
 
 

 

  
Abstract—The feature selection process can be considered a 

problem of global combinatorial optimization in machine 
learning, which reduces the number of features, removes 
irrelevant, noisy and redundant data, and results in an acceptable 
classification accuracy. Feature selection is of great importance in 
pattern classification, medical data processing, machine learning, 
and data mining applications. Therefore, a good feature selection 
method based on the number of features investigated for sample 
classification is needed in order to speed up the processing rate, 
predictive accuracy, and to avoid incomprehensibility. In this 
paper, particle swarm optimization (PSO) is used to implement a 
feature selection, and support vector machines (SVMs) with the 
one-versus-rest method serve as a fitness function of PSO for the 
classification problem. The proposed method is applied to five 
classification problems from the literature. Experimental results 
show that our method simplifies features effectively and obtains a 
higher classification accuracy compared to the other feature 
selection methods. 
 

Index Terms—Feature Selection, Machine Learning, Particle 
Swarm Optimization, Support Vector Machines. 
 

I. INTRODUCTION 
For many pattern classification problems, a higher number of 

features used do not necessarily translate into a higher 
classification accuracy. In some cases the performance of 
algorithms devoted to speed and predictive accuracy of the data 
characterization can even decrease. Therefore, feature selection 
can serve as a pre-processing tool of great importance before 
solving the classification problems. The purpose of the feature 
selection is to reduce the maximum number of irrelevant 
features while maintaining an acceptable classification 
accuracy. A good feature selection method can reduce the cost 
of feature measurement, and increase classifier efficiency and 
classification accuracy. Feature selection is of considerable 
importance in pattern classification, data analysis, multimedia 
information retrieval, medical data processing, machine 
learning, and data mining applications. 
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Several methods have been previously used to perform 
feature selection on training and testing data, for example 
genetic algorithms (Raymer et al., 2000), branch and bound 
algorithms (Narendra et al., 1977), sequential search 
algorithms (Pudil et al., 1994), mutual information (Roberto, 
1994), and tabu search (Zhang et al., 2002). In order to obtain 
better classification accuracy for classification problems, an 
improved feature selection process is needed.  

Many SVMs have been successfully applied to gene 
expression data classification problems (Furey et al., 2000; 
Guyon et al., 2002; Lee et al., 2003) since they are not 
negatively affected by high dimensionality; hence they can 
obtain a higher accuracy than a general classification methods, 
SVMs obtain a maximum margin of a hyper-plane in order to 
optimize the obtained support vector machine. This avoids a 
common disadvantage of general classification methods, 
namely the long operation time, and can reduce training errors 
of the SVMs.  

In this paper, PSO is used to implement a feature selection, 
and SVMs with the one-versus-rest method were used as 
evaluators for the PSO fitness function for five multiclass 
problems taken from the literature. The results reveal that our 
method elucidated a better accuracy than the classification 
methods they were compared to. 

This paper is organized as follows: in the next section, the 
methods used are introduced. They include particle swarm 
optimization, support vector machines, and the one-versus-rest 
method. Section 3 details the experimental results and contains 
a discussion. Results obtained by the proposed method are 
compared with results obtained by using other methods. 
Finally, concluding remarks are made in Section 4. 

 

II. METHODS 

A. Feature Selection Method 
Particle swarm optimization (PSO) is a population-based 

stochastic optimization technique, and was developed by 
Kennedy and Eberhart in 1995. PSO simulates the social 
behavior of organisms, such as bird flocking and fish 
schooling, to describe an automatically evolving system. In 
PSO, each single candidate solution is "an individual bird of the 
flock", that is, a particle in the search space. Each particle 
makes use of its individual memory and knowledge gained by 
the swarm as a whole to find the best solution (Venter 2002). 
All of the particles have fitness values, which are evaluated by a 
fitness function to be optimized, and have velocities which 
direct the movement of the particles. During movement, each 
particle adjusts its position according to its own experience, as 
well as according to the experience of a neighboring particle, 
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and makes use of the best position encountered by itself and its 
neighbor. The particles move through the problem space by 
following a current of optimum particles. 

The initial swarm is generally created in such a way that the 
population of the particles is distributed randomly over the 
search space. At every iteration, each particle is updated by 
following two "best" values, called pbest and gbest. Each 
particle keeps track of its coordinates in the problem space, 
which are associated with the best solution (fitness) the particle 
has achieved so far. This fitness value is stored, and called 
pbest. When a particle takes the whole population as its 
topological neighbor, the best value is a global “best” value and 
is called gbest. The pseudo code of the PSO procedure is given 
below. 
 
