
 
 

 

  
Abstract— In this article an attempt is made to study the 

applicability of a general purpose, supervised feed forward neural 
network with one hidden layer, namely radial basis function 
(RBF) neural network and finite element method (FEM) to solve 
the inverse problem of parameter identification. The methodology 
used in this study consists in the simulation of a large number of 
variations of magnetic relative permeability and electric 
conductivity in a material under test by FEM. Then the obtained 
results are used to generate a set of vectors for the training of a 
RBF neural network. Finally, the obtained neural network is used 
to identify a electromagnetic parameters of a group of new 
materials that not belonging to the original dataset.  Performance 
of the RBF neural network was also compared with the most 
commonly used multilayer perceptron network model. and the 
results show that RBF network performs better than multilayer 
perceptron network model. 
 

Index Terms— FEM, inverse electromagnetic problem, RBF 
neural network, parameter identification. 
 

I. INTRODUCTION 
Multilayer Perceptron (MLP) network models are the 

popular network architectures used in most of the research 
applications in medicine, engineering, mathematical modelling, 
etc [1][2]. In MLP, the weighted sum of the inputs and bias 
term are passed to activation level through a transfer function to 
produce the output, and the units are arranged in a layered 
feed-forward topology called Feed Forward Neural Network 
(FFNN). The schematic representation of FFNN with n inputs, 
m hidden units and one output unit along with the bias term of 
the input unit and hidden unit is given in Fig. 1. An artificial 
neural network (ANN) has three layers: input layer, hidden 
layer and output layer. The hidden layer vastly increases the 
learning power of the MLP. The transfer or activation function 
of the network modifies the input to give a desired output. The 
transfer function is chosen such that the algorithm requires a 
response function with a continuous, single valued with first 
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derivative existence. Choice of the number of the hidden layers, 
hidden nodes and type of activation function plays an important 
role in model constructions [3].  

Radial basis function (RBF) neural network is based on 
supervised learning. RBF networks were independently 
proposed by many researchers [4][5] and are a popular 
alternative to the MLP. RBF networks are also good at 
modelling nonlinear data and can be trained in one stage rather 
than using an iterative process as in MLP and also learn the 
given application quickly. They are useful in solving problems 
where the input data are corrupted with additive noise. The 
transformation functions used are based on a Gaussian 
distribution. If the error of the network is minimized 
appropriately, it will produce outputs that sum to unity, which 
will represent a probability for the outputs. The objective of this 
article is to study the applicability of RBF to solve the inverse 
problem and compare the results with MLP. 

In this paper we present an investigation on the use of FEM 
and ANN in the identifications of relative magnetic 
permeability and electric conductivity of metallic walls. The 
methodology consists of the following steps: 
1- A large number of metallic walls with different magnetic 
permeability are simulated using the finite element method. 
2- The obtained results are then used to generate the training 
vectors for artificial neural network. 
3- The trained network is used to identify new parameters in the 
metallic wall, which not belong to the original dataset. 
4- The network weights can be embedded in an electronic 
device, and used to identify parameters in real pieces, with 
characteristics similar to those of the simulated ones. 

For this methodology, the measured values are independent 
of the relative motion between the probe and the piece under 
test. In other words, the movement is necessary only to change 
the position of the probes, to acquire the field’s values, which 
are necessary for the identification of new parameters. 
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Fig. 1.  Feed forward neural network 

II. RBF NETWORK MODEL 
The RBF network has a feed forward structure consisting of 

a single hidden layer of J  locally tuned units, which are fully 
interconnected to an output layer of L  linear units. All hidden 
units simultaneously receive the n-dimensional real valued 
input vector X  (Fig. 2). The main difference from that of MLP 
is the absence of hidden-layer weights. The hidden-unit outputs 
are not calculated using the weighted-sum mechanism/sigmoid 
activation; rather each hidden unit output jZ  is obtained by 
closeness of the input X  to an n-dimensional parameter vector 

jμ  associated with the jth hidden unit [4]. 
The response characteristicsof the jth hidden unit 

( )J,...,,j 21=  is assumed as 
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where K  is a strictly positive radially symmetric function 

(kernel) with a unique maximum at its ‘centre’ jμ  and which 
drops off rapidly to zero away from the centre. The parameter 

jσ  is the width of the receptive field in the input space from 
unit j. This implies that jZ  has an appreciable value only when 

the distance jX μ−  is smaller than the width jσ . Given an 

input vector X , the output of the RBF network is the 
L-dimensional activity vector Y , whose lth component 
( )L,...,,l 21=  is given by, 
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For 1=l , mapping of (1) is similar to a polynomial threshold 

gate. However, in the RBF network, a choice is made to use 
radially symmetric kernels as ‘hidden units’. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.  Radial basis function neural network 
 
