
The TopK Sheme for the Energy-Saving Data Organizationin Broadast-Based Wireless Environments�Jun-Hong Shen, and Ye-In ChangDept. of Computer Siene and EngineeringNational Sun Yat-Sen UniversityKaohsiung, Taiwan, R.O.CE-mail: fshenjh, hangyig�se.nsysu.edu.twAbstratWireless broadasting is an eÆient way to deliver in-formation to mobile lients. Due to power limit for theportable units, how to design an energy-saving orga-nization is a key issue. Imielinski et al. have proposedtwo hashing-based shemes, Hashing A and HashingB, to save energy in the progress of getting data ofinterest. However, these two hashing-based shemeshave the diretory miss phenomenon. To improve thediretory miss phenomenon further, in this paper, wepropose the TopK sheme whih is a multiple-hashing-funtion-based sheme. From our simulation study,we show that the performane of TopK is better thanthat of Hashing B in terms of the average aess timeand the average tuning time.keywords: data broadast, power onservation, sele-tive tuning, wireless network.1 IntrodutionDue to the feature of asymmetry in ommuniations,it is an eÆient way to deliver information to mobilelients via wireless broadast [1℄, e.g., stok quotesand weather information. The main advantage of thismethod is that it is independent of the number oflients tuning to the hannel, i.e., salability [1, 8℄.By broadasting the �le periodially, mobile lientsan speify prede�ned ondition to �lter out the datathey wanted [4℄.Due to the feature of power limits, power onserva-tion is a key issue for the portable units (e.g., palm-tops). When a palmtop is listening to the hannel,its CPU must be in the ative mode for examining�This researh was supported in part by the National SieneCounil of Republi of China under Grant No. NSC94-2213-E-110-003 and by National Sun Yat-Sen University.

data pakets. This is a waste of energy, sine on anaverage, only a very few data pakets are of inter-est to the partiular unit. It is de�nitely bene�ial ifthe palmtop an slip into the doze mode most of thetime and \wake up" only when the data of interestis expeted to arrive [4, 5℄, i.e., seletive tuning. Asa onsequene, it is advantageous to use some spe-ial data organizations, say indexed (or hash-basedor signature-based) data organizations, to broadastdata over wireless hannels to guide mobile units toget the relevant information.For a �le being broadasted on a hannel, the fol-lowing two parameters are of onern [4℄: (1) A-ess time: The average waiting time for lients to getthe required data (2) Tuning time: The amount oftime spent by a portable unit listening to the han-nel, whih will determine its power onsumption.There have been many strategies for reduing poweronsumption. For the uniform broadast in whihthe same data reord appears one in a broadastyle, the exible indexing [4℄, the hashing-basedshemes [4℄, the tree-based indexing [3, 5℄, signatureshemes, the mixture of the index tree and the signa-ture sheme, and the mixture of the hashing and theindex tree sheme [10℄ have been proposed. A skewedindex tree based on data popularity patterns was on-sidered in [2℄. For energy eÆient �ltering of nonuni-form broadast in whih data reords are broadastaording to the aess frequeny, [8℄ proposed index-ing shemes. The above shemes onsidered that thereis only one broadast hannel. However, broadastingdata an be over multiple hannels; therefore, [7℄ fo-used on index and data alloation.Sine in the wireless broadast, the aess time is af-feted by the size of the �le, adding the index in-reases the aess time. If the size of the index is too