Initialize population 
While (number of generations, or the stopping criterion is not 
met) 

For p = 1 to number of particles 
If the fitness of pX  is greater than the fitness of ppbest  
then Update pp Xpbest =  
For ∈k Neighborhood of pX  

If the fitness of kX  is greater than that of gbest  then 
Update kXgbest =  

Next k 
For each dimension d 
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if ( )maxmin , VVvpd ∉  then 

( )( )minmax ,,minmax VvVv pdpd =  

pdpdpd vxx +=  
Next d 

Next p 
Next generation until stopping criterion 
 

new
pdv and old

pdv  are the particle velocities, old
pdx  is the current 

particle position (solution), and new
pdx  is the updated particle 

position (solution). The values pdpbest  and dgbest  are defined 
as stated above. The two factors 1rand  and 2rand  are random 
numbers between (0, 1), whereas 1c  and 2c  are acceleration 
factors, usually 221 == cc . Particle velocities of each 
dimension are tried to a maximum velocity maxV . If the sum of 
velocities causes the total velocity of that dimension to 
exceed maxV , then the velocity of that dimension is limited 
to maxV . maxV  is a user-specified parameter. 

Based on the rules of particle swarm optimization, we set the 
required particle number first, and then the initial coding 
alphabetic string for each particle is randomly produced. In our 
case we coded each particle to imitate a chromosome in a 
genetic algorithm; each particle was coded to a binary 
alphabetic string nFFFS …21= , mn ,,2,1 …= ; the bit value 

{1} represents a selected feature, whereas the bit value {0} 
represents a non-selected feature. 

The adaptive functional values were data based on the 
particle features representing the feature dimension; this data 
was classified by a support vector machine (SVM) to obtain 
classification accuracy; the SVM serves as an evaluator of the 
PSO fitness function. For example, when a 10-dimensional data 
set (n=10) ( )10987654321 FFFFFFFFFFSn =  is analyzed using particle 
swarm optimization to select features, we can select any 
number of features smaller than n, i.e. we can chose a random 6 
features, here ( )1097531 FFFFFFSn = . When the adaptive value is 
calculated, these 6 features in each data set represent the data 
dimension and are evaluated by the SVM. The fitness value for 
the SVM evolves according to the K-fold Cross-Validation 
Method (Stone, 1974) for small sample sizes, and according to 
the Holdout Method (Stone, 1974) for big sample sizes. Using 
the K-Fold Cross-Validation Method, we separated the data 
into 10 parts },,,{ 1021 DDD … , and carried out training and 

testing a total of 10 times. If every part 10,,2,1, …=nDn  is 
processed as a test set, the other 9 parts will be training sets. 
Following 10 times of training and testing, 10 classification 
accuracies are produced, and the averages of these 10 
accuracies are used as the classification accuracy for the data 
set. When the Holdout Method is used, the data can be divided 
into two parts, a training set part, which contains a larger 
amount of data, and a test set part, which contains relatively 
fewer data. We assumed that the obtained classification 
accuracy is an adaptive functional value.  

Each particle renewal is based on its adaptive value. The best 
adaptive value for each particle renewal is pbest, and the best 
adaptive value within a group of pbest is gbest. Once pbest and 
gbest are obtained, we can keep track of the features of pbest 
and gbest particles with regard to their position and speed. In 
this study, a binary version of a PSO algorithm is used for 
particle swarm optimization (Kennedy et al., 1997). The 
position of each particle is given in a binary string form that 
represents the feature selection situation. Each particle is 
updated according to the following equations. 
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if ( )( )new
pdvSrand <  then 1=new

pdx ; else 0=new
pdx                     (3) 

 
The feature after renewal is calculated by the function 

)( new
idvS  (Eq. 2), in which the speed value is new

pdv . If )( new
pdvS  is 

larger than a randomly produced disorder number that is within 
(0, 1), then its position value mnFn ,,2,1, …=  is 
represented as {1} (meaning this feature is selected as a 
required feature for the next renewal). If )( new

idvS  is smaller 
than a randomly produced disorder number that is within 
{0~1}, then its position value mnFn ,,2,1, …=  is 



 
 

 

represented as {0} (meaning this feature is not selected as a 
required feature for the next renewal). 