RBF networks are best suited for approximating continuous 

or piecewise continuous real-valued mapping Ln RR:f → , 

where n  is sufficiently small. These approximation problems 
include interpolation problems as a special case. From (1) and 
(2), the RBF network can be viewed as approximating a desired 
function ( )Xf  by superposition of non-orthogonal, 
bell-shaped basis functions. The degree of accuracy of these 
RBF networks can be controlled by three parameters: the 
number of basis functions used, their location and their width 
[3][4]. 

In the present work we have assumed a Gaussian basis 
function for the hidden units given as jZ  for J,...,,j 21= , 
where  

 

 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ −
−= 2

2

2
exp

j

j
j

X
Z

σ

μ
 (3) 

 
and jμ  and jσ  are mean and the standard deviation 
respectively, of the jth unit receptive field and the norm is the 
Euclidean. 

A. Training of RBF Neural Networks 
A training set is an m  labeled pair { }ii dX ,  that represents 

associations of a given mapping or samples of a continuous 
multivariate function. The sum of squared error criterion 
function can be considered as an error function E to be 
minimized over the given training set. That is, to develop a 
training method that minimizes E by adaptively updating the 
free parameters of the RBF network. These parameters are the 
receptive field centres  jμ  of the hidden layer Gaussian units, 
the receptive field widths jσ , and the output layer weights ijw . 
Because of the differentiable nature of the RBF network 
transfer characteristics, one of the training methods considered 
here was a fully supervized gradient-descent method over E 
[4]. In particular, jμ , jσ  and ijw  are updated as follows:  
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where μρ , σρ  and wρ   are small positive constants. This 
method is capable of matching or exceeding the performance of 
neural networks with back-propagation algorithm, but gives 
training comparable with those of sigmoidal type of FFNN      
[6]. 

The training of the RBF network is radically different from 
the classical training of standard FFNNs. In this case, there is 
no changing of weights with the use of the gradient method 
aimed at function minimization. In RBF networks with the 
chosen type of radial basis function, training resolves itself into 
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selecting the centres and dimensions of the functions and 
calculating the weights of the output neuron. The centre, 
distance scale and precise shape of the radial function are 
parameters of the model, all fixed if it is linear. Selection of the 
centres can be understood as defining the optimal number of 
basis functions and choosing the elements of the training set 
used in the solution. It was done according to the method of 
forward selection [4]. Heuristic operation on a given defined 
training set starts from an empty subset of the basis functions. 
Then the empty subset is filled with succeeding basis functions 
with their centres marked by the location of elements of the 
training set; which generally decreases the sum-squared error 
or the cost function. In this way, a model of the network 
constructed each time is being completed by the best element. 
Construction of the network is continued till the criterion 
demonstrating the quality of the model is fulfilled. The most 
commonly used method for estimating generalization error is 
the cross validation error. 

 

III. ELECTROMAGNETIC FIELD COMPUTATION 
In this study, the magnetic field is calculated using the finite 

element method. This method is based on the A  representation 
of the magnetic field. The calculations are performed in two 
steps. First, the magnetic field intensity is calculated by solving 
the system of equations: 
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  ( ) JHrot =  (8) 
 
  ( ) 0=Bdiv  (9) 
 

where H  and E  are the magnetic and electric field 
respectively, B  the magnetic induction and J  the electric 
current density. This system of equations is coupled with 
relations associated to material property, material being 
assumed to be isotropic: 

 
  ( )HHB μ=  (10) 
 

 EJ σ=  (11) 
 
where μ  is the magnetic permeability, σ  is the electrical 
conductivity. 

The magnetic vector potential A  is expressed by: 
 

 ( )ArotB =  (12) 
 

The electromagnetic field analysis for a cartesian system is 
carried out by the finite element method. The equation of the 
electromagnetic field is expressed by the magnetic vector 
potential A : 
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where sJ  is the vector of supply current  
Equation (13) is discretized using the Galerkin finite element 

method, which leads to the following algebraic matrix 
equation: 

 
  [ ] [ ]( ) [ ] [ ]FACK =+ jω  (14) 
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jα  is the interpolation function. 
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iα  is the projection function. 
In the second step, the field solution is used to calculate the 

magnetic induction B . 
More details about the finite element theory can be found in 

[7]. 
 

