

Abstract—The establishment of help desk is to provide technical

support to users when they encounter technical problems related
to hardware, software, application programs and network
connections. However, due to resources problem, in particular the
lack of help desk staff, users often have to wait for a considerably
long time before their enquiries and problems are answered and
solved. To relieve user’s dissatisfaction, academic researchers and
help desk practitioners has started to encourage users to exploit
online resources. Instead of contacting help desk, user can access
online knowledge resources, such as knowledge base, to look for
information that is useful to resolve their existing difficulties. A
significant number of knowledge bases are designed to support
“keyword search” and FAQ as the front end user interface, but
both designs have their disadvantages. This paper investigates the
application of ontology and software agent technology to develop a
dynamic user interface. This interface is designed to replace
“keyword search” and FAQ as the front end user interface of the
online knowledge base.

Index Terms—Dynamic User Interface, Ontology, Software

Agent Technology.

I. INTRODUCTION

 Help desk also known as computer call centre, contact
centre, assist centre or support centre is an access point to
provide IT-related advice, information or troubleshooting
action to user. In the past three decades, organizations have
been investing heavily in IT and business information systems
development to solve business problems, to gain competitive
advantage and to sustain organizational improvement.
However, the complexity of the business systems has created
infinite number of technical and functional problems. This
complexity also means that users are not able to work at optimal
productivity when they come across technical problems related
to the system. Organization may face potential loss in income,
whether direct or indirect, immediate or in the future. The
establishment of help desk is to provide technical support to
users when they encounter technical problems related to

Nelsom K. Y. Leung is with the School of Information Systems, University

of Wollongong, Wollongong, NSW, 2522, Australia (email:
knl164@uow.edu.au).

Sim Kim Lau is with the School of Information Systems, University of
Wollongong, Wollongong, NSW, 2522, Australia (email:
simlau@uow.edu.au).

hardware, software, application programs and network
connections. Its responsibilities include first line incident
support, day to day communication between Information
Technology (IT) department and user, business systems support
and service quality report generating [4,9].

Due to continuous expansion of the “already complex” IT
infrastructures, help desks are required to cover more and more
software, hardware, network and other IT related areas. It is not
unusual for a single help desk to cover hundreds of thousands of
IT related products. On the other hand, downsizing and business
process reengineering have led to the shrinkage of the size of
help desk because its overall budget has been reduced. When
help desk is expected to provide more service with less staff, the
outcome is quite obvious: users often have to wait for a
considerably long time before their enquiries and problems are
answered and solved [6]. To relieve user’s dissatisfaction,
academic researchers and help desk practitioners has started to
promote the concept of e-support. Broome and Streittwieser [3]
describe all support actions that use Internet or web as the
primary communication channel to be included in e-support.
Instead of contacting help desk, users can access online
knowledge resources, such as knowledge base, to look for
information that is useful to resolve their existing difficulties.

A significant number of knowledge bases are designed to
support “keywords search” as the front end user interface in
which users can locate the most appropriate solutions by
entering a few keywords that best describe the problems.
However, users often do not know how to use the right jargons
to explain the problems. Although they may successfully use
their own words to depict the problems, the “keyword search”
may return ten or even more solutions which will deepen users’
frustration. The complexness of the user interface can drive
away novice users or even users classified as medium-skilled.
Another common user interface for knowledge base is Frequent
Asked Question lists (FAQ). FAQ is always overlooked by
users because its mechanism lacks the ability to support users in
dynamic and flexible manners. This paper investigates the
application of ontology and software agent technology to
develop a dynamic user interface. This interface is designed to
replace “keyword search” and FAQ as the front end user
interface of the online knowledge base.

The rest of paper is organized as follows. Section 2 discusses
the development of a dynamic user interface. This includes a

No More “Keyword Search” or FAQ: Innovative
Ontology and Agent Based Dynamic User

Interface

Nelson K. Y. Leung and Sim Kim Lau

IAENG International Journal of Computer Science, 33:1, IJCS_33_1_22
__

(Advance online publication: 13 February 2007)

discussion of ontology and software agent design. Illustration of
dynamic user interface is presented in Section 3. Finally,
conclusion is given in Section 4.

