
Using OLSR for Streaming Video in 802.11

Ad Hoc Networks to Save Bandwidth

Elsa Maćıas, Member, IAENG, Alvaro Suárez, Member, IAENG, J. Mart́ın and Vaidy Sunderam∗

Abstract

Mobile ad hoc networks are prone by nature to path
breaks and reconnections. Routing protocols such as
OLSR that provide topology information with a mini-
mum delay to the quick reconfiguration of path breaks
are desired. Applications and protocols should be able
to adapt to the dynamics of these networks. However,
this is not true for most applications and protocols.
For example, a video streaming server does not be-
come aware of the path break because it does not in-
teract with lower layers that inform about this event.
As a result, important resources such as battery and
bandwidth are not used efficiently, and TCP connec-
tion failures happen frequently. In this paper, we
present a proxy based solution to detect path breaks
and reconnections using the proactive OLSR protocol
for ongoing streaming sessions and we do corrective
actions at the application layer to lead a more effi-
cient usage of the bandwidth during disconnections.

Keywords: WiFi ad hoc networks, Streaming the
video, Save the bandwidth and battery, Frames lost,
OLSR

∗Manuscript received August 31, 2006. An earlier version
of this paper was published in IWWN’06 (IMECS’06): ”Us-
ing OLSR for Seamless Streaming Video in 802.11 Ad Hoc
Networks”, pp. 932–937, Hong Kong, 2006. Research par-
tially supported by the Spanish CICYT (MEC) and Euro-
pean Regional Development Fund (FEDER) under Contract
TSI2005-07764-C02-01 and The Canaries Regional Education,
Cultural and Sports Ministry and FEDER under Contract
PI042004/164. Elsa M. Maćıas and Alvaro Suárez are with
Grupo de Arquitectura y Concurrencia, Departamento de In-
genieŕıa Telemática, Universidad de Las Palmas de G. C.
(ULPGC), Campus Universitario de Tafira, 35017 Las Pal-
mas de G.C., Spain. Tel: 34 928 451239; Fax: 34 928
451380; Email: {emacias,asuarez}@dit.ulpgc.es. J. Mart́ın is
a graduate of Technical Engineering of Telecommunications at
ULPGC. Vaidy Sunderam is with Department of Math and
Computer Science, Emory University, Atlanta, USA. Email:
vss@mathcs.emory.edu.

1 Introduction

Streaming media is a technique that allows the con-
sumption of the media while it is being delivered. It is
very useful for devices with low storage capacity such
as mobile phones and PDAs and for users connected
to WiFi links [1].

Usually User Datagram Protocol (UDP) is used to
transmit live streaming video [2]. The couple Real-
time Transport Protocol (RTP) and Real-time Trans-
port Control Protocol (RTCP) [3] are used to transmit
real time streaming video [4]. The server continuously
sends frames and the client can not pause the stream-
ing. The persistent version of HiperText Transfer Pro-
tocol (HTTP) [5] also supports streaming for Video
On Demand (VoD) so a client sends a request and
gets a response, and then sends additional requests
and gets additional responses without Transmission
Control Protocol (TCP) connection release. In [6] a
new video file format is presented to achieve this. A
standard protocol that allows the user remotely con-
trol a streaming media server using commands such
as play and pause defining a streaming session is Real
Time Streaming Protocol (RTSP) [7]. RTSP can use
any of the above protocols for transmitting multime-
dia data.

To manage efficiently the disconnections and re-
connections of participating wireless devices in the
streaming session, some streaming servers set up a
socket for verifying peer host accessibility to avoid the
maintenance of a session indefinitely open (following
the polling recommendation of [8]). After several un-
successful requests, the server silently frees the soft-
ware resources reserved for serving the client and the
session ends. A new attempt of the reconnected client
to continue with the session will be not accepted, that
is to say, the client and the server must set up a new
session and the content must start from the beginning.
A design parameter is the number of unsuccessful re-
quests considered before closing the session. As far as
we know, this is chosen irrespective of a wireless or a

IAENG International Journal of Computer Science, 33:1, IJCS_33_1_17
__

(Advance online publication: 13 February 2007)

fixed client is being served. However, it could be desir-
able to try a higher number of attempts before closing
a session with a wireless client due to the problems
associated with the mobility, high error rates, hidden
terminal and radio signal propagation.