B. Multiclass Classification Method 
Support Vector Machines (SVMs) were originally 

introduced by Vapnik and co-workers (Frieß et al., 1998) for 
classification tasks, and were subsequently extended to 
regression problems (Drucker et al., 1997). The idea behind 
SVMs is the following: input points are mapped to a high 
dimensional feature space, where a separating hyper-plane can 
be found. The algorithm is chosen in such a way as to maximize 
the distance from the closest patterns, a quantity which is called 
the margin. SVMs are learning systems designed to 
automatically trade-off accuracy and complexity by 
minimizing an upper bound on the generalization error 
provided by the Vapnik-Chervonenkis (VC) theory (Vapnik, 
1995). In a variety of classification problems, SVMs have 
shown a performance which can reduce training and testing 
errors, thereby obtaining a higher recognition accuracy. SVMs 
can be applied to very high dimensional data without changing 
their formulation. 

The hyper-plane of SVMs is usually found by using a 
quadratic programming routine, which is then solved with 
optimization routines form numerical libraries. These steps are 
non-trivial to implement and computationally intensive (Frieß 
et al., 1998). In this study, Kernel-Adatron (KA) algorithms 
(Frieß et al., 1998), are used to emulate SVM training 
procedures, which combine the implementation simplicity of 
the Adatron with the capability of working in nonlinear feature 
spaces. The Adatron comes with the theoretical guarantee of 
converging exponentially fast in a given number of iterations, 
provided that a solution exists (Anlauf et al., 1989; Opper, 
1988). By introducing Kernels into the algorithm it is possible 
to find a maximal margin hyper-plane in a high feature space, 
which is equivalent to nonlinear decision boundaries in the 
input space. The algorithm comes with all the theoretical 
guarantees given by the VC (Vapnik and co-workers) theory 
for large margin classifiers (Boser et al., 1992; Cortes et al., 
1995), as well as the convergence properties detailed in the 
statistical mechanics literature. 

The Kernel-Adatron algorithm theoretically converges in a 
finite number of steps to the maximal margin, provided that the 
linearly independent data points are linearly separable in the 
feature space with a margin 0>λ . This result can be obtained 
for the following two reasons: all the fixed points of KA are 
Kuhn-Tucker points and, vice versa, KA always converges to a 
unique fixed point (Colin 1998). The KA procedure is 
described below. 
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iα . 

2) For ni ,,3,2,1 …=  execute step 3, 4 below. 
3) For a labeled point ),( ji yx  calculate: 
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5) If a maximum number of iterations is exceeded or the 
margin λ  is approximately 1 then stop, otherwise return 
to step 2. 

)](max)(min[
2
1

11
i

y
i

y
zz

−=+=
−=λ  (5) 

The maximum number of iterations is 100, and the kernel 
function is the Radial Basis Function (RBF): 

ji yxr
ji yxk

−−
= exp),( , nji ,,2,1 …==                            (6) 

 
This algorithm is a gradient ascent routine that maximizes 

the margin in the feature space similar to a perceptron-like 
algorithm, the Adatron, and was dubbed by Campbell and 
Christianini the Kernel-Adatron algorithm (Frieß et al., 1998). 
C and r are used to control the trade-off between training error 
and generalization ability. The decomposition techniques used 
for KA are one-versus-rest. 

C. One-Versus-Rest 
The one-versus-rest method assembles classifiers that 
distinguish one from all the other classes. For each i, ki ≤≤1 , 
a binary classifier separating class i from the rest is built. To 
predict a class label of a given data point, the output of each of 
the k classifiers is obtained. If there is a unique class label, say 
j, which is consistent with all the k predictions, the data point is 
assigned to class j. Otherwise, one of the k classes is selected 
randomly. Very often though, a situation arises in which 
consistent class assignment does not exist, which could 
potentially lead to problems (Scholkopf and Smola, 2002) 
 
The pseudo code of the proposed method for classification 
problems is given below. 
 
Initialize population 
While (number of generations, or the stopping criterion is not 
met) 

For p = 1 to number of particles 
Segment training data and testing data 
Initialize super parameter α  

pji Xyxr
ji yxk

−−
= exp),(  

While (number of iterations, or the stopping criterion is 
not met) 

For i = 1 to number of training data 

∑
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( )iii yz−= 1ηδα  
If ( ) 0≤+ ii δαα  then 0=iα  
If ( ) Cii >+ δαα  then Ci =α  
If ( ) 0>+ ii δαα  then ( )iii δααα +=  

Next i 
 Next iteration until criterion 
For i = 1 to number of testing data 
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If 0>iz  then 1+=iclass  else 1−=iclass  

If datatestingofclassrealclassi =  then 
1+= rightright  

Next i 
datatestingofnumberrightfitnessp /=  

If the fitness of pX  is greater than the fitness of ppbest  
then Update pp Xpbest =  
For ∈k Neighborhood of pX  

If the fitness of kX  is greater than that of gbest  then 
Update kXgbest =  

Next k 
For each dimension d 
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if ( )( )new
pdvSrand <  then 1=new

pdx ; else 0=new
pdx  

Next d 
Next p 

Next generation until stopping criterion. 
 

