

Abstract—Multiple biological sequence alignment is a
challenging task due to its high demands for computational power,
memory capacity and bandwidth and a number of novel
algorithms have been developed for this. In this paper, an MPI
based parallel multiple sequence alignment (MSA) algorithm is
implemented with the Divide-and-Conquer approach. With this
approach, the sequences are first cut down into smaller
subsequences to minimize the computational space. Then these
subsequences are run in parallel on different available processors
using MPI. Each of those processors first builds an individual
guide tree and then aligns the subsequences by
Needleman-Wunsch algorithm for biological sequence
comparison. After aligning, the results are then sent to the main
processor where they concatenate to produce the final alignment.
Because of the creation of multiple guide trees, this approach
achieves a significantly better speed up than a simple MPI based
parallel MSA algorithm. But some quality of the alignment is
compromised for the introduction of gaps at the start or end of
subsequence alignments. Therefore, some heuristic methods for
fixing the cut points were suggested for future improvement.

Index Terms— Multiple sequence alignment, Guide tree,
Divide-and-Conquer technique, Alignment sensitivity.

I. INTRODUCTION
Multiple sequence alignment (MSA) continues to be an

active field of research in Computational Biology and a number
of novel approaches have been developed during the last years.
Until some years ago, research on sequence alignment was
mainly concerned with aligning proteins or single genes.
During the last few years, however, comparison of genomic
sequences became a crucial tool for uncovering functional
elements such as genes or regulatory sites. Consequently, the
focus of alignment research shifted to large genomic
sequences. MSA helps us to organize, visualize and analyze
sequence data, to estimate evolutionary distance, to highlight

Manuscript received March 6, 2006. This work has been done as a

requirement of an M.Sc course project.
Md. Maruf Monwar is from the University of Northern British Columbia,

Prince George, Canada. He is a graduate student of Computer Science. He is
also a member of IAENG and a student member of IEEE.
(phone: 1-250-612-0859; fax: 1-250-960-5544; e-mail: monwar@unbc.ca).

Siamak Rezaei is an Associate Professor of Computer Science of the
University of Northern British Columbia, Prince George, Canada.
(phone: 1-250-960-6263; fax: 1-250-960-5544; e-mail: siamak@unbc.ca).

conserved sights or regions, and to uncover changes in gene
structures etc.

Alignment of sequences in the order of hundreds of
kilobases or megabases is computationally demanding and
classified as an NP-hard problem [1]. Some extremely efficient
tools have been developed that are able to align entire
chromosomes or genomes. These approaches, however, work
best on aligning closely related species; they are unable to
compare sequences with larger evolutionary distances, i.e. less
than 30% similarity

There are different approaches for sequence alignment,
such as, exact algorithm, progressive algorithm,
Divide-and-Conquer algorithm, and iterative algorithm. In this
work, progressive and Divide-and-Conquer approaches are
collectively used for sequence alignment.

A. Progressive Alignment
The most commonly used heuristic methods are the

tree-based progressive alignment strategy. The idea is to
establish an initial order (i.e. a guide tree) for joining the
sequences and to follow this order in gradually building up the
alignment.

The difficulty with progressive alignments is that they
depend upon the initial pair-wise sequence alignments. If the
sequences are closely related, then the likelihood is high that
the initial alignment contains relatively few errors. However, if
the initial sequences are distantly related, then there will be
more errors in the alignment, which will propagate through the
rest of the alignments. Furthermore, suitable scoring matrices
and gap penalties must be chosen to apply to the sequences as a
set [2].

B. Divide-and-Conquer Alignment

The general idea of DCA is based on Carillo and Lipman
algorithm [3] to limit the computation to a smaller space and to
cut each sequence in two behind a suitable cut position
somewhere close to its midpoint. This way, the problem of
aligning one family of (long) sequences is divided into the two
problems of aligning two families of (shorter) sequences, the
prefix and the suffix sequences. This procedure is reiterated
until the sequences are sufficiently short - say, shorter than a
pregiven stop size L which is a parameter of DCA - so that they
can be aligned optimally by MSA. Finally, the resulting short
alignments are concatenated, yielding a multiple alignment of

An Efficient Parallel Processing Approach For
Multiple Biological Sequence Alignment

Md. Maruf Monwar, Member IEEE, and Siamak Rezaei, Member, IEEE

IAENG International Journal of Computer Science, 33:2, IJCS_33_2_5
__

(Advance online publication: 24 May 2007)

the original sequences. The following figure sketches this
general procedure [1].