Notice that during the polling, the server continues
with the frame transmission and the traffic sent will
be lost whenever the client is out of coverage and the
transport protocol is UDP. If TCP is used to transport
the data, the TCP reliability mechanism will retrans-
mit the missing data. The socket will become invalid
to the server or the client if an abort occurs and with
high probability the session will end abruptly. Aborts
primarily occur when data goes unacknowledged for
a period of time that exceeds the limits on retrans-
mission defined by TCP. Other causes for an abort
include a request by the application, too many unac-
knowledged TCP keepalive probes, receipt of a TCP
reset packet, and some types of network failures re-
ported by the IP layer.

Some work has been recently done to improve the
performance of TCP [9] over ad hoc networks for
streaming taking into account mobility-induced dis-
connections, reconnections and high-of-order delivery
ratios. They use a novel multimetric join identifica-
tion of packets and connection behavior to simulate
the performance of their proposal. It is important to
control the disconnections and reconnections of wire-
less devices that participate in the streaming session.
A good control, pausing the server while the client
is disconnected (or any other device in the network
path from the server to the client), it will improve
the energy consumption of batteries [10], it will save
bandwidth because the data transmission is frozen,
and it will avoid the data lost.

In [11] it is presented a proactive adaptation to the
UDP-based streaming video sent by a fixed server to a
mobile client connected to one 802.11b infrastructure
wireless network. The adaptation consists of increas-
ing the buffer size on the client to store more frames
just before entering the low quality area (termed trou-
ble spot) in the hope that the mobile client will exit
the trouble spot before the buffer runs out.

In [12] we presented a proactive mechanism that de-
tects path breaks and reconnections between the video
streaming server and the client for a VoD ongoing
RTSP session and a solution at the application layer
based on proxies that provides the corrective actions
during disconnections and reconnections.

In this paper we consider not only UDP-based stream-
ing video but also TCP-based. On the other hand, we
consider both the client and the server mobiles in a
mobile ad hoc network (MANET). In this scenario,
path breaks take place frequently and quickly due to
the movement of end nodes or intermediate nodes in
the path (we use Optimized Link State Routing Proto-
col (OLSR) [13] for the quick reconfiguration of path
breaks for a MANET) so the proactive adaptation
proposed in [11] could not be viable.

We present streaming sessions that use RTSP, stand-
alone RTP or HTTP protocols, we include corrective
actions during disconnections and reconnections, we
manage long disconnections and the TCP connection
failures. More in detail, the contributions of this pa-
per are:

• A system to control the client’s availability in or-
der to avoid the sending of frames while it is tem-
porarily disconnected.

• A system to announce the UDP services provided
by the server in order to let the clients request
UDP streams on demand. Otherwise, the server
can not control the client’s availability due to the
connection-less nature of the UDP protocol.

• A mechanism to pause the VoD of ongoing RTSP
sessions to save computing resources and battery
on the server while the client is disconnected. In
this paper we are not concerned about the losing
of frames during a disconnection for live video
sessions or VoD over HTTP or RTP, i.e, streams
that can not be paused with RTSP commands.

• A mechanism for transparently detecting TCP
connection failures and to create a new TCP con-
nection that avoids the streaming session release
and to end sessions with clients disconnected for
a long time that use TCP to transport data or
commands (i.e. RTSP and HTTP).

• An analysis of the experimental results that show
the benefits of using our whole system.

All the above contributions have been developed with-
out modifying neither the player nor the server, and
not even the streaming media protocols. For doing
that, we use proxies.

The rest of the paper is organized as follows: section 2
reviews the hardware and software architecture. Sec-
tion 3 is devoted to present in detail the system to

control the client’s availability and to announce the
UDP services provided by the server. In section 4
is described the proxies’ behavior during disconnec-
tions and reconnections for different streaming pro-
tocols. Section 5 presents the mechanism to manage
TCP connection failures and end sessions with clients
disconnected for a long time. Then in section 6 we
describe our experimental tests. And finally, conclud-
ing remarks and ongoing research are summarized in
section 7.