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Dis(h', 15) = 2(b)Figure 1: A omparison of Hashing A and Hashing B(for K = 15): (a) Hashing A; (b) Hashing B.large, the whole broadast �le inreases largely. Inthis ase, using the hashing-based sheme is a betterhoie than using the index-based sheme. For poweronservation, Imielinski et al. [4℄ have proposed twohashing-based shemes, Hashing A and Hashing B.Hashing B improves the diretory miss in Hashing Aby taking the minimum overow into onsideration,where the diretory miss is that lient's initial probeomes before the requested data item but after thebuket that has its orresponding o�set.However, in Imielinski et al.'s two hashing-basedshemes [4℄, if the di�erenes between the minimumoverow and the other overows are large extremelyor the small overows appear near the rear part of thebroadast �le, both shemes have a poor performane.Therefore, in this paper, we propose the TopK sheme,whih is a multiple-hashing-funtion-based sheme, toredue the probability of the diretory miss further.From our simulation study, we show that the perfor-mane of TopK is better than that of Hashing B interms of the average aess time and the average tun-ing time.The rest of paper is organized as follows. In setion 2,we give a brief survey of the hashing-based shemes.In setion 3, we present our proposed TopK sheme.In setion 4, we study the performane of TopK bysimulation. Finally, a onlusion is given in setion 5.2 BakgroundIn [4℄, Imielinski et al. have proposed two hashingshemes, Hashing A and Hashing B, to help lientsget data of interest. The smallest logial unit of thebroadast in those shemes is alled a buket om-posed of pakets, the physial unit of the broadast.Figure 1 shows Hashing A and Hashing B, in whihall of the broadast �les are hashed by h(K) =

(K mod 4) + 1 and have the same size. Eah of the�rst 4 physial bukets (alled the designated buket)in Hashing A stores the o�set to the logial buket inthe h(K)th physial buket as shown in Figure 1-(a).For example, in Figure 1-(a), physial buket 4 storesan o�set, 5, to logial buket 4, whih ontains thedata item of key 15. The remaining bukets ontainan o�set to the beginning of the next yle. Moreover,Dis(h;K) is the di�erene between the address of thephysial buket in whihK resides and the designatedbuket for K, for a given hash funtion h. If lientstune into the broadast hannel in the range overedby Dis(h;K), a diretory miss ours. Therefore, thesmaller the Dis(h;K) is, the lower the probability ofthe diretory miss is, and the shorter the aess timeis. In fat, it is the same as that the smaller the totalo�set is, the shorter the aess time is.To redue the probability of the diretory miss,Hashing B modi�es the hashing funtion h(K) toh0(K) as follows:h0(K) = n h(K) if h(K) = 1(h(K)� 1)(1 +MO) + 1 if h(K) > 1;whereMO denotes the minimum number of overowsin the whole �le. The h0(K)th physial buket on-tains the o�set of the logial buket h(K). Figure 1-(b) shows Hashing B, whereMO = 1. In Figure 1-(a)and Figure 1-(b), Dis(h; 15) (= 5) > Dis(h0; 15) (=2); therefore, the probability of the diretory miss ofHashing A is higher than that of Hashing B. Conse-quently, Hashing B has improved the performane ofHashing A.3 The TopK ShemeTo redue the probability of the diretory miss in thehashing shemes, we propose the TopK sheme, whihis a multiple-hashing-funtion-based sheme.3.1 AssumptionsThis paper fouses on the wireless environment. Someassumptions should be restrited in order to makeour work feasible [1℄. These assumptions inlude: (1)Data appears one in the whole broadast �le, andis broadast over a reliably single hannel. (2) Datawill not updated during the urrent broadast yle.(3) When a lient swithes to the publi hannel, itan retrieve bukets immediately. (4) A query resultontains only one buket.