IV. METHODOLOGY FOR PARAMETER IDENTIFICATION 
First of all, an electromagnetic device was idealized to be 

used as an electromagnetic field exciter (fig. 3). In this paper, 
we have considered direct current in the coils. So, the material 
of the metallic wall must be ferromagnetic. To increase the 
sensitivity of the electromagnetic device a magnetic core with a 
high permeability is used and the air gap between the core and 
the metallic wall is reduced to a minimum. 

 
 
 
 
 
 

 
 
 
 

Fig. 3.  Arrangement for the measurements 
 
Deviations of the magnetic induction (difference in magnetic 

induction without and with material under test) at equally 
stepped points in the external surface of the material under test 
are taken. 

 Fig. 4 shows the steps of the methodology used in this work. 
Steps 1-4 correspond to the finite element analysis. 
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Fig. 4.  Flowchart of the used methodology 
 
The problem was solved under Matlab®

 workspace using the 
partial differential equation toolbox and neural network 
toolbox for the mesh generation and neural networks 
architecture definition. For the finite elements problem and the 
inverse problem solution, we use programs developed by us. 

The simulations were done for a hypothetic metallic wall 
with 1mm height and 15mm width. The material of the wall is a 
magnetic material. The relative permeability of the core is 
supposed to be 500 and the air gap is 0.1mm. Finite element 
meshes with 36000 elements and 18000 nodes, approximately, 
were used in the simulations. Fig. 5 shows a field distribution 
for one of these simulations. 

 

 
Fig. 5.  Solution in magnetic potential vector A 

 
Fig. 6 and 7 shows the evolution of the magnetic induction in 

the region of the device at the sensor position without and with 
metallic wall (material under test) respectively. 

 
Fig. 6.  Magnetic induction field without metallic wall 

 

 
Fig. 7.  Magnetic induction field with metallic wall 

 
During the phase of finite elements simulations, errors can 

appears, due to its massively nature. So, the results of the 
simulations must be carefully analyzed. This can be done, for 
instance, plotting in the same graphic the magnetic induction 
deviations for a set of parameters. Fig. 8 shows the magnetic 
induction deviation in the region of the device at the sensor 
position for three materials having the same electrical 
conductivity (103 [(Ω/m)-1]), and relative magnetic 
permeability ranging from 50 to 300. A similar graphic, with 
electrical conductivity equal to 106 [(Ω/m)-1] and magnetic 
relative permeability ranging from 50 to 300 is shown in Fig. 9. 
Fig 10 shows the graphics for a fixed magnetic relative 
permeability (240), and three different electrical conductivity 
ranging from 6 105 [(Ω/m)-1] to 108 [(Ω/m)-1]. Fig. 11 shows a 
similar graphic, for the magnetic relative permeability equal to 
520. In this graphics the magnetic inductions deviations are at 
vertical axes and length are at horizontal axes. 

 

Generation of the initial 
finite element mesh 

 

Magnetic inductions 
values at the sensor 

position 

Modification in the 
physics parameters 

getting the magnetic 
inductions 

Analysis of the data, in 
order to verify their 

coherence 

1

2

3

4

Generation of the neural 
network training vectors

Definition of the neural 
network architecture 

Neural network training 

Validation tests 

Identification of new 
parameters 

5

6

7

8

9



 
 

 

-6 -4 -2 0 2 4 6

x 10-3

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2
x 10-3

Length [m]

M
ag

ne
tic

 In
du

ct
io

n 
D

ev
ia

tio
n 

[T
]

Magnetic Induction Deviation for Three Values of
                                                Relative Permeability and Conductivity = 103                                               

50 

120 

300 

 
Fig. 8.  Magnetic induction deviation for three values of magnetic 

relative permeability and electrical conductivity equal to 103 
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Fig. 9.  Magnetic induction deviation for three values of magnetic 

relative permeability and electrical conductivity equal to 106 
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Fig. 10.  Magnetic induction deviation for three values of electrical  

conductivity and magnetic relative permeability equal to 240 
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Fig. 11.  Magnetic induction deviation for three values of electrical  

conductivity and magnetic relative permeability equal to 520 
 

V. FORMULATION OF NETWORK MODELS FOR PARAMETERS 
IDENTIFICATIONS 

In the step 5, we generate the training vectors for neural 
network. In this work, we generated 300 vectors with 11 
elements each one for the training of RBF neural network. 
From the original 300 vectors, 225 (75 %) were used in the 
network training, and 75 (25 %) were used in their validation.  