2 Hardware and Software Architec-
ture

The topology we consider is shown in Fig.1.a. It con-
sists of a MANET of any number of hops, where the
server node (S) communicates with the client node
(C) directly or via one or more intermediate nodes (I)
due to the movement of end nodes. Fig.1.b to d shows
the network architecture for the different nodes. The
shaded parts in Fig.1.b to d are the new software ele-
ments we introduce to avoid modifying the client, the
server and the streaming protocols:

• olsrd (OLSR daemon) [14] is an implementation
of OLSR. OLSR routes efficiently the packets into
the network according to the number of hops be-
tween the sender and the receiver. Due to the
time-varying characteristics of the wireless links,
olsrd can be configured to calculate the optimal
routes defined as the number of attempts by a
node on average to successfully transmit a packet
to a destination, instead of the number of hops.
OLSR consists of:

– A neighbor sensing mechanism that detects
changes in its neighborhood injecting and
receiving HELLO messages periodically.

– An efficient flooding of control traffic, i.e.
OLSR packets injected into the network for
the quick reconfiguration of path breaks. All
nodes receive the messages and there are
not duplicated messages thanks to the use
of multipoint relays (concept invented for
HiperLAN/1). This is an important prop-
erty that favors its use in a wireless net-
work which is by nature prone to mobility of
nodes and collisions due to the hidden ter-
minal problem.

– Diffusion of topological information neces-
sary to obtain optimal routes in terms of the
number of hops. This information is valid

for a period of time so expired information
is removed.

All the traffic in OLSR is UDP and it is trans-
mitted by broadcast or multicast on port 698.

• The communication between the client and the
server is made by proxies. The proxy on the
server and client side are called proxy server and
client agent respectively. Since both the client
and the server are mobile, the proxy server is
installed on the wireless node that serves the
stream (S), and the client agent on the client
node. The proxies are also in charge of detecting
if there is, or is not, a path between the server
and client to do corrective actions. These correc-
tive actions depend on the type of video stream-
ing being served (VoD or live video) and the type
of streaming protocol used to transport the data
(RTSP, HTTP or RTP) as we will show in section
4.

• To control the client’s availability and to an-
nounce the UDP services we use olsrd as the most
efficient way to transport our own control and
announcement packets into the MANET. OLSR
lets use its optimized flooding mechanism to send
information, routing related or not, from the ap-
plication level using a plug-in. We just use this
property to inject user defined packets (OLSR
packets type 200) for our purposes as we will de-
scribe in next section. The plug-in on the server,
client and intermediate nodes conveys to olsrd the
information to be sent into OLSR packets type
200 to the MANET. The plug-in on the server
and client nodes also communicates to the prox-
ies the OLSR packets type 200 captured by olsrd
from the network.

• TCPControl is the mechanism for transparently
detecting TCP connection failures and to create
a new TCP connection that avoids the stream-
ing session release. Despite the fact there are
enhancements to TCP for MANET, we do not
consider them because of the following reasons:
some require modifications to the existing TCP
protocol (e.g. TCP-F [15] and Split-TCP [16]),
more bandwidth and power consumption during
a path failure is required (TCP-ELFN [17]), de-
pendency on a particular routing protocol to im-
prove its performance (TCP-Bus [18]), addition
of layers to the TCP/IP protocol stack (ATCP
[19]), implementation of a new transport proto-
col that leads a lack of interoperability with TCP

a)

S CI

olsrd

PHY-radio
MAC-802.11

IP
UDP TCP

d)

plug-in

plug-inolsrd

streaming server / proxy server
streaming protocol

PHY-radio
MAC-802.11

IP

UDP
TCP

b)

TCPControl
plug-inolsrd

client / client agent
streaming protocol

PHY-radio
MAC-802.11

IP

UDP
TCP

c)

TCPControl

Figure 1: A two hop MANET. Topology (a), Soft-
ware architecture: server node (b), client node (c),
intermediate node (d).

(ACTP [20] and ATP [21]).

