when a number of XML documents are
inserted, deleted, or modified.

Procedure : Preprocessing data
Input: a differential XML database with the size of
t, the original XML database size d, safety number f, the
upper threshold Su and the lower threshold S

XDB∆

l.

Step1 : Parse to obtain a , which is a set of codes

corresponding to the tags and character data in
.

XDB∆ C∆

XDB∆
Step2 : Partition into , if comes from the

FTCP-split tree.
C∆ FC FC

PC , if PC is a set of pre-frequent tag and character
data in the original database. and this set is created
and stored in the second step of Phase I.

NC , if is a set of non-frequent tag and character
data set in the original database.

NC

Step3 : Recalculate the support of and the support of FC PC .
Step4 : For all patterns in F PC C∪

Adjust the FTCP-split tree according to the new
supports calculated by Step3.

Step5 : Calculate a safety number S, where
()

1
u l

u

S S d
S

S
−

=
−

 , if

document insertion
()u l

u

S S d
S

S
−

= , if document deletion

(u lS S S d= −) , if document modification.

Step6 : For all patterns in NC
Check if t c then reset and do
nothing;

f+ ≤ c t c= +

 Else rescan the original database and reset 0c = ,
. d d t c= + +

Procedure : Adjust the FTCP-split tree as follows:
CaseI. If x and c1[x] have identical list contents and c1[x] has

no child. (x.List= c1[x].List and c1[x].child=null)
Then call SWAP (x, c1[x]) to alter the hierarchical
order of both nodes, i.e., make c1[x] become parent
p[x] of x, as Figure 5.

Figure 5: Case 1 of Adjust FTCP-split tree

CaseII. If x and c1[x] have identical list contents and c1[x] has
children {c1[c1[x]], c2[c1[x]], …, cm[c1[x]]}
(x.List= c1[x].List and c1[x].child={c1[c1[x]],
c2[c1[x]], …, cm[c1[x]]})

Then call SWAP (x, c1[x]) to exchange the hierarchical
order of both nodes, i.e., make c1[x] become parent p[x]
of x and {c1[c1[x]], c2[c1[x]], …, cm[c1[x]]} become
children of x {c1[x], c2[x], …, cm[x]}, as Figure 6.

Figure 6: Case 2 of Adjust FTCP-split tree

CaseIII. If x and c1[x] have similar list contents and c1[x] has
no child nodes except for c1[x].
(x.child={c1[x]}and x.List ∩ c1[x].List ≠ ∅)

Then set α as the difference between list contents of x
and c1[x], i.e., α=x.List - c1[x].List, create a child z
under the root, and create a point of sibling between
nodes x and z. Set β as the intersect between list
contents of x and c1[x], as Figure 7.

Figure 7: Case 3 of Adjust FTCP-split tree

CaseIV. If x and c1[x] have similar list contents and x other
children. (α=x.List-c1[x].List ≠ ∅ and
x.child={c1[x], c2[x], …, cm[x]}) and
α⊇ cj[x].List，for j 1) ≠

Then set β as the intersect between list contents of x
and c1[x]. Create a new child Z under the root, and
create a point of sibling between nodes x and z. Set
cj[x] as child of z, i.e., z.chlid={cj[x]}. Then, make
x.List=β and call SWAP (x, c1[x]) to exchange the
hierarchical order of the two nodes, as Figure 8.

Figure 8: Case 4 of Adjust FTCP-split tree

Example 12: There are four original XML documents (d=4)
in Example 1. Let a differential XML database XDB∆ {X5,
X6}. So, t is two. Let Su=75%=6*0.75=5，Sl=50%=6*0.5=3.
The first step, we will parse the two XML documents and
obtain the corresponding code for tags and character data as
shown in the following figure. Therefore, the set of equivalence
classes for the generated is ECC∆ <A>= {5, 6}, EC= {6.1},
EC<C>= {5.1, 5.2 , 5.3 , 6.2} , EC<D>= {5.1 , 6.1}, EC<F>= {5.2 ,
5.3 , 6.2}.

5<A>
5.1 <C>D</C>
5.2 <C>F</C>
5.3 <C>F</C>

X5

(a)

6<A>
6.1 D
6.2 <C>F</C>

X6

(b)

Figure 9: Two encoded XML documents, which are (a) X5

and (b) X6, respectively.
The second step, we can partition into ={A , B , C}, C∆ FC
PC ={F} and = ∅ . For each element in and NC FC PC , we

recalculated their corresponding supports. The following step
is to adjust the FTCP-split tree which is according to the new
supports calculated as above. After that, we calculate the safety

number as

() ()0.75 0.5 4
4

1 1 0.75
u l

u

S S
S

d
f

− −⎢ ⎥ ⎢ ⎥
= = =⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ .

