

Abstract— Efficient representation of family tree is
essential for any system utilizing information in the family
tree. Efficient representation of family tree and retrieval
methods, which can handle large number of family trees,
are introduced in this paper. It is a modified form of
conceptual graph and can be used as a case representation
form for a case-based genetic cancer risk assessment system.

Index Terms — Family Tree, Case-Based Reasoning,

Conceptual Graph.

I. INTRODUCTION

A novel way of representing family tree is introduced in

this article. The family tree representation method is
working efficiently with the system CARA (CAncer Risk
Assessment system). CARA is designed based on the case-
based reasoning (CBR) technology and the backbone
structure of the case for CARA is family tree. CBR
[Leak96, Kolodner93, Aamodt94] is an AI technique,
which relies on the concept that similar problems can be
solved as similar cases in the past. In CBR, the basic
problem solving process is case retrieval. In the process of
case retrieval, relevant cases are retrieved from a database
of case called case base. Hence, the organization of a case
base and the retrieval method are very important in CBR.

There are many systems built based on CBR technique
in industries [Althoff95] as well as in medicine. However,
they are using different case representation and retrieval
methods. Since, their problem domains are different each
other. We are adapting CBR for genetic risk assessment of
cancer. A family tree with cancer related information is
represented as a case for CARA. It is difficult to represent
this case as a tree or as a set of attribute/value pairs since
each case contains information from many different
sources (i.e. members of a family). Hence, the information
required by CARA should be organized as a compound
structure instead of a tree or linear structure.

Another problem should be considered CBR system is
the size of the case base. The CBR system should be able
to handle fairly large cases in a case base, so using a
commercial DBMS would be a good idea instead of using
a file system. CARA utilizes a commercial DBMS to store

* This research was supported in part by the Program for the Training
of Graduate Students in Regional Innovation which was conducted by the
Ministry of Commerce Industry and Energy of the Korean Government

cases for reliability and large storage size while maintain
an efficient retrieval mechanism with it.

The remainder of the paper is organized as follows. The
conceptual graph is explained in next section. In section 3
we discuss how the family tree is represented while the
indexing mechanism is described in section 4. Section 5
explains matching process and section 6 concludes this
paper.

II. CONCEPTUAL GRAPH AND THREE
DIMENSIONAL CONCEPTUAL GRAPH

A family tree is a backbone structure of the case for

CARA. A case contains a family tree and related
information on each individual in the family tree. A case is
represented as a modified Three Dimensional Conceptual
Graph (TDCG) in CARA. TDCG is a modified version of
Conceptual Graph (CG). Short descriptions of CG and
TDCG are in the following two subsections.

Introduction to conceptual graph
The Conceptual Graph (CG) is a graph-based logic

language which has been developed from the Peirce's idea
of EGs and it is more powerful than predicate calculus
[Sowa86]. A CG has graph notation like the idea of Peirce's
EGs to simplify the rules of logic and can represent higher-
order relations. A CG is a finite, connected, bipartite graph.
There are two kinds of nodes; concept nodes (displayed as
a box in graph notation) which represent entities, attributes,
states, and events, and relation nodes (displayed as a circle
in graph notation) which represent the relationship among
concept nodes. A single concept by itself (Fig. 1) may form
a conceptual graph though this is not the case with a
relation (Fig. 2), since every relation node should have one
or more arcs each of which must be linked to some concept
(Fig. 3).

[Cancer] (CAUSE)

Figure 1. A single concept Figure 2. A single relation

 [Cancer]->(CAUSE)->[Alcohol: 6]

Figure 3. A single relation with two concepts

A CG can be constructed by assembling percepts. In
the process of assembly, concept relations specify the role

A Novel Way of Family Tree Representation
and Case Retrieval*

Gi-Chul Yang

Division of Information Engineering, Mokpo National University

IAENG International Journal of Computer Science, 33:1, IJCS_33_1_5
__

(Advance online publication: 13 February 2007)

that each percept plays and concepts represent percepts
themselves. A concept can be an individual or generic. The
function referent maps concepts into a generic marker or a
set I = {#1, #2, #3, ...} whose elements are individual
markers. The function type maps concepts into a set of type
labels. A concept c with type(c) = t and referent(c) = r is
displayed as [t : r] in the linear form.