II. DEVELOPMENT OF DYNAMIC USER INTERFACE

The target users of the online knowledge base are users with
low to medium technical skill. Therefore the design of the
interface must be simple and user friendly. Subsequently, an
easy to use dynamic user interface with interactive
communication capability is proposed. The dynamic user
interface allows users to present and identify the problems by
choosing problem types and their symptoms from a series of
drop boxes. In summary, the user interface provides two subsets
of functionalities:

1. the functionality to browse help desk ontology.

2. the functionality to view solution from knowledge
base based on results of ontology browsing.

Figure 1 shows the basic architecture of the dynamic user
interface. There are four basic components within the
architecture: user’s browser, interface agent, ontology and
knowledge base which stores solutions for users’ problems.
Here, a series of interrelated vocabularies which allows user to
identify and describe their problems on the user interface, is
stored and organized in a structural hierarchy within the
ontology. Modern web technology is used as a means to deliver
the interface through the Internet and can appear on the browser
to facilitate the interaction with the user and deliver user request
for resolution. On the other hand, software agent technology is
used to facilitate user communication. Software agent is a
computer program that behaves like human and is capable of
autonomous actions in pursuit of specific goal [8,11]. To deliver
the dynamic user interface, user simply clicks on the target
Uniform Resource Locator (URL). Subsequently, the interface
agent that possesses communication capability will deliver a
dynamic user interface to the browser, based on the information
stored in the ontology. The dynamic and interactive
communication capabilities of the interface agent help users to
identify and present their problems. Firstly the interface agent
interacts with the user by asking the user to select a problem
type on the user interface. Based on the input, the interface agent
will generate the next category of possible problem scenarios
from the ontology. This type of interaction will continue until
the agent has gathered sufficient information. When the
problem is completely described on the interface, the
knowledge base will then deliver a related solution to the user.
Since each set of problem descriptions is linked to a particular
solution in the knowledge base, it guarantees the return of the
most appropriate solution.

Figure 1 Basic Architecture of Dynamic User Interface

A. Ontology Design

Traditionally, the term “ontology” is defined as the study or
the science of being. Gruber and Olsen [5] first apply ontology
to artificial intelligence as the specifications of common
conceptualizations among agents. In other words, agent is able
to understand the semantic of other knowledge since knowledge
is represented by the same vocabulary based on common
conceptualization. The emergence of semantic web further
magnifies the importance of ontology. Berners-Lee, Hendler
and Lassila [2] recognize that the Hypertext Markup Language
(HTML)-based web content is solely designed for human to
read and computers have no way to understand and process the
semantics. In the context of the web, ontology provides a shared
understanding of a domain that contains a finite list of terms and
the relationships [1]. In this way, an ontology enables computer
programs and software agents to understand the semantics, thus
making it possible for them to process the web content.
Although different organizations may have their own
ontologies, such differences can be overcome by mapping the
particular terminology to a shared ontology or by defining direct
mappings between ontologies [1].

In the dynamic user interface, a Web Ontology Language
(OWL)-based ontology is developed to represent various
categories of problem types and their symptoms. The problem
types and symptoms are used to support the dynamic interface
on which users can choose to describe and identify the
problems. OWL builds on Resource Description Framework
(RDF) and RDF Schema and adds more vocabulary for
describing properties and classes, among others, relations
between classes, cardinality, equality, richer typing of
properties, characteristics of properties and enumerated classes
[10]. The RDF uses Extensible Markup Language (XML) as
interchange syntax to provide a lightweight ontology system to
support the exchange of knowledge on the Web [1,7]. The
ontology of this interface consists of two major categories. The
first category describes the taxonomy of possible problem types,
and the second depicts the taxonomy of symptoms in
accordance with the problem types. Figure 2 depicts the
problem types category and some of its subclasses. The problem
types category has Help_Desk_Enquiry as its superclass.
Help_Desk_Enquiry is then extended into four subclasses that
include IT_Administrative_Issue, Software_Problem,
Hardware_Problem and Other_Problem. These four subclasses

are designed to represent the four main sources of problems.
Further expansion of subclass and instance for each subclass is
required until there is enough vocabulary to describe the
problems.