3.2 The Basi IdeaThe basi idea of TopK is to use the utlines to dividethe broadast �le into several regions, whih an havethe di�erent value of the minimum overow. There-fore, eah region an have the di�erent hashing fun-tion to determine the positions of the designated buk-ets.The basi steps of TopK are desribed as follows.Given a parameter, t (t < N), whih determinesthe number of the utlines, we then divide thewhole �le with N logial bukets into (t + 1) regions(R1; R2; : : : ; Rt+1) by onsidering the desending or-der of di�erenes of overows. For eah region Ri(1 � i � t + 1), we design the related hashing fun-tion by using the value ofMOi in this regionRi, whereMOi is the value of the minimum overow in the ithregion. Sine the value of MOi in eah region Ri anbe di�erent, we an have di�erent hashing funtionsfor those (t + 1) regions. (Note that in Hashing B,there is only one value of MO.)3.3 The TopK ShemeFor our illustrations learly, we let Oi be the numberof overows whih follow the related logial buketand D[i℄ = jOi+1 � Oij, 1 � i < N . Moreover, welet i denote the logial buket of the ith utline and0 = 1.Formally, the algorithm of this sheme is shown inFigure 2. From lines 01{05, the di�erenes of over-ows between two adjaent logial bukets for N logi-al bukets are alulated out. (Note thatD stores thedi�erenes of overows for N logial bukets and DIstores the orresponding indies of D.) And then wesort those di�erenes in a desending order (line 06).(Note that in the SortI proedure, when the swap ofD[i℄; D[j℄ ours, the orrespondingDI [i℄; DI [j℄ mustalso be swapped.) Finally, we �nd t utlines by onsid-ering the desending order of the di�erenes of over-ows (lines 07{11), where CS[i℄ stores the positionof the ith utline. (Note that CS may be in disor-der after a for loop, beause the algorithm of TopKdoes not determine the utlines in a ertain diretion.Therefore, CS must be sorted in line 09.)Let's use one example to illustrate this sheme. Figure3 shows an example ofHashing B, whereO1 = O2 = 8,O3 = O4 = 4, O5 = O6 = 2, O7 = O8 = 1, MO = 1,h(K) = (K mod 8) + 1, TShift (= P8i=1 Shifti =0 + 7 + 14 + 17 + 20 + 21 + 22 + 22) = 123, MO isthe minimum number of overows in the whole �le,

01 for i := 1 to (N � 1) do02 begin03 DI[i℄ := i;04 D[i℄ := jOi+1 �Oij;05 end;06 SortI(D;DI); (* in a desending order *)07 for i:= 1 to t do08 CS[i℄ := DI[i℄ + 1;09 Sort(CS); (* in an asending order *)10 for i := 1 to t do11 i := CS[i℄;Figure 2: The algorithm of TopK
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(D: the di�erene of overows between two adjaent logial buketsP: the o�set to the designated logial buketL: the logial buket numberO: the number of overows whih follow the related logial buketB: the physial buket numberFigure 3: An example of Hashing BTShift is the total summation of Shifti and Shiftiis the o�set to logial buket i.For the same input, Figure 4 shows the result of TopK,where t = 2 and TShift = 5. Following the algorithmfrom lines 01{05, di�erenes of overows are D[1℄ =0; D[2℄ = 4; D[3℄ = 0; D[4℄ = 2; D[5℄ = 0; D[6℄ = 1and D[7℄ = 0 , and the orresponding indies of D areDI [1℄ = 1; DI [2℄ = 2; DI [3℄ = 3; DI [4℄ = 4; DI [5℄ =5; DI [6℄ = 6 and DI [7℄ = 7. (Note that after sortingD in a desending order, we have D[1℄ = 4; D[2℄ =2; D[3℄ = 1; D[4℄ = 0; D[5℄ = 0; D[6℄ = 0; D[7℄ = 0and DI [1℄ = 2; DI [2℄ = 4; DI [3℄ = 6; DI [4℄ =7; DI [5℄ = 1; DI [6℄ = 5; DI [7℄ = 3.) From lines 07{09,we then have CS[1℄ = 3 and CS[2℄ = 5. Aordingly,from lines 10{11, it turns out that 1 = 3 and 2 = 5.Therefore, given t = 2, we have divided the whole �leinto 3 regions. The region before 1 is R1 andMO1 =8. The region starting from 1 and ending before 2is R2 and MO2 = 4. The region starting from 2to the end of the �le is R3 and MO3 = 1. Then, weuseMO1 (= 8) to determine whih physial buket tostore Shift, when 1 < h1(K) � 1 (= 3). MO2 (= 4)andMO3 (= 1) are used, when 1 < h1(K) � 2 (= 5)and 2 < h1(K) � 8, respetively.