Types of concepts (type labels) are organized into a
hierarchy called type hierarchy. Type hierarchy forming
operations include conjunction and disjunction operations,
so the type hierarchy will be a formal lattice. The type
hierarchy constitutes a partial ordering and becomes a type
lattice when all the intermediate types are introduced..

A CG can be represented in three different forms.
There is a graphic notation called the display form (DF), a
more compact notation called the linear form (LF) as well
as a concrete syntax called the conceptual graph
interchange form (CGIF), which has a simplified syntax
and a restricted character set designed for compact storage
and efficient parsing. Both DF and LF are designed for
communication with humans or between humans and
machines. For communication between machines, the
CGIF has a simpler syntax. Hence, we will develop an
efficient storage and retrieval system for CG’s represented
in CGIF in this paper. Below descriptions of the three
representation forms are adapted from [http://www.
bestweb.net/~sowa/cg/ cgdpans.htm #Header_21.].

Figure 4 shows the display form of a conceptual graph
that represents the prepositional content of the English
sentence John is going to Boston by bus .

Figure 4. CG Display Form for "John is going to Boston by
bus."

In DF, concepts are represented by rectangles: [Go],
[Person: John], [City: Boston], and [Bus]. Conceptual
relations are represented by circles or ovals: (Agnt) relates
[Go] to the agent John, (Dest) relates [Go] to the
destination Boston, and (Inst) relates [Go] to the
instrument bus.

The linear form for CGs is intended as a more compact
notation than DF, but with good human readability.
Following is the LF for Figure 4:

[Go]-
 (Agnt)->[Person: John]
 (Dest)->[City: Boston]
 (Inst)->[Bus].

In this form, the concepts are represented by square
brackets instead of boxes, and the conceptual relations are

represented by parentheses instead of circles. A hyphen at
the end of a line indicates that the relations attached to the
concept are continued on subsequent lines. Following is
the CGIF for Figure 4:

[Go *x] (Agnt ?x [Person: John]) (Dest ?x [City: Boston])

(Inst ?x [Bus])
or (Agnt [Go] [Person: John]) (Dest [Go] [City: Boston])

(Inst [Go] [Bus])

CGIF is intended for transfer between IT systems that use
CGs as their internal representation. Also, CGIF can be
translated into different logical languages such as
Knowledge Interchange Format (KIF). Hence, it is better
to use CGIF like notation instead of DF or LF to represent
the cases in CARA.

Introduction to three-dimensional conceptual graph
Three-Dimensional Conceptual Graph (TDCG) has

three-dimensional shape as in Fig. 6. There is only one
difference between conceptual graph and TDCG. TDCG
has concept stack instead of concept.

Definition 1 (Concept Stack) Concept stack is a concept
node, which can hold multiple concepts in TDCG.

Definition 2 (Three Dimensional Conceptual Graph)
TDCG is a conceptual graph which has concept stack(s)
instead of concept(s).

The conceptual graph in Fig. 5. represents the
meaning of a sentence "Three dimensional conceptual
graph for risk assessment".

Figure 5. A conceptual graph

For the same sentence, we can draw the following TDCG
as in Fig. 6.

Figure 6. A three dimensional conceptual graph

Both concepts [ThreeDimension] and [ConceptualGraph] in
Fig. 1 became one concept stack in Fig. 6. If we look at the
TDCG from the top, we can not see the concept
[ThreeDimension]. Only we can see is [ConceptualGraph]-
>(FOR)-> [CancerAssesment], even though there is a
concept [ThreeDimension] underneath the concept
[ConceptualGraph]. The conceptual relation '(ATTR)' in
Fig. 5 is disappeared in Fig. 6. Therefore, we lose some
semantic precision but we gain great simplicity in graph

construction and manipulation. It brings great simplicity in
the process of automatic graph construction and make
possible to represent the information in three dimensional
graph structure [Yang98]. The TDCG in Fig. 6 is
represented in modified CGIF as follows.

(FOR {[ThreeDimension][ConceptualGraph]}

{[CancerAssesment]})

It is always true that the number of conceptual relations in
TDCG is less than or equal to the number of conceptual
relations in corresponding conceptual graphs. Therefore the
TDCG matching process is simpler than the CG matching
process. Also, the concept stack in TDCG can hold more
information then the concept in CG. These characteristics
are well fit to our purpose.