Figure 2 Problem Types Category and its Partial Subclasses

Figure 3 illustrates an example of the problem symptoms

category and some of its subclasses. The problem symptoms
class starts with Problem_Symptoms as its superclass. However,
the expansion of this category is closely related to the problem
types category. For example,
IT-Administrative_Issue_Symptom,
Software_Problem_Symptom, Hardware_Problem_Symptom
and Other_Problem_Symptom are used to identify the problem
symptoms of IT_Administrative_Issue, Software_Problem,
Hardware_Problem and Other_Problem in the problem types
category. The expansion of the problem symptoms category will
continue until it is sufficient to identify all of the problem
symptoms. Since problem types and problem symptoms are not
standalone categories, every object in the problem types
category are connected with an identical objects in the problem
symptoms category by object properties. In OWL, object
property is used to relate objects to other objects.

In Figure 4, object property hasFileSymptom and its inverse,
isFileSymptomOf, is utilized to relate File_Problem with
File_Problem_Symptom. This indicates that File_Problem
has_File_Symptom, whereas File_Problem_Symptom is a
symptom of File_Problem. Furthermore, the entire set of object
properties and their inverses are organized in a hierarchy by
using the concepts of property, subproperty and superproperty.
For example, isSymptomOf has isOtherProblemSymptomOf and
isFileSymptomOf as its subproperties. In other words,
isFileSymptomOf has isOtherProblemSymptomOf and

isSymptomOf as its superproperties. Figure 5 shows a partial
hierarchy of the properties and their inverses.

Figure 3 Problem Symptoms Category and its Partial Subclasses

Figure 4 Semantic Relationships among Problem Types,
Symptoms and Properties

To understand how the ontology could support the dynamic
interface, let us consider one branch of problem types and its
corresponding branch of problem symptoms (see Figure 4).
Help_Desk_Enquiry is the superclass of Other_Problem and
File_Problem. Other_Problem is a subclass of
Help_Desk_Enquiry and has File_Problem as its subclass.
File_Problem is a subclass of Other_Problem as well as
Help_Desk_Enquiry and it does not have any subclass. In the
property hierarchy, hasSymptom is the superproperty of
hasOtherProblemSymptom and hasFileSymptom. In term of
subproperty, hasOtherProblemSymptom is the subproperty of
hasSymptom and hasFileSymptom as its subproperty. On the
other hand, hasFileSymptom has no subproperty, but with
hasSymptom and hasOtherProblemSymptom as its
superproperty. Subsequently, File_Problem can have instances

of File_Problem_Symptom as values because hasFileSymptom
and its reverse relate these two subclasses together. In this case,
the instances of File_Problem_Symptom are File_Corrupted,
File_Accidentally_Deleted, File_Accidentally_Modified and
Missing_File. Besides, the concepts of the subclass, superclass,
superproperty and subproperty allow File_Problem to inherit
hasSymptom, hasOtherProblemSymptom as its own properties.
The same concept also applies to File_Problem_Symptom that
inherits isSymptomOf and isOtherProblemSymptomOf as its
own properties.

Figure 5 Partial Hierarchy of Properties and their Inverses

B. Software Agent Design

The InterfaceSoftwareAgent is an agent that possesses
communication capability and is in charge of providing
vocabulary of problem types and symptoms on the user
interface, based on the concept stored in the ontology. The
vocabulary is to be used by users to describe the problems.
When user clicks on the required link to access the interface, it
will activate the InterfaceSoftwareAgent. Then, the
InterfaceSoftwareAgent starts to retrieve and capture
vocabulary in the ontology in accordance with the selections of
the drop boxes selected. The online knowledge base will return
an appropriate solution to user if all of the vocabularies related
to a particular problem type and symptom have been retrieved
from the ontology. The retrieval and reasoning capabilities are
based on a set of rules:
1) Continue to capture and display all direct subclasses in the

drop box, based on user’s selection that relates to their
superclass in the problem types category.