3 Detecting Client’s Availability and
UDP Services Announcement

Both tasks are done injecting and capturing OLSR
packets type 200. Whenever the communication be-
tween the client and the server is possible (directly or
via one or more intermediate nodes), the proxy server
receives periodically OLSR packets type 200 from the
client agent and viceversa. If the proxy server does not
receive at least one of this kind of packet for a while (1
second by default although this timeout can be mod-
ified by the user when the proxy is started), this is
indicative that the client is disconnected. Similarly, if
the client agent does not receive a packet OLSR type
200 from the proxy server (after 1 second by default,
also configurable), it becomes aware of the discon-
nection. The reconnection is detected by the proxy
server and the client agent when they receive at least
one packet OLSR type 200 from the other one during
an interval of 1 second. Appropriate actions are done
on both peers when the disconnection or the recon-
nection are detected and they depend on the type of
streaming protocol used. The chosen timeout (1 sec-
ond in our experiments) is a key parameter because
a high value could lead a high delay to detect the
disconnection whereas a low value could trigger false
alarms, i.e., no packet is received because of network

congestion but the proxy server or the client agent
wrongly detect a disconnection.

The packet size injected by the proxy server and the
client agent is 206 and 66 bytes respectively. The
difference in size is due to the message content dif-
fers. For example, the proxy server is concerned about
broadcasting the type of server (e.g. VideoLan [22]),
its IP address, the proxy server’s name to the client
agent can distinguish among different proxies, a com-
mand used by the TCPControl mechanism, the play
listing using RTSP, and HTTP and UDP ports avail-
able to serve streams. As you can see, the broad-
casting of the own OLSR packets type 200 is also the
mechanism used to announce the UDP services. The
message content is useful since the client agent shows
it to the user via a Graphical Unit Interface (GUI)
and then it launches the user’s player with the appro-
priate command according to the user’s election. The
content of the packet injected by the client agent in-
cludes its IP address, the type of player and requests
of UDP streams.

The injection (steps 3 or 7 in Fig.2) and capture (steps
4 or 8) of these packets is done by olsrd. The construc-
tion of these packets is done by a plug-in (step 2) with
the information provided by the proxies (step 1) via
a shared file. The proxies update the information to
be broadcasted, when necessary, by rewriting this file
(e.g. to send a command of the TCPControl mecha-
nism, a new UDP service request and so on) and the
plug-in read from this file. By default, ten packets
are injected per second. The plug-in on the OLSR
intermediate nodes forward the packets type 200 ac-
cording to the OLSR standard by using the default
forwarding algorithm [13] (steps 4 to 7) and they are
not passed to the application level. On the contrary,
if this packet reaches to the client or server node (step
8), olsrd passes it to the plug-in (step 9) and then the
plug-in unwraps it and delivers it to the proxy server
only if the packet’s source is the client (step 10). The
packet is delivered to the client agent if it contains
information about the server (step 10).

4 Corrective Actions

Table 1 summarizes the actions that the proxies do
when they detect disconnections and reconnections (in
brackets it is shown the process that does the action),
and the benefits of these actions. Fig.3 and Fig.4 show
the proxies behavior during disconnections and recon-
nections for RTSP, and HTTP or RTP respectively.
Irrespective of the streaming protocol, the client agent

Table 1 Corrective actions during disconnections and reconnections.

Disconnection Reconnection Total discon-
nection

Lost
frames

Abrupt
ending

Batt.
saving

BW
saving

RTSP Pause the server
(PS), warning the
user (AC) and close
TCP connection
(PS,AC)

Create TCP con-
nection (PS,AC),
resume the server
(PS) and warning
the user (AC)

End session (PS) Yes (live
video), No
(VoD)

No Yes Yes

HTTP Freeze frames for-
warding from PS to
AC, close TCP con-
nection (PS,AC)
and warning the
user (AC)

Create TCP con-
nection (PS,AC),
resume frames
forwarding (PS)
and warning the
user (AC)

End session (PS) Yes No No∗ Yes

RTP Freeze frames for-
warding from PS
to AC and warning
the user (AC)

Resume frames for-
warding (PS) and
warning the user
(AC)

End session (PS) Yes – No∗ Yes

PS: Proxy Server AC: Agent Client BW: Bandwidth
∗The server is still sending frames but PS does not inject them into the MANET

olsrd plug-in

olsrd

Server/Client Node

network

Intermediate Node

network

proxy server
or

 client agent

OLSR packets type 200

Information about clients or servers
1

2

OLSR packets
3 OLSR packets

7

4
8

9

10

olsrd plug-in

OLSR packets type 200
6

5

olsrd

Figure 2: Information passing between proxies.