The two factors 1rand  and 2rand  are random numbers 
between (0, 1), whereas 1c  and 2c  are learning factors, usually 

221 == cc . In this paper, we used the SVM parameters shown 
in Table 1 for all classification problems. 

 

III. RESULTS AND DISCUSSION 
The dataset we used in this study was obtained from the 

UCI Repository, with the number of features (feature 
dimensionality) being greater than 10 [Murphy et al., 1994]. 
The data format was arranged as shown in Table 1. Three types 
of classification test problems were tested. If the feature 
dimensionality is between 10 and 19, the sample groups can be 
considered small, and can be used for Vowel and Wine 
problems. If the feature dimensionality is between 20 and 49, 
the sample group test problems are of middle size, and include 
WDBC and Ionosphere problems. If the feature dimensionality 
is over 50, the test problems are large sample group problems, 
which include Sonar test problems. Two evaluation methods 
were used: the 10-fold Cross-Validation and Holdout Method. 
The 10-fold Cross-Validation Method is used for small sample 
group test problems. The other two groups of test problems use 
the Holdout Method. For the test problem Wine, we used a 
standard normalization form to arrange the value between 0 and 
1. 

In this paper, binary PSO is used to serve as feature 
selection for classification problems. It helps to improve the 
performance owing to its smaller number of simple parameter 
settings. PSO is an evolution computing technology which 

simulates the social behavior of fish in a school. At each 
iteration, a particle will, according to its fitness value and 
swarm fitness value, be optimized. A KA-SVM is used to 
evaluate the fitness values of the PSO, which can be obtained 
by comparing the characteristics of the general test data. The 
classification problems have different sample sizes and 
dimensions. The SVM can be applied to different dimensional 
data by introducing a Kernel function to find a maximal margin 
hyper-plane in a high feature space that is well suited to the 
different classification problem structures. At the same time, it 
reduces the amount of training and testing, thereby increasing 
the classification accuracy for classification problems.  

Table 1 shows the format of five classification problems [Oh 
et al., 2004]. Table 2 compares experimental results obtained 
by other methods from the literature with the proposed method 
[Oh et al., 2004]. The proposed method obtained the highest 
classification accuracy for the Wine, WDBC and Ionosphere 
classification problems. The classification accuracy of the 
Wine and Ionosphere classification problems obtained by the 
proposed method are 100% and 97.33%, respectively, an 
increase of 4% and 2% classification accuracy compared to the 
other methods shown in Table 2. For the Wine classification 
problem, the proposed method obtained 100% classification 
accuracy. However, the number of features selected is less in 
the proposed method. This means that not all features are 
needed to achieve total classification accuracy. Even though 
the classification accuracy for the classification problems of 
Vowel and Sonar, is worse than the classification accuracy of 
the other feature selection methods, it is still comparable. These 
results indicate that for different classification problems, the 
proposed method (binary particle swarm optimization) can 
serve as a pre-processing tool and help optimize the feature 
selection process, which leads to an increase in classification 
accuracy. A good feature selection process reduces feature 
dimensions and improves accuracy. 

PSO is based on the idea of collaborative behavior and 
swarming in biological populations. Both PSO and genetic 
algorithms (GAs) are population-based search approaches that 
depend on information sharing among their population 
members to enhance their search processes using a 
combination of deterministic and probabilistic rules. However, 
PSO does not have genetic operators such as crossover and 
mutation. Particles update themselves with the internal 
velocity. Compared with GAs, the information sharing 
mechanism in PSO is considerably different. In GAs, 
chromosomes share information with each other, so the whole 
population moves like one group towards an optimal area. In 
PSO, only gbest gives out the information to others. It is a 
one-way information sharing mechanism. The evolution only 
looks for the best solution. Compared with GAs, all the 
particles tend to converge to the best solution quickly even in 
the local version in most cases. 