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Table 1: The hashing funtions in TopKHashing Funtion Conditionh1(K) = (K mod N) + 1 h1(K) = 1= (K mod 8) + 1;h2(K) = (h1(K)� 0)� (1 +MO1) + 1 1 < h1(K) � 3= (h1(K)� 1)� (1 + 8) + 1= (h1(K)� 1)� 9 + 1;h3(K) = (1 � 0)� (1 +MO1)+ 3 < h1(K) � 5(h1(K)� 1)� (1 +MO2) + 1= (3� 1)� (1 + 8)+(h1(K)� 3)� (1 + 4) + 1= 18 + (h1(K)� 3)� 5 + 1;h4(K) = (1 � 0)� (1 +MO1)+ 5 < h1(K) � 8(2 � 1) � (1 +MO2)+(h1(K)� 2)� (1 +MO3) + 1= (3� 1)� (1 + 8) + (5� 3)� (1 + 4)+(h1(K)� 5) � (1 + 1) + 1= 18 + 10 + (h1(K)� 5)� 2 + 1;* 0 = 1
Table 1 lists all hashing funtions for TopK used inFigure 4. The part (1 +MO1) of h2(K) means thatin this region (1 < h1(K) � 1), we store the valueof Shift for every (1+MO1) bukets. (Note that wemust add one more 1 in eah hi, sine the physialbuket is numbered from 1.) In h3(K), the �rst part(1 � 0) � (1 +MO1) + 1 (as shown in Figure 4) isthe total bukets from the beginning of the broadastyle to the designated buket (= 19) of 1 (= 3), andthe seond part (h1(K)� 1)� (1 +MO2) is used tostore the value of Shift for every (1 +MO2) buketsafter the designated buket of 1 and ending at thedesignated buket (= 29) of 2 (= 5). In h4(K), the�rst part (1 � 0) � (1 +MO1) + (2 � 1) � (1 +MO2) + 1 is the total bukets from the beginning ofthe broadast yle to the designated buket of 2, andthe seond part (h1(K)� 2)� (1 +MO3) is used tostore the value of Shift for every (1 +MO3) buketsafter the designated buket of 2. In general, for Nlogial bukets and t utlines, there are (t+2) hashingfuntions for (t+1) regions, whih are listed in Table2.In Figure 4, there are 2 utlines (t = 2), and therelated 4 hashing funtions are listed in Table 1. Forexample, in Figure 4, h1(K) = 2 falls in the range of1 < h1(K) � 3; therefore, the physial buket whihstores Shift2 to logial buket 2 is (2�1)�9+1 = 10(by h2(K)). For logial buket 4, we use h3(K) toalulate the physial buket whih stores Shift4 andthe result is 18 + (4 � 3) � 5 + 1 = 24. Obviously,the omparison of Hashing B and TopK shows thatTShift (= 5) of TopK is less than that (= 123) ofHashing B, so we an onlude that TopK performsbetter than Hashing B.

Table 2: The (t+2) hashing funtions for (t+1) regionsand t utlinesh1(K) = (K mod N) + 1; if h1(K) = 1h2(K) = if 1 < h1(K) � 1(h1(K) � 0) � (1 +MO1) + 1;h3(K) = (1 � 0) � (1 +MO1)+ if 1 < h1(K) � 2(h1(K) � 1) � (1 +MO2) + 1;� � �hi(K) = if i�2 < h1(K) � i�1i�2Xx=1((x � x�1) � (1 +MOx))+(h1(K) � i�2) � (1 +MOi�1) + 1;� � �ht+1(K) = if t�1 < h1(K) � tt�1Xx=1((x � x�1) � (1 +MOx))+(h1(K) � t�1) � (1 +MOt) + 1;ht+2(K) = if t < h1(K) � NtXx=1((x � x�1) � (1 +MOx))+(h1(K) � t) � (1 +MOt+1) + 1;3.4 Aess ProtoolWhen tuning into the hannel for searhing the dataitem of key K, a lient retrieves the orrespondinghashing funtion from the urrent buket aordingto key K [4℄. The lient then waits for the designatedbuket of key K. After getting the designated buket,the lient has the o�set to reah the requested data.4 PerformaneIn this setion, we study the performane of the pro-posed TopK sheme. We �rst make a omparison ofTopK and Hashing B [4℄, and then make a omparisonof TopK and a tree-based approah, SL [3℄.4.1 Generation of OverowsFirst, given LB, the amount of logial bukets, wegenerate the overow patterns for LB logial buketsby the uniform distribution with the range betweenOmin and OMax. Omin and OMax denote the mini-mum size of overows and the maximum one, respe-tively. Based on the result of the above generationof the overow patterns for LB logial bukets, wethen onsider four kinds of distributions of those LBoverow patterns, inluding the inreasing, dereas-ing, onvex and onave distributions. Obviously, wehave the hashing funtion h(K) = (K mod LB) + 1,and the amount of total physial bukets, B, equalsLB +PLBK=1OK .The parameter, t, is given to determine the numberof utlines. Sine the number (= t + 2) of hashingfuntions is more than that (= 2) of Hashing B, thebuket size of our TopK is somewhat larger than that