2) If there is no related subclass, capture and display all
related instances from the last selected class in the problem
types category. The InterfaceSoftwareAgent will terminate
and the online knowledge base will return an appropriate
solution to users.

3) If there is no related subclass and instance from the last
selected class in the problem types category, the

InterfaceSoftwareAgent will examine all the object
properties (includes all the inherited superproperties) that
the last selected class in the problem types category
possesses. This determines whether the direct connected
class from other categories (categories other than the
problem types) contains any instances.
a) If there is an instance in one of the direct connected

class, the InterfaceSoftwareAgent will capture and
display all the instances in the drop box. The
InterfaceSoftwareAgent will terminate and the online
knowledge base will return an appropriate solution to
users.

b) If there is no instance in any of the direct connected
classes, the InterfaceSoftwareAgent will terminate and
the online knowledge base will return an appropriate
solution to users.

4) If there is no related subclass, instance and object property
from the last selected class in the problem types category,
the InterfaceSoftwareAgent will terminate and the online
knowledge base will return an appropriate solution to
users.

Let us consider Figure 6 and 7 as an example to demonstrate

the rules of the InterfaceSoftwareAgent. Using rule 1, the
InterfaceSoftwareAgent starts by capturing
Hardware_Problem, Software_Problem,
IT_Administative_Issue and Other_Problem based on the
default superclass, Help_Desk_Enquiry, from the problem
types category of the ontology. The four subclasses are
displayed in the first drop box. User then decides to choose
Hardware_Problem in the first drop box. Simultaneously, the
interface-software agent captures
Non_Standard_Hardware_Problem and
Standard_Hardware_Problem from the problem types category
of the ontology based on user’s selection in the first drop box
and display these two items in the second drop box (rule 1).
Subsequently, the user decides to select
Non_Standard_Hardware_Problem in the second drop box.
The InterfaceSoftwareAgent cannot find any subclass or
instance related to Non_Standard_Hardware_Problem. Using
rule 3, the InterfaceSoftwareAgent is required to gather and
examine all properties, hasSymptom, hasHardwareSymptom
and isInstalledBy, to determine if there is any direct connected
classes from other category (categories other than problem
types) contain the instances. Here, the direct connected classes
are Problem_Symptom, Hardware_Problem_Symptom and
Installer. The InterfaceSoftwareAgent ignores
Problem_Symptom and Hardware_Problem_Sympotm,
because they do not possess any property or instance. However,
the InterfaceSoftwareAgent realizes that Installer has two
instances. Thus, the two instances Vendor and Help_Desk are
captured and displayed in the third drop box (rule 3a). Finally,
the InterfaceSoftwareAgent activates the
SolutionRetrievalAgent before terminates (rule 3a).

Figure 6 Example to Demonstrate the Rule of the
InterfaceSoftwareAgent (Dynamic User Interface View)

Figure 7 Example to Demonstrate the Rule of the
InterfaceSoftwareAgent (Ontology View)

III. I LLUSTRATION OF DYNAMIC USER INTERFACE

To view the solution in the knowledge base, user is required
to describe the problem types and their symptoms by choosing
the related vocabularies from a series of drop boxes on the
dynamic user interface. If there is a solution for the problem
types, it will be displayed on the interface. Otherwise, a message
will be shown to inform user that the solution for the chosen
problem types and symptoms is currently unavailable.

To illustrate the functionalities of the user interface, let us
consider two scenarios. In the first scenario, John gets an error
message when he tries to access an internal website. He decides
to search for solution in the online knowledge base. Firstly, he
describes and identifies the problem types and symptoms by
selecting Other_Problem, Website_Problem,
Enterprise_Website_Problem and Website_Error_Message in
four of the drop boxes. The dynamic user interface immediately
retrieves the matching solution from the knowledge base and
displays the solution (see Figure 8).