III. FAMILY TREE REPRESENTATION

A case for CARA contains a family tree and related

information on each individual node in the family tree. A
case is represented as a modified Three Dimensional
Conceptual Graph (TDCG) in CARA.

How a family tree in Fig. 7 is represented as a TDCG in
modified CGIF is shown below.

Figure. 7 A Family Tree

A family tree in Fig 7 can be converted as a tree in Fig 8.

The converted tree is a sibling tree shown below.

Figure. 8 A Sibling Tree

Each node in a sibling tree represents a set of all sibling
nodes in the same level as one node. After converting the
family tree into a sibling tree, available tree matching
algorithms such as [Wang94, Wang98, Zhang94] can be
applied to find the similar trees and common substructures.

Even though the sibling tree is not enough for case
representation in case of CARA it can be used for
preprocessing of the family tree matching that is necessary
for speed up the matching process.

If the relation nodes are inserted in the middle of the
arcs then the sibling tree became a conceptual graph like
family tree as in Fig. 9.

Figure. 9 A conceptual graph like family tree

There are two kinds of relation nodes Father and Mother in
Fig. 9. The relation node with the label ‘Mother-6’
indicates that the node ⑥ in the (sibling) concept node

 is the mother of the (sibling) concept node
.

In order to represent all the information needed for
CARA, we are using modified TDCG to represent the
family tree. A family tree in Fig 7 is represented in
modified TDCG as follows:

G-1: /*This is a graph id */

(Mother {[Cancer:?][Sibling:1101]}{[Cancer:Breast][Sibling:1001]})
(Father {[Cancer:?][Sibling:1101]}{[Cancer:NA][Sibling:0000]})
(Mother{[Cancer:Breast] [Sibling:1001]}{[Cancer:NA][Sibling:0000]})
(Father {[Cancer:Breast] [Sibling:1001]}{[Cancer:NA][Sibling:0000]})

All the nodes in the family tree are not appeared as a

concept stack in the corresponding TDCG for simplicity.
Sibling nodes are encoded and embedded as a type of a
concept. There are four numbers in the sibling concept.
They represent (number of sisters with cancer, number of
sisters without cancer, number of brothers with cancer,
number of brothers without cancer) respectively.
Therefore, [Sibling:1101] stands for someone has one
brother and two sisters and one of his/her sister has cancer.
Fig. 10 depicts the encoding of the sibling concept.

Number of sisters with cancer

Number of sisters without cancer,

Number of brothers with cancer
Number of brothers without cancer

Figure. 10 Encoding of the sibling concept

Here are two other example cases represented in

modified CGIF for TDCG. The cases are:

G-2:

(Mother {[Cancer:?][Sibling:1101]}{[Cancer:Breast][Sibling:1001]})
(Father {[Cancer:?][Sibling:1101]}{[Cancer:NA][Sibling:0000]})
(Mother {[Cancer:Breast][Sibling:1001]}{[Cancer:Breast][Sibling:0000]})
(Father {[Cancer:Breast][Sibling:1001]}{[Cancer:NA][Sibling:0000]})

G-3:
(Mother {[Cancer:?][Sibling:0101]}{[Cancer:NA][Sibling:0000]})
(Father {[Cancer:?][Sibling:0101]}{[Cancer:NA][Sibling:1001]})
(Mother {[Cancer:NA][Sibling:0000]}{[Cancer:NA][Sibling:0000]})
(Father {[Cancer:NA][Sibling:0000]}{[Cancer:NA][Sibling:0000]})

G-2 depicts the family tree of the patient who has two

sisters and one brother. Among the siblings of the patient
there is one sister with cancer. The patients’ mother has
one brother who does not has cancer and the grandparents
are cancer free. There is no information available about
siblings of the grandparents in this case.

An efficient indexing mechanism is necessary for a
sophisticated retrieval approach. Section 4 will present an
efficient indexing mechanism.