Fig. 1: General approach for Divide-and-Conquer algorithm

II. MPI-BASED DIVIDE-AND-CONQUER ALGORTITHM FOR
MULTIPLE SEQUENCE ALIGNMENT

A. Basic Idea

Progressive alignments use an approximation of a guide
tree between the sequences as a guide tree that dictates the
alignment order. The progressive strategy is appropriate for
many alignment problems, but also suffers from its greediness.
Errors made in the first alignments during the progressive
protocol cannot be corrected later as the remaining sequences
are added in. attempts to minimize such alignment errors have
generally been targeted at global sequence weighting [4],
where the contributions of individual sequences are weighted
during the alignment process. However, such global
sequence-weighting schemes carry the risk of propagating
rather than reducing error when used in progressive
multiple-alignment strategies [5].

Simultaneous alignments are high quality heuristics that
deliver an alignment usually very close to optimality. They
nonetheless remain an extremely CPU and memory-intensive
approach, applicable only to about nine sequences of average
length for the fastest implementation (DCA). From Figure 1
one can easily notice that the divide-and-conquer technique
actually provides a perfect structure for parallel programming,
and each sub problems can be computed independently.
Another major advantage of using divide-and-conquer
technique is that extremely long sequences can be also
acceptable by a multiple sequence alignment program as long
as the sequences can be cut into small enough pieces.

Based on the characteristics of both progressive and
divide-and-conquer alignments, long sequences will be first cut
into several sets of sub-sequences, and each of these
sub-sequences will be aligned progressively and independently
by a number of processors. In some cases, the sequences are

extremely long and cannot be feed very well into a
simultaneous alignment program even after they are divided
into several shorter pieces. That is why sometimes progressive
alignment is still considered for the sub-sequences alignments.

This MPI based multiple sequence alignment approach
actually combines the idea of divide-and-conquer alignment
and progressive alignment. In order to check the alignment
speed and sensitivity, two different alignment programs,
depending on how the guide tree(s) would be applied, are done
for getting a better sense. One program is called the single-tree
alignment, in which a guide tree is built for the full-length
sequences at the beginning, and after the sequences are cut into
sub-sequences, all the sub-alignments will follow the single,
uniformed tree. Multiple-tree alignment is thus the other
implementation, in which sequences will be cut first and each
of the sub-sequences will build their own guide tree to guide
their individual alignments.

B. Algorithm

In our implementation, we have developed two programs
for MSA using C++ language. One program is for single-tree
implementation and the other program is for multiple-tree
implementation. In the single-tree implementation, the main
processor will build the guide tree first and then divide the
sequences into n subsequences by using Divide-and-Conquer
technique. Then one of these subsequences are kept by the main
processor and the rest of the sub sequences are sent to n-1
processors in parallel. Message passing technique is used for
sending these n-1 subsequences to n-1 processors. Then those
processors (including main processor) will execute the MSA
module of the program according to the previously built guide
tree in parallel but independently [6]. After doing the
subsequence alignment, all of these n-1 processors will send
the alignment results to the main processors. The main
processor will merge the sub sequence alignment, sent by n-1
processors, to complete the final alignment.

On the other hand, in multiple-tree implementation, the
Divide-and-Conquer technique is applied first to the sequences
to make subsequences. Then one of these subsequences are
kept by the main processor and the rest of the sub sequences are
sent to n-1 processors in parallel. Message passing technique is
used for sending these n-1 subsequences to n-1 processors.
Then each of those processors (including main processor) will
build guide tree from their own subsequences and execute the
MSA module of the program according to their own guide tree
in parallel. After doing the subsequence alignment, all of these
n-1 processors will send the alignment results to the main
processors. The main processor will merge the sub sequence
alignment, sent by n-1 processors, to complete the final
alignment.

The computers used in this implementation are UNIX
networked workstations from the laboratory of Computer
Science department of University of Northern British
Columbia, Canada. The laboratory has nearly 80 workstations.
We have used maximum 10 workstations for our testing. But it
can be tested with more than 10 processors. The number of
processors depends on the number of cuts in the initial
sequences. The minimum size that the processors can handle is

two (L=2) i.e., there must be at least two characters in very
subsequences.

The pseudo code for our implementation (multiple tree
approach) is given below.

Po: Read sequence
 Break sequence (sequence, subsequence[n])
 Parallel do t=0 to n do
 Send (processor[n], subsequence[n])
 Pi: Parallel do s = 0 to m do
 Break sequence (subsequence,
 blockwisesubsequence[m])
 Send (processor[m],
 blockwisesubsequence[m])
 Pj: Make scoring matrix
 Send (processor, scoring matrix)
 Receive (scoring matrix[m],)
 Build guide tree(scoring matrices)
 Analyze guide tree for independency
 Send independent tree alignments
 (processor[m], independent tree elements)
 Pj: Receive independent tree element
 Perform alignment
 Send partial alignment of sequence to
 (alignment, processor)
 Receive partial alignments from Pj
 Make alignments for subsequences by
 progressive alignment
 Send alignments (alignment, processor)
 Receive alignment (alignment, processor[n])
 End do
 Make final alignment
End

III. SIMULATIONS AND COMPARISON RESULTS

The main idea behind implementing parallelism deployed
in the program was based on the divide-and-conquer technique
structure and on the creation of single or multiple-tree. On one
hand it is clear that optimal cut positions exist; on the other
hand it is clear that it is NP-hard to find them [1]. In this
implementation, all the initial sequences are chopped into same
size sub sequences according to the number of available
processors.