Figure 8 Sample Screen of Retrieving Solution

In the second scenario, John has difficulties in using some of
functions in SmartDraw installed by the vendor. Smartdraw is
considered as a non-standard software in the company that he is
currently working for. Thus, he decides to access the online

knowledge base and search for a suitable solution. John
identifies and describes the problem types and symptoms by
selecting Software_Problem, Functional_Problem,
Non_Standard_Software_Problem and Vendor in four of the
drop boxes. As there is no matching solution stored in the
knowledge base, a message is displayed to inform John that the
solution is not available and he is asked to contact the help desk
for assistance (see Figure 9).

Figure 9 Sample Screen of Displaying “Knowledge
Unavailable” Message

IV. CONCLUSION

The ontology is developed to represent various categories of
problem types and their symptoms and to support the dynamic
interface on which users can choose to describe and identify the
problems. Apart from that, the popularity of using ontology to
manage technical knowledge makes it possible for help desk to
reuse other help desks or IT companies’ knowledge in terms of
ontology. For example, company A has reached an agreement
with Oracle and Norton to allow the help desk of company A to
reuse technical support knowledge of Oracle and Norton
products. By integrating or merging their ontologies, software
agent from Company A should be able to retrieve technical
knowledge from Oracle and Norton. This means that users in
company A can make use of Oracle and Norton’s technical
support knowledge to troubleshoot their own problems. The
reusability of ontology also allows help desk to save a lot of
resources and efforts in creating duplicate sets of knowledge
that have already been created in other companies or help desks.
The dynamic user interface is designed to pinpoint the weakness
of the FAQ and “keyword search” interfaces used in online
knowledge base. The interactive communication and

easy-to-use capabilities of the dynamic user interface enable
users to describe and identify their problems and the related
symptoms in return for the most appropriate solutions.

REFERENCES

[1] Antoniou, G. and Harmelen, F. A Semantic Web Primer. The MIT Press,
London, England, 2004.

[2] Berners-Lee, T., Hendler, J. and Lassila, O. (2001) “The Semantic Web,”
Scientific American. [Online] Available:
http://www.scientificamerican.com/article.cfm?articleID=00048144-10
D2-1C70-84A9809EC588EF21&catID=2

[3] Broome, C. and Streitwieser, J. “What is E-support,” Service and
Support Handbook, Help Desk Institute, 2002, pp.31-40.

[4] Central Computer and Telecommunications Agency. IT Infrastructure
Library: Help Desk. HMSO Publication Centre, 1989.

[5] Gruber, T. and Olsen, G. "An Ontology for Engineering Mathematics," in
Proceedings of the Fourth International Conference on Principles of
Knowledge Representation and Reasoning, Gustav Streemann, Bonn,
Germany, 1994.

[6] Heckman, R. and Guskey, A. "Sources of Customer Satisfaction and
Dissatisfaction with Information Technology Help Desks," Journal of
Market Focused Management, Number 3, 1998, pp.59–89.

[7] Klyne, G. and Carroll, J. (2004). Resource Description Framework (RDF)
Concepts and Abstract Syntax. [Online] Available:
http://www.w3.org/TR/rdf-concepts/

[8] Liu, H., Zeng, G. and Lin, Z. "A Construction Approach for Software
Agents Using Components," ACM SIGSOFT Software Engineering
Notes, Volume 24, Issue 3, 1999, pp.76-79.

[9] Marcella, R. and Middleton, I. "The Role of the Help Desk in the Strategic
Management of Information Systems," OCLC Systems and Services,
12(4), 1996, pp.4-19.

[10] McGuinness, D. and Harmelen, F. (2004). OWL Web Ontology
Language Overview. [Online] Available:
http://www.w3.org/TR/owl-features/

[11] Nienaber, R. and Cloete, E. "A Software Agent Framework for the
Support of Software Project Management," in Proceedings of the 2003
Annual Research Conference of the South African Institute of Computer
Scientists and Information Technologists on Enablement Through
Technology, 2003, pp.16-23.