IV. INDEX STORAGE

As we can see here CGIF is organized with parenthesis

and each parenthesis contains one conceptual relation.
Hence, the relation name could be a table name for
indexing in a database. When the first case is coming into
CARA, the unique graph id called G-id is attached to the
coming graph and stored in case base and the structure of
the Index Storage (IS) will be

Mother :=

(1 {[Cancer:?][Sibling:1101]}{[Cancer:Breast][Sibling:1001]})
Father := (1 {[Cancer:?][Sibling:1101]}{[Cancer:NA][Sibling:0000]})

Mother-2 :=
(1 {[Cancer:Breast][Sibling:1001]}{[Cancer:NA][Sibling:0000]})

Father-2 :=

(1 {[Cancer:Breast] [Sibling:1001]}{[Cancer:NA][Sibling:0000]})

Now we have four lists, named Mother, Father, Mother-

2 and Father-2 in the IS with one element (e.g., (1
{[Cancer:?][Sibling:1101]}{[Cancer:Breast][Sibling:1001]
}) in the Mother list) in each list. Since, the first graph has
four relations, four lists are created in an empty IS. The
first number in each item is the graph id (called G-id).
Mother-2 and Father-2 are the relation of grandmother and
grandfather. Those relations are represented as Mother and
Father in the graph, but they are changed to Mother-2 and
Father-2 for the efficient case retrieval.

The list has been used as a data structure for the IS,
since it is simple and easy to explain the basic concept of
the IS. Actual implementation should be done via a more
efficient data structure. We suggest extendable hashing for
fast retrieval and a relational database for large knowledge

bases. We used a database for the developed system. After
the second case is accepted, the IS becomes

Mother := (1 {[Cancer:?][Sibling:1101]}{[Cancer:Breast][Sibling:1001]})

(2 {[Cancer:?][Sibling:1101]}{[Cancer:Breast][Sibling:1001]})

Father := (1 [Cancer:?][Sibling:1101]}{[Cancer:NA][Sibling:0000]})

(2 {[Cancer:?][Sibling:1101]}{[Cancer:NA][Sibling:0000]})

Mother-2 := (1 {[Cancer:?][Sibling:1101]}{[Cancer:NA][Sibling:0000]})

(2{[Cancer:Breast][Sibling:1001]}{[Cancer:Breast][Sibling:0000]})

Father-2 := (1 {[Cancer:?][Sibling:1101]}{[Cancer:NA][Sibling:0000]})

(2 {[Cancer:Breast][Sibling:1001]}{[Cancer:NA][Sibling:0000]})

We explained IS by using a data structure list, however,

as we mentioned earlier it can be a table in a relational
DBMS.

V. CASE RETRIEVAL

In this section, we show how the cases can be retrieved

in the case base. The basic access mechanism is matching,
in which a query representation is matched to
representations of cases in the case base. A novel CG
matching technique (partial and exact matching) was
introduced in [Yang93].

A query match can be performed through the IS. CARA
has the ability of exact matching and partial matching. For
example, if the first case

G-1

(Mother {[Cancer:?][Sibling:1101]}{[Cancer:Breast][Sibling:1001]})
(Father {[Cancer:?][Sibling:1101]}{[Cancer:NA][Sibling:0000]})
(Mother {[Cancer:Breast] [Sibling:1001]}{[Cancer:NA][Sibling:0000]})
(Father {[Cancer:Breast] [Sibling:1001]}{[Cancer:NA][Sibling:0000]})

is accepted as a query then the query graph is separated
into (relation concept) pairs. The first step is take the first
pair from the query and search the IS. The first (relation
concept stack) pair (i.e. (Mother {[Cancer:?]
[Sibling:1101]} {[Cancer:Breast] [Sibling:1001]})) is
picked and find that the relation is ‘Mother’ so search the
‘Mother’ table for the concept stack in the pair (i.e.
{[Cancer:?][Sibling:1101]}
{[Cancer:Breast][Sibling:1001]}). CARA will find two
matched items. Take the G-ids of the matched items, 1 and
2. Next, take the second pair (i.e. (Father {[Cancer:?]
[Sibling:1101]}{[Cancer:NA][Sibling:0000]})) from the
query and perform the same procedure. We got the same
matched items (i.e. G-id 1 and 2) with the previous results
for the second pair. Each time any new elements are found
then the G-ids of those elements (i.e., G-id 1 and 2 in this
case) are intersected with the G-ids of old elements. There
is no difference in this case but for the third pair, there is
only one matched item G-1 since grandmother of G-2 has

Breast cancer while G-1’s grandmother has no Breast
cancer. Now, the result of the intersection between (G-1,
G-2) and G-1 is (G-1). After perform the same task for all
the pairs in the query we will find exact matching result
that is G-1 in this case.