The RBF neural network architecture considered for this 
application was a single hidden layer with Gaussian RBF. The 
basis function φ  is a real function of the distance (radius) r  
from the origin, and the centre is c . The most common choice 
of φ  includes thin-plate spline, Gaussian and multiquadric. 
Gaussian-type RBF was chosen here due to its similarity with 
the Euclidean distance and also since it gives better smoothing 
and interpolation properties [5]. The choice of nonlinear 
function is not usually a major factor in network performance, 
unless there is an inherent special symmetry in the problem. 

Training of the RBF neural network involved two critical 
processes. First, the centres of each of the J Gaussian basis 
functions were fixed to represent the density function of the 
input space using a dynamic ‘k means clustering algorithm’ [8]. 
This was accomplished by first initializing the set of Gaussian 
centres jμ  to random values. Then, for any arbitrary input 

vector ( )tX   in the training set, the closest Gaussian centre, jμ  
is modified as:  

 
 ( )( )old

j
told

j
new
j X μαμμ −+=  (19) 

 
where α  is a learning rate that decreases over time. This phase 
of RBF network training places the weights of the radial basis 
function units in only those regions of the input space where 
significant data are present. The parameter jσ  is set for each 
Gaussian unit to equal the average distance to the two closest 
neighbouring Gaussian basis units. If 1μ  and 2μ   represent the 
two closest weight centres to Gaussian unit j, the intention was 



 
 

 

to size this parameter so that there were no gaps between basis 
functions and only minimal overlap between adjacent basis 
functions were allowed. After the Gaussian basis centres were 
fixed, the second step of the RBF network training process was 
to determine the weight vector W which would best 
approximate the limited sample data X , thus leading to a linear 
optimization problem that could be solved by ordinary least 
squares method. This avoids the problem of gradient descent 
methods and local minima characteristic of back propagation 
algorithm [9]. 

For MLP network architecture, a single hidden layer with 
sigmoid activation function, which is optimal for the 
dichotomous outcome, is chosen. A back propagation 
algorithm based on conjugate gradient optimization technique 
was used to model MLP for the above data [10]. 

Fig. 12 shows the performance of a training session, and 
table I show some results for the validation of the network. 
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Fig. 12. Performance of the RBFNN during a training session 

 
Table I. Expected and obtained values during a training session 

Relative magnetic permeability Electric conductivity 

Expected RBF MLP Expected RBF MLP 

287.55 287.54 287.53 1.799 e1 1.801 e1 1.802 e1 

311.34 311.35 311.35 4.500 e2 4.506 e2 4.519 e2 
446.21 446.21 446.24 2.250 e1 2.249 e1 2.246 e1 
527.07 527.04 527.33 3.010 e5 3.011 e5 3.014 e5 

 

VI. NEW IDENTIFICATIONS 
After the NN training and validations, new parameters were 

simulated by the FEM, for posteriori identification by the 
network. Table II shows the values of parameters of the 
material under test, and the obtained values, by the NN.  

 
 
 
 
 

 

Table II. Simulation results for new parameters 

Parameter Relative magnetic permeability Electric conductivity 

 Expected Obtained Expected Obtained 

  RBF MLP  RBF MLP 

1 89 89.001 88.933 6.500 e1 6.502 e1 6.503 e1
2 212 211.99 211.98 2.500 e2 2.501 e2 2.502 e2
3 360 360.02 359.95 2.200 e6 2.199 e6 2.201 e6
4 472 472.01 472.03 4.100 e5 4.099 e5 4.101 e5

As we can see, the results obtained in the identification of 
new parameters, obtained by the neural network agree very 
well with the expected ones, demonstrating that the association 
of the finite element method and RBF neural network in very 
powerful in the solution of inverse problems, like parameters 
identifications in metallic walls. 
 

VII. CONCLUSION 
In this paper we presented an investigation on the use of the 

finite element method and artificial neural network for the 
identification of parameters in metallic walls, present in 
industrial plants. 
The proposed approach was found to be highly effective in 
identification of parameters in electromagnetic devices. 
Comparison of the result indicates that RBF neural network is 
trained and identifies the electromagnetic parameters faster 
than MLP neural network. Future works are intended to be 
done in this field, such as the use of more realistic finite 
element problems, computer parallel programming, in order to 
get quickly solutions. 
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