Client ServerClient agent Proxy server

disconnection detected reconnection detected disconnection period

PAUSE

PLAY

OPTIONS

Server
available

STREAM

normal
operation

STREAM

normal
operation

C S

Server not
available

Figure 3: Proxies behavior during disconnections and
reconnections for a RTSP session.

starts a warning message box on the user’s screen
when a disconnection or a reconnection is detected
and the proxy server ends the session when the discon-
nection exceeds a period of time. For the streaming
protocols built on top of TCP (RTSP and HTTP),
the TCP connection between the proxy server and
the client agent is closed when a disconnection hap-
pens and a new one is created after the reconnection.
Using RTSP compliant commands such as pause and
play, the proxy server pauses or resumes the server.
For HTTP or RTP, the server is not paused during
the disconnection period but the frames are not for-
warded from the proxy server to the agent client to
save bandwidth.

5 The TCPControl Mechanism

When establishing one TCP connection for a RTSP
or HTTP session, three TCP connections are created:
one between the client and the client agent, another
to communicate the client agent and the proxy server,
and the last one for the communication between the
proxy server and the server. The former and the latter
are local connections and they are not likely to fail
during disconnections. The mechanism is as follows
(Fig.5):

• Identify the TCP connection. After the second of
the three TCP connections is created, the client
agent requests a unique identifier for this TCP
connection by sending a TCPControl:0 command
to the proxy server using the newly TCP con-
nection. The proxy server responds to the client
agent with a TCPControl:id where id is the iden-
tifier, a value different for any client agent and
the proxy server.

• Session communication. The HTTP or RTSP
session begins normal communication.

• Disconnection detected. If the client is out of cov-
erage, then the client agent do the following ac-
tions:

1. Close the TCP connection with the proxy
server.

2. Detect the server’s availability.

3. Create a new TCP connection with the
proxy server.

4. Send the TCPControl:id command to the
proxy server to replace the old TCP con-
nection with the last one. The proxy server

Client ServerClient agent Proxy server

disconnection detected reconnection detected disconnection period

Server
available

STREAM

normal
operation

STREAM

normal
operation

Server not
available

Figure 4: Proxies behavior during disconnections and
reconnections for a HTTP or RTP session.

sends TCPControl:OK as acknowledgement.
These two commands are communicated us-
ing the new TCP connection.

If the server is out of coverage, it must order all
the client agents to close the TCP connections
and create new TCP connections. For doing that,
the proxy server broadcasts a message using the
packet OLSR type 200 including in the message’s
content of the packet the command TCPFall to
convey all the client agents that they must do the
steps 1 to 4 described in the phase Disconnection
detected.

• End sessions with clients disconnected for a long
time. After a timeout, the server frees the soft-
ware resources reserved for serving the client and
the session ends. Any later attempt to recover the
TCP connection will fail (command TCPCon-
trol:ERROR) and in that case the client agent
will warn the user that the session has ended.

6 Experimental Tests

We tested the behavior and performance of our soft-
ware architecture using the topology described in
Fig.1.a. We are concerned in presenting results that
show: a) the low overhead of the packets OLSR in-
cluding our packets type 200 in comparison with the
data volume of the streaming, b) the low usage of CPU
and battery consumption due to the proxies, c) the de-
lay and jitter because of the proxies, and d) the ben-
efits of using our corrective actions and the TCP con-
nections management between the proxy server and
the client agent.

STREAM

TCP socket 1

TCP socket 3

PLAY PLAY PLAY

close socket 2

TCP socket 2

TCPControl:0

TCPControl:19

TCP socket 4

TCPControl:19

TCPControl:OK

TCP socket 5

TCPControl:19

TCPControl:OK

 TCPFall

Client ServerClient agent Proxy server

TCP socket 6

TCPControl:19

TCPControl:ERROR

closesession

Identify the TCP
connection

Session
communication

Disconnection detected
(client out of coverage)

End session

Disconnection detected
(server out of coverage)

expired timeout for session 19

disconnection detected

reconnection detected

Figure 5: TCPControl mechanism.