The computation time used in PSO is less than in GAs. The 
parameters used in PSO are also fewer. However, if the proper 
parameter values are set, the results can easily be optimized. 
Proper adjustment of the inertia weight w  and the acceleration 
factors 1c , 2c  is very important. If the parameter adjustment is 
too small, the particle movement is too small. This scenario will 



 
 

 

also result in useful data, but is a lot more time-consuming. If 
the adjustment is excessive, particle movement will also be 
excessive, causing the algorithm to weaken early, so that a 
useful feature set can not be obtained. Hence, suitable 
parameter adjustment enables particle swarm optimization to 
increase the efficiency of feature selection. For SVMs, correct 
parameter adjustment is crucial, since many parameters are 
involved. This can have a profound influence on the results. For 
different classification problems, different parameters have to 
be set for SVMs. The two factors r  and C  are especially 
important. A suitable adjustment of these parameters results in 
a better classification hyper-plane found by the SVM, and 
thereby enhances the classification accuracy. Bad parameter 
settings affect the classification accuracy negatively. In this 
paper, we used the parameters in Table 1 for all classification 
problems. The parameters settings used in our study were 
optimized, and could be used as a reference for future studies. 

 

IV. CONCLUSIONS 
Building an efficient classification model for classification 

problems with different dimensionality and different sample 
size is important. The main tasks are the selection of the 
features and the selection of the classification method. In this 
paper, we used PSO to perform feature selection and then 
evaluated fitness values with a SVM, which was combined with 
the one-versus-rest method, for five classification profiles. 
Experimental results show that our method simplified feature 
selection and the total number of parameters needed 
effectively, thereby obtaining a higher classification accuracy 
compared to other feature selection methods. The proposed 
method can serve as an ideal pre-processing tool to help 
optimize the feature selection process, since it increases the 
classification accuracy and, at the same time, keeps 
computational resources needed to a minimum. It could also be 
applied to problems in other areas in the future. 
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Table 1. Format of classification text problem 
 

Datasets Number of 
samples 

Number of 
classes 

Number of 
features Value of r Value of C 

Vowel 990 11 10 42  122  
Wine 178 3 13 42  122  

WDBC 569 2 30 02  122  
Ionosphere 201/150 2 34 12−  122  

Sonar 104/104 2 60 02  122  
Legends:  

x/y: indicate that x and y represent the number of test and train samples, respectively. 
 

Table 2. Accuracy of classification for tested data 

 
 

 

Legends: Highest values are in bold-type. 
 

PSO-SVM Datasets d* SFS PTA SFFS SGA HGA 
(1) 

HGA 
(2) 

HGA 
(3) 

HGA 
(4) d* % 

2 62.02 62.02 62.02 62.02 62.02 62.02 NA NA 
4 92.63 92.83 92.83 92.83 92.83 92.83 92.83 92.83 
6 98.28 98.79 98.79 98.79 98.79 98.79 98.79 98.79 

Vowel 
(D=10) 

8 99.70 99.70 99.70 99.70 99.70 99.70 99.70 NA 

7 99.49 

3 93.82 93.82 93.82 93.82 93.82 93.82 93.82 NA 
5 94.38 94.38 94.94 95.51 95.51 95.51 95.51 95.51 
8 95.51 95.51 95.51 95.51 95.51 95.51 95.51 95.51 

Wine 
(D=13) 

10 92.13 92.13 92.70 92.70 92.70 92.70 92.70 92.70 

8 100 

6 93.15 93.15 94.20 93.67 94.90 94.90 93.99 93.99 
12 92.62 92.97 94.20 94.38 94.38 94.38 94.38 94.38 
18 94.02 94.20 94.20 93.85 94.20 94.20 94.20 94.20 

WDBC 
(D=30) 

24 92.44 93.50 93.85 93.85 93.85 93.85 93.85 93.85 

13 95.61 

7 93.45 93.45 93.45 95.44 95.73 95.73 95.73 95.73 
14 90.88 92.59 93.79 94.87 95.73 95.73 95.73 95.73 
20 90.03 92.02 92.88 94.30 94.30 94.30 94.02 94.30 

Ionosphere 
(D=34) 

27 89.17 91.17 90.88 91.45 91.45 91.45 91.45 91.45 

15 97.33 

12 87.02 89.42 92.31 93.75 94.71 95.67 95.19 95.67 
24 89.90 90.87 93.75 95.67 96.63 96.63 97.12 97.12 
36 88.46 91.83 93.27 95.67 96.15 96.15 96.15 96.15 

Sonar 
(D=60) 

48 91.82 92.31 91.35 92.79 92.79 93.27 93.27 93.27 

34 96.15 