In the case of partial matching, CARA can retrieve
similar cases from the case base. For example, if we want
to retrieve the cases that the patient has at least one sister
with cancer and don’t care any other people in the family
tree then look at the patient’s sibling concept which has
type number greater than 1000. Patient’s sibling concept is
[Sibling:1101] and it’s type number is 1101. Various
different partial matching can be performed by CARA
depends on the constraints presented by the user. It is
similar to a constraint satisfaction process. Followings are
few examples of partial matching cases;

- Find the cases that the patient has a mother who has

more than 50% of her sisters with a breast cancer.
 - Find the cases that the patient has both mother and

grandmother who has at least one of their siblings has
cancer.

- Find the cases that the patient has a father who has
brother with cancer.

VI. CONCLUSION

We found that ordinary tree structure is not a suitable

approach to illustrate the accurate family tree, since the
structure of the family tree is different with the structure of
the ordinary tree. An Efficient representation of family tree
as well as the indexing and retrieval mechanism has been
described in this paper. It can be used for medical
information system as well as other application systems.

REFERENCES

[1] Aamodt, A. 1994. Relating case-based reasoning:

foundational issues, methodological variations and
system approaches, AI Commun. 7(1) pp. 39-59.

[2] Althoff, K.-D. et al. 1995. A Review of Industrial Case-
based Reasoning Tools, AI Intelligence, Oxford.

[3] Althoff, K.-D. et. al 1998. Case-based reasoning for
medical decision support tasks: The Inreca approach,
AI in Medicine 12. pp. 25-41.

[4] Jurisica, I. et. al 1998. Case-based reasoning in
IVF: prediction and knowledge mining, AI in
Medicine 12. pp. 1-24.

[5] Kolodner, J.L. 1993. Case-based Reasoning, Morgan
Kaufmann, San Mateo.

[6] Leak, D. (Ed.). 1996. Case-Based Reasoning:
Experiences, Lessons, and Future Directions, AAAI
Press, Menlo Park, CA.

[7] Poole, J., J.A. Campbell. 1995. A novel algorithm for
matching conceptual and related graphs, Conceptual
structures : applications, implementation and theory, Eds.
G. Ellis et al., New York, (LNAI 954).
[8] Rau, L. 1988. Exploring the semantics of conceptual

graphs for efficient graph matching. In Proceedings of

the 3rd Annual Workshop on Conceptual Graphs,
Boston.

[9] Roberts, D.1973. The Existential Graphs of Charles
S.Peirce, Mouton, The Hague,.

[10] Sowa, J. 1984. Conceptual Structure: Information
Processing in Mind and Machine, Addison Wesley,
Massachusetts.

[11] Yang, G-C., Y. Choi, & J. Oh. 1993. CGMA : A novel
conceptual graph matching algorithm, Conceptual
structures : theory and implementation, Eds. H.D. Pfeiffer,
T.E. Nagle, New York, (LNAI 754)
[12] Yang, G-C., 1998. Three Dimensional Conceptual
Graph for Document Retrieval, ICCS98, Daegu, Korea.
[13] http://www.bestweb.net/~sowa/cg/cgdpans.htm#

Header_21.
[14] http://www.bestweb.net/%7Esowa/cg/cgdpans.htm
[15] Wang, J., et. al., 1994. A System for Approximate Tree

Matching, IEEE Transactions on Knowledge and Data
Engineering, 6(4):559-571.

[16] Wang, J., et. al., 1998. An Algorithm for Finding the
largest approximately common substructures of two trees.
Ieee Transactions on Pattern Analysis and Machine
Intelligence, 20(8):889-895.

[17] Zhang, K., et. al., 1994. Approximate Tree Matching in
the Presence of Variable Length Don’t Cares, Journal of
Algorithms, 16(1):33-66.

http://www.bestweb.net/%7Esowa/cg/cgdpans.htm

	I. INTRODUCTION
	II. CONCEPTUAL GRAPH AND THREE DIMENSIONAL CONCEPTUAL GRAPH
	Introduction to conceptual graph
	Introduction to three-dimensional conceptual graph
	III. FAMILY TREE REPRESENTATION
	IV. INDEX STORAGE
	V. CASE RETRIEVAL
	
	VI. CONCLUSION