The plug-ins and the proxies were programmed using
C and C++ languages respectively for Windows oper-
ating system. The server was installed on a Pentium
IV at 2.8GHz with 512 MB and 802.11b compliant.
The intermediate node was a Centrino at 1.6GHz,
512MB and 802.11b/g. The client node was a Celeron
1.4GHz, 1024MB and with a 802.11b/g wireless inter-
face. All the nodes were located in the same room
and we added mobility to the network by allowing
the client node to be within radio range of the server
node via the intermediate node and also we moved
the client and the server to make each other out of
coverage to test the corrective actions made by prox-
ies and the TCP connections management. We used
VLC media player [22], a free cross-platform media
player that supports a large number of multimedia
formats and it is available for several operating sys-
tems, it needs little CPU power and it can be used as
a streaming server to stream in unicast or multicast
in IPv4 or IPv6. We used also VLC for serving the
video in unicast in IPv4.

Figure 6: Traffic OLSR (red curve) and RTSP traffic
(green curve).

6.1 OLSR Traffic

Fig.6 shows the bytes per second for a RTSP session
(green curve) and the traffic due to OLSR protocol in-
cluding our own packets type 200 (red curve) obtained
using Ethereal tool [23]. As you can see, the overhead
due to OLSR is negligible in comparison with the traf-
fic of the ongoing streaming session.

6.2 CPU and Battery Consumption

In the experiment, the server sends streams at a rate
of 2400Kbps. It was measured the CPU percentage
consumed by the proxy server and the client agent
for different streaming protocols varying the number
of sessions from 1 to 10 (Fig.7.a to c). During the
experiment, the processes running on the server were
the proxy server, the server and olsrd, whereas on the
client were running the client agent, the player and
olsrd. As you can see, the proxies need little CPU
power being something higher for RTP sessions on
the client agent in comparison with the same session
on the proxy server because for a new RTP session the
client agent instantiates new objects and threads that
increase the necessary CPU power. In general, the dif-
ferences of CPU usage among the different streaming
protocols is due to different software resources neces-
sary on both proxies to manage the sessions.

Fig.7.d shows the battery consumption on the client
and server nodes from 1 to 5 ongoing RTSP sessions
with and without proxies. As yo can see, same values
are obtained for all the experiments irrespective of the
proxies usage or not. The battery consumption on the
client node is higher than on the server node due to
the CPU usage of the player to uncompress and play
the stream.

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10

RTP ongoing sessions

%
 C

P
U

proxy-server

client-agent
b)

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5

RTSP ongoing sessions

%
 b

at
te

ry

client

client and client
agent

server

server and proxy
server

d)

0

0,5

1

1,5

2

2,5

3

3,5

1 2 3 4 5 6 7 8 9 10

HTTP ongoing sessions

%
 C

P
U

proxy-server

client-agent

c)

0

0,5

1

1,5

2

2,5

3

3,5

1 2 3 4 5 6 7 8 9 10

RTSP ongoing sessions

%
 C

P
U

proxy-server

client agent
a)

Figure 7: CPU consumption for: RTSP (a), RTP
(b) and HTTP sessions (c). Battery consumption for
RTSP sessions (d).

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

1 3 5 7 9 11 13 15 17 19 21 23 25

number of packets

d
el

ay
 a

n
d

 ji
tt

er
 (

m
ic

ro
se

co
n

d
s)

server
client
jitter

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425

number of packets

d
el

ay
 a

n
d

 ji
tt

er
 (

m
ic

ro
se

co
n

d
s)

server
client
jitter

a)

b)

Figure 8: Delay and jitter for 25 samples. Without
proxies (a), With proxies (b).

6.3 Delay and Jitter

Fig.8.a shows the delay in microseconds to transmit
from 1 to 25 consecutive packets from the server to the
client when only olsrd, the server and the player are
running. It is also presented the jitter. The average
jitter is 1.13608 ms, a viable value for the streaming
transmission. Fig.8.b shows the same results when
also the proxies are running. In this case, the average
jitter is lower (0.94224 ms).