Owing to the number of inserted XML documents（t＝2）
and the initial parameter（c＝0）, we find that t+c (=2) is less
than the safety number (f=4). Thus it doesn’t need rescan the
original database.

From the above steps, we just analyze the differential XML
() database and need not to rescan the updated database
(+), we can also obtain the adjusted FTCP-split
tree for late compression rule generation. By using the new
created set of compression rules, we can efficiently
compressing the incremental updatable native XML database.

XDB∆
XDB XDB∆

IV. EXPERIMENT ANALYSIS
In this initial experiment, we will proceed with experimental

evaluation for compression rate of compressing Native XML
Database. We have completed compression analysis of the
character data sets with a length of 1 and details are given as
follows:

The develop platform is Java programming language
(J2SDK 1.4.2) to develop this experiment. The hardware is
Intel P4-2.8G, with memory of 2GB, and the operating system
is the Microsoft Windows 2000 Professional. Furthermore,
Assoc.gen is available from the IBM official website, and is

used to generate the transaction database for this experimental
analysis.
Analysis of experiment analysis

The transaction records are generated by Assoc.gen, and
then converted into XML documents for the experiment, where
each transaction record stands for one XML document and the
DTD structure is as shown in Figure 2.
Time of building tree

As a result of our research adapted the structure of split tree
from Lee [[11]]. We can preserve whole original XML
documents in FTCP-split tree without destroying the tree
structure of original XML documents. It will be clear from the
experiment of Lee that the time of building tree is less than
traditional FP-tree approach [[11]].
The compression effectiveness of documents with different
sizes

In this experiment, there are 2500, 5000, 7000, and 10000
XML documents simulated for evaluating the compression rate
with different document sizes and we set the parameter such as:
the average length of documents as 20, the average length of
frequent sets as 10, the number of items in the database as 100,
and the relationship of frequent sets as 1. Figure 10 shows tag,
character data, and whole compression rate under the different
amount of documents. Compression ratio is defined by the
expression of A / B, where A represents the data volume for
compressed tag or character data or total (tag + character data),
and B represents the data volume for XML documents and
compression rules.
Compare our compression rate with ZIP and RAR

Figure 11 shows the compression rate compare bar chart
among our research, ZIP, and RAR under the minimum support
as 30%. We adopt XML database belonged to the structure of
the Figure 2 DTD D. This figure indicates that the compression
rate is higher than ZIP and RAR when we compress the
length=2 character data sets and the length=1 tag sets. (It can be
shown as curve B).

7.07 6.81 6.81 6.95

68.9 68.4 68.4 67.66

75.96 75.22 75.21 74.61

0

10

20

30

40

50

60

70

80

2500 5000 7000 10000

Number of Document

C
om

pr
es

si
on

 R
at

e(
%

)

Compression Rate of
Character Data(%)

Compression Rate of

Tag(%)

Total Compression

Rate(%)

Figure 10: The effectiveness of min-sup10 (%)

68 68.8 68.8 68.2

57.7 57.6 57.6 57.4

43.97 43.8 43.75 43.72

40

45

50

55

60

65

70

75

2500 5000 7500 10000

Number of Document

C
om

pr
es

si
on

 R
at

e(
%

)

B

RAR

ZIP

Figure 11: The compression rate compare bar chart among our

research, ZIP, and RAR.

V. CONCLUSION
The use of the Internet to exchange electronic business

documents (eBusiness) is growing exponentially. XML acts as
the best way to exchange information because it is a standard
defined language by the World Wide Web Consortium (W3C),
and is a simple, easy-to-grasp method of encoding information
in plain text. In addition to being a means for moving data over
the Internet, XML files provide a good way of moving data
among applications. Thus, the capacity for storing XML
documents is growing fast. Database compression can address
this problem.

The first purpose of our proposed approach is to utilize
technology of association rule mining to extract out all frequent
patterns. The frequent patterns can be stored in a frequent tag
and character data pattern split tree (FTCP-split tree) to fast
generate the set of association patterns. Then we convert these
frequent patterns into a set of compression rules. The
compression rules can be used to compress native XML
databases. Moreover, we also can use the association patterns
to generate a set of association rules which usually are reliable
and valuable.