Since progressive alignment only performs global
alignment and match sequences over their full lengths,
problems with this approach can arise when highly dissimilar
sequences are compared. Especially when there is a large
difference in the lengths of two sequences to be compared,
global alignment routines become unwarranted. This is because
highly similar internal regions may be overshadowed by
dissimilar regions and the high gap penalties normally are
required to achieve proper global matching. Moreover, many
biological sequences are modular and show shuffled domains,
and the repeats of internal sequence can also severely limit the
applicability of global methods. Therefore, in our simulations,

only sequences with similar length and over 40% identical are
tested for the single-tree and multiple-tree alignment programs.

A. Speed Comparison

The major advantage of MPI programming is program
speedup in terms of time, because each process processes a
different piece of the same job simultaneously and
independently. However, this is obviously the case for the
multiple-tree alignment program, but not quite true for the
single-tree alignment, which does not gain any speed
improvement after some point. The reason is that in single-tree
implementation, no matter how many processors are used,
every time a single guide tree for the full length sequences are
built at the beginning for the processors sub-alignments, and it
appears to be the most time-consuming part of all alignment
procedures.

For testing the implementation over various length
sequences, three sample input files are chosen from a publicly
available database BAliBASE (Refs 2) [7], which have
benchmark alignments. The first file consists of 15 sequences
each approximately 57 characters long, second file consists of
15 sequences each approximately 404 characters long and the
third file consists of 34 sequences each approximately 1400
characters long. After simulations, for multiple-tree
implementation we obtained a very good speedup for large
sequences compared to single-tree implementation. We also
obtained sufficiently satisfactory speed up for small and
medium sequences. The results of the simulations are shown in
the following figures:

Speed Comparison for small length sequences

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10

No. of slave processors

Ti
m

e
(m

s

Single Tree
Mltiple Tree

Fig. 2: Speed up with respect to the no. of processors for small
length sequences

Speed Comparison for medium length
sequences

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10

No. of slave processors

Ti
m

e
(m

s

Single Tree
Multiple Tree

Fig. 3: Speed up with respect to the no. of processors for
medium length sequences

Speed Comparison for large sequences

0

100

200

300

400

500

600

700

800

900

1 2 3 4 5 6 7 8 9 10

No. of slave processors

Ti
m

e
(s Single Tree

Multiple tree

Fig. 4: Speed up with respect to he no. of processors for large
sequences

B. Alignment Sensitivity Comparison

BAliBASE provides a module (BaliScore) that defines two
scores. SP is the ratio of the number of correctly aligned pairs
of positions in the test (predicted) alignment to the number of
aligned pairs in the reference (structurally informed) alignment.
TC is the ratio of the number of correctly aligned columns in
the test alignment to the number of aligned columns in the
reference alignment. Both SP and TC range from 1.0 for perfect
agreement to 0.0 for no agreement. The designers of
BAliBASE recommend SP as the best quality score for Refs1, 2
and 3, TC as the best score for Refs4 and Refs5.

Currently, our tests were done mainly based on Refs2, thus
following figure (fig. 5) reflects the average SP scores
calculated by BAliScore in terms of the number of processors
for the single-tree and multiple-tree alignment programs. It
turns out that the quality of alignments drops down for both
approaches when the number of processors increases, as
unwanted gaps are inserted at the start or the end positions of
the sub-alignments, thus bring more gaps in the final full-length
alignments and infects the values of SP scores.

Fig. 5: SP-scores with respect to the number of processors,
tested for large sequences

IV. CONCLUSIONS

Divide-and-Conquer technique with the progressive
alignment approach is implemented to incorporate more
parallelism in biological sequence alignment algorithm to face
the problem of growing computational power in the biomedical
field as the complexity and the volume of data increases.
Multiple-tree alignment seems to have a better speedup
performance than single tree alignment for large sequences. It
also obtains sufficiently satisfactory speed up for small and
medium sequences. But both approaches decrease alignment
sensitivity as the number of processors increases.

V. FUTURE SUGGESTIONS

To overcome the problem of unwanted gaps introduced at
the start and end of the sub sequence alignments, which affect
the sensitivity performance, the following three ways can be
thought of and deployed in the future. Firstly, in stead of cutting
the sequences into same size subsequence, some more effective
calculations should be found and performed to decide the cut
points. For this, overlapping alignment or sliding window cut
points calculation approach can be used. Secondly, weights
could be considered and given to the sequences