6.4 Corrective Actions

Fig.9.a presents the number of packets per second in-
jected by the server during a VoD RTSP streaming
session at a rate of 2000Kbps (green curve). The red
curve is the OLSR traffic transmitted by the client
node. We forced a disconnection period of 8s (about
the 8th second to the 16th second). During this time
interval, Ethereal tool did not capture OLSR traf-
fic since the client is out of coverage but it captured
RTSP traffic transmitted by the server since the server
is not aware of the disconnection period (no proxies
were used for this experiment). As a result, about
2MB are transmitted using RTP protocol and lost
since we don’t use a proxy server to pause the server.
To correct this inefficient usage of the server and the
available wireless bandwidth, we repeated the experi-
ment using the proxies and we forced a higher discon-
nection period of 35s (Fig.9.b). During this period,
the server is paused and no frames are transmitted

0

250

500

8s

a)

1.5s 2s

b)

Figure 9: Bandwidth usage: Without proxies (a),
With proxies (b).

avoiding that the server injects a total of 8.75 MB.
As you can see, the proxy server lasts about 1.5s to
detect the disconnection and about 2s to detect the
reconnection. Both values are a bit higher to the the-
oretical value of 1 second we fix to warn the proxy
about a disconnection or reconnection. Since we use a
proactive protocol to detect them, the detection time
is even lower that the one we would obtain using re-
active protocols such as Ad hoc On-demand Distance
Vector Routing (AODV) or Dynamic Source Routing
(DSR) [24]. Similar results were obtained for RTP
and HTTP sessions.

Fig.10 shows the behavior of the TCPControl mecha-
nism for the RTSP session. Initially, the port used for
the TCP connection between the client agent and the
proxy server is 1273 (blue curve). About the second
17, the disconnection takes place and using TCPCon-
trol a new TCP connection over port 1280 is created
(violet curve) and the streaming session is resumed
and not abruptly ended after the reconnection. Simi-
lar results were obtained for HTTP sessions.

7 Conclusions and Future Work

This paper discusses some challenges that a video
streaming session faces in a MANET. Path breaks be-
tween the client and the video streaming server lead to
TCP connection failures, losing of frames and band-
width and battery wastage. One of the important
resources, the available bandwidth, must be used effi-

5s 10s 15s 20s 25s25s 30s 35s
0

500

Figure 10: Management of long disconnections over
TCP.

ciently. For doing that, we proposed some corrective
actions at the application layer for different stream-
ing media protocols. Our solution is based on the
usage of proxies to detect path breaks and reconnec-
tions thanks to the feedback provided by the proactive
OLSR protocol. Another important effect because of
the partitioning of the network is the TCP connec-
tion failure for HTTP and RTSP streaming sessions.
It provokes an abort that could lead the session re-
lease. In this paper, we also proposed a solution for
this problem. Experimental results showed the con-
venience of our mechanism to detect path breaks and
reconnections and the benefits of using the corrective
actions.

Some things remain to be done. For example, the en-
hancements to RTP and HTTP sessions for VoD in
order to avoid losing of frames during the disconnec-
tions. Another additional corrective actions such as
giving directions to the user to move to a better per-
formance and coverage area would decrease the dis-
connection period. This is useful for live streaming
sessions since the user does not lose too many frames,
and also for VoD streaming sessions since the proxy
server does not have to face the problem of storing
frames during the disconnection for streams that can
not be paused (e.g. streaming sessions over HTTP or
RTP).

References

[1] IEEE 802.11, The Working Group Set-
ting the Standards for Wireless LANs,
http://grouper.ieee.org/groups/802/11/.

[2] Cunningham, G., Murphy, S., Murphy, L.,
Perry, P. Seamless Handover of Streamed Video
over UDP Between Wireless LANs, Consumer

Communications and Networking Conference
(CCNC), pp. 284–289, 2005.

[3] Schulzrinne, H., Casner, S., Freder-
ick, R., Jacobson, V. RTP: A Trans-
port Protocol for Real-Time Applications,
http://www.ietf.org/rfc/rfc3550.txt, July 2003.

[4] Li, J., Li, L. Research of Transmission and Con-
trol of Real-time MPEG-4VideoStreaming for
Multi-channel Over Wireless QoS Mechanism,
1th International Multi-Symposiums on Com-
puter and Computational Sciences, vol. 2, pp.
257–261, 2006.

[5] Fielding, R., Gettys, J., Mogul, J., Frystyk,
H., Masinter, L., Leach, P., Berners-Lee,
T. Hypertext Transfer Protocol – HTTP/1.1,
http://www.ietf.org/rfc/rfc2616.txt, June 1999.

[6] Kumar, K.G., Lipscomb, J.S., Ramchandra, A.,
Chang, S.S.P., Gaddy, W.L., Leung, R.H., Wood,
S., Liang-Jie, Z., Chen, J., Menon, J.P. The Hot-
Media Architecture: Progressive and Interactive
Rich Media for the Internet, IEEE Transactions
on Multimedia, vol. 3, no. 2, pp. 253–267, 2001.

[7] Schulzrinne, H., Rao, A., Lanphier, R.
Real Time Streaming Protocol (RTSP),
www.ietf.org/rfc/rfc2326.txt, April 1998.

[8] Schulzrinne, H., Rao, A., Lanphier, R., Wester-
lund, M., Narasimhan, A. Real Time Streaming
Protocol (RTSP), Internet Draft, Internet En-
gineering Task Force, February 2004, Work in
progress.

[9] Fu, Z., Meng, X., Lu, S. A Transport Protocol for
Supporting Multimedia Streaming in Mobile Ad
Hoc Networks, IEEE Journal on Selected Areas
in Communications, vol. 21, issue 10, pp. 1615–
1626, 2003.

[10] Wei, Y., Bhandarkar, S.M., Chandra, S. A
Client-side Statistical Prediction Scheme for En-
ergy Aware Multimedia Data Streaming, IEEE
Transactions on Multimedia, vol. 8, issue 4, pp.
866–874, 2006.

[11] Sunderam, V., Pascoe, J., Tonev, G. Reconciling
the Characteristics of Wired and Wireless Net-
works: The Janus Approach, 4th Annual Interna-
tional Workshop on Active Middleware Services,
2002.

[12] Maćıas, E.M., Suárez, A., Mart́ın, J., Sunderam,
V. Using OLSR for Seamless Streaming Video
in 802.11 Ad Hoc Networks, International Multi-
conference of Engineers and Computer Scientists
(IMECS), pp. 932–937, Kowloon, Hong Kong,
2006.

[13] Clausen, T.H., Jacquet, P., Optimized
Link State Routing Protocol, RFC3626,
Internet Engineering Task Force (IETF),
http://ietf.org/rfc/rfc3626.txt, October 2003.

[14] O L S R . O R G, http://www.olsr.org/.

[15] Chandran, K., Raghunathan, S., Venkatesan,
S., Prakash, R. A Feedback Based Scheme for
Improving TCP Performance in Ad Hoc Wire-
less Networks, International Conference on Dis-
tributed Computing Systems, pp. 472-479, 1997.

[16] Kopparty, S., Krishanmurthy, S.V., Faloutsos,
M., Tripathi, S.K. Split TCP for Mobile Ad Hoc
Networks, IEEE GLOBECOM, vol. 1, pp. 138-
142, 2002.

[17] Holland, G., Vaidya, N. Analysis of TCP Per-
formance Over Mobile Ad Hoc Networks, ACM
MOBICOM, pp. 219-230, 1999.

[18] Kim, D., Toh, C.K., Choi, Y. TCP-Bus: Improv-
ing TCP Performance in Wireless Ad Hoc Net-
works, ICC, vol. 3, pp. 1707-1713, 2000.

[19] Liu, J., Singh, S. ATCP: TCP for Mobile Ad
Hoc Networks, IEEE Journal on Selected Areas
in Communications, vol. 19, no. 7, pp. 1300-1315,
2001.

[20] Liu, J., Singh, S. ATP: Application Controlled
Transport Protocol for Mobile Ad Hoc Networks,
IEEE WCNC, vol. 3, pp. 1318-1322, 1999.

[21] Sundaresan, K., Anantharaman, V., Hsieh, H.Y.,
Sivakumar, R. ATP: A Reliable Transport Proto-
col for Ad Hoc Networks, ACM MOBIHOC, pp.
64-75, 2003.

[22] VideoLAN - Free Software and Open Source
Video Streaming Solution for Every OS!,
http://www.videolan.org/.

[23] Ethereal: A Network Protocol Analyzer,
www.ethereal.com.

[24] Siva Ram Murthy, C., Manoj, B.S. Ad Hoc Wire-
less Networks. Architectures and Protocols, Pren-
tice Hall PTR, 2004.