The second purpose of our proposed approach is to solve the
problem of data maintenance when compressed database occur
variation. We proposed an efficient approach named as Adjust
FTCP-split algorithm for incremental mining to solve it. The
features of this method are fast mining and high compression
rate. First, since the Adjust FTCP-split approach do not
generate large amount of candidate set, it can be quicker than
traditional the traditional Apriori-like approaches. Second, the
experiment results show that the compression rate of our
proposed approach is higher than the common compression
tools such as ZIP and RAR. Third, our proposed approach can
dynamically maintain compression rules when database occur
variation such as insertion, deletion, or modification.
According to the above three features, our proposed approach
can reach the goal of reducing compression cost and raising
compression rate.

REFERENCES
[1] Babu, S., Garofalakis, M., & Rastogi, R. 2001, ‘SPARTAN: A

Model-Based Semantic Compression System for Massive Data Tables’,
Proceedings of ACM SIGMOD International Conference on Management
of Data (SIGMOD’01), pp. 283-294.

[2] Cheung, David W., Han, Jiawei, Ng, Vincen T., & Wong, C.Y. 1996,
‘Maintenance of Discovered Association Rules in Large Databases: An
Incremental Updating Technique’, Proceedings of International
Conference on Data Engineering, New Orleans, Louisiana, pp.106-114.

[3] Cheung, David W., Lee, S. D., & Kao, Benjamin 1997, ‘A General
Incremental Technique for Maintaining Discovered Association Rules’,
Proceedings of the 5th International Conference on Database Systems for
Advanced Applications (DASFAA), pp.185-194.

[4] Goh, C. L., Aisaka, K., Tsukamoto, M., Harumoto, K., & Nishio, S. 1998,
‘Database Compression with Data Mining Methods’, Proceedings of 5th
International Conference on Foundations of Data OrganiPation
(FODO'98), Kobe, Japan, pp. 97-106.

[5] Han, J., Pei, J., and Yin, Y. 2000, ‘Mining Frequent Patterns without
Candidate Generation’, Proceedings of the ACM SIGMOD International
Conference on Management of Data(SIGMOD’00), pp. 1-12.

[6] Hong, T. P., Wang, C. Y., Tao, Y. H. 2000, ‘Incremental Data Mining
Based on Two Support Thresholds’, Proceedings of the 4th International
Conference on Knowledge-Based Intelligent Engineering Systems and
Allied Technologies, pp.436-439.

[7] Hsieh, S. F. 2002, ‘An Efficient Approach for Maintaining Association
Rules Based on Adjusting FP-tree Structure.’, Thesis for The Degree for
Master, The Graduate Institute of Information and Computer Education,
National Taiwan Normal University.

[8] Lee, C. F. and Tang, C. M. 2004, ‘A Compression Approach with
Dynamic Maintenance on Native XML Database via Incremental
Updating Techniques’, Proceedings of the ACME International
Conference on DB,DSS&EIS.

[9] Lee, C. F., Changchien, S. W., & Wang, W.T. 2001, ‘Using Generated
Association Mining for Object-Oriented Database Compression’,
National Computer Symposium—Database & Software Engineering, pp.
151-162.

[10] Lee, C. F., Changchien, S. W., & Wang, W.T. 2003, ‘Association Rules
Mining for Native XML Database’, Department of Information
Management, Chaoyang University of Technology, Taichung, Taiwan,
CYUT-IM-TR-2003-011.

[11] Lee, C. F., Shen, T.H. 2005, ‘A FP-split Method for Fast Association
Rules Mining’, Proceedings of the 3rd International Conference on
Information Technology: Research and Education.

[12] Lee, C. F., Tang, C.M. 2005, ‘Dynamically Compressing XML Tags and
Data Characters via Incremental Updating Mining’, Proceedings of the
International Association for Computer Information Systems Conference.

[13] Wang, C. Y., Hong, T. P., Tseng, S. S. 2001, ‘Maintenance of Sequential
Patterns for Record Deletion’, Proceedings of IEEE International
Conference in Data Mining, pp.536-541.

[14] Wang, C. Y., Hong, T. P., Tseng, S. S. 2002, ‘Maintenance of Sequential
Patterns for Record Modification Using Pre-large Sequences’,
Proceedings of IEEE International Conference in Data Mining,
pp.693-696.

	INTRODUCTION
	Raise the efficiency of compression rate
	Dynamically maintain the compressed databases

	LITERATURE REVIEW
	Compress Data with Data Mining Technique
	Dynamic Mining
	FP-split tree
	Pre-large itemsets

	THE PROPOSED COMPRESSION METHOD
	PhaseⅠ Static compression
	Phase Ⅱ An Approach to Dynamic Compression

	EXPERIMENT ANALYSIS
	CONCLUSION