of Hashing B. Therefore, as ompared to Hashing B,the average aess time and the average tuning timeof TopK are multiplied by the fator f (= DH+ (t+2)2DH+1 ).(DH denotes the ratio of the data part to the part ofstoring hashing funtions in a buket.)4.2 Performane Analysis of Aess Timeand Tuning TimeIn our simulation, we assume that the whole logialbukets (= LB) are requested. (Note that sine thedistribution of the overows for TopK and HashingB is the same, we do not onsider the aess of theoverow bukets in our experiment.) The aess timeATK \per key" K, 1 � K � LB, is as follows [4℄.ATK = Dis(h;K)B � �B + 12 �Dis(h;K)�+�1� Dis(h;K)B �� �B�Dis(h;K)2 +Dis(h;K)�= Dis(h;K)B � �B + 12 �Dis(h;K)�+�1� Dis(h;K)B �� B+Dis(h;K)2 , (1)where B�Dis(h;K)2 is the mean probing position out-side the displaement area. In equation (1), the �rstterm is for the ase of the diretory miss, and the se-ond one is for the ase of the non-diretory miss. Theaverage aess time for the broadast is PLBK=1 ATKLB[4℄.On the other hand, the tuning time TTK \per key"K, 1 � K � LB, is alulated as follows [9℄.TTK = 3� Pos(K)B + 4� �1� Pos(K)B �,where Pos(K) is the di�erene between the beginningof the broadast yle and the physial buket on-taining the o�set to the logial buket whih ontainskey K. The average tuning time for the broadast isPLBK=1 TTKLB .4.3 Simulation Results: TopK vs. Hash-ing BIn this omparison, we let LB = 100, Omin = 1,OMax = 50, and DC = 50, resulting in B = 2608.Moreover, we give t = 2 and t = 3, resulting inf = 1:01961 and f = 1:02941, respetively. The sim-ulation results disussed later are the average of 100ases. We will onsider t = 2 and t = 3 for those fourkinds of overow distributions.Figure 5 shows the average aess time of TopK andHashing B. In Figure 5, under these four ases ofthe distributions, the average aess time of TopK isshorter than that of Hashing B no matter t = 2 ort = 3. This is beause the minimum overow in Hash-ing B is always a onstant (alled MOf ) for a given
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Figure 6: A omparison of the average tuning time ofTopK and Hashing Bvalue of Pos(K) is, and the shorter the tuning time is.Therefore, the average tuning time of TopK is shorterthan that of Hashing B, no matter t = 2 or t = 3.Note that in fat, we have tried another threemultiple-hashing-funtion-based shemes in [9℄ to de-termine the positions of utlines. However, from oursimulation study, we have observed that TopK out-performs the other shemes.4.4 Simulation Results: TopK vs. SLIn this simulation, we assume that the whole keysare requested; that is, the whole bukets are aessed.We assume that the number of real data items of abuket in TopK is the same as that in SL, and thatthe storage size of eah hashing funtion is equal tothat of a data item. While omparing TopK withSL, we multiply the aess time of TopK by n+(t+2)nto normalize, where n is the apaity of a buket.In SL, we onsider a balaned index tree and assumethat eah node has the same number of hildren. Theindex tree of SL has two parts: (1) The repliatedpart onstitutes the top r levels of the index tree;(2) the non-repliated part onsists of the rest levels[3℄. In the broadast yle, the number of appearanetimes of eah node in (1) equals the number of itshildren. On the other hand, the remaining indexnodes will appear only one in the broadast yle.We assume that the lients uniformly tune into thebroadast hannel. Sine the number of the repliatedlevels of the index tree a�ets the aess time, weuse the optimal value of r from [3, 5℄. The formulafor alulating the average aess time for SL is from[3, 5℄.Figure 7 shows the omparison of the average aesstime of TopK and SL, where LB = 150, t = 3, Omin =40, OMax = 50, B is between 6795 and 6921, and theaverage of Bs is 6852. In Figure 7, we an observethat the average aess time of TopK is shorter than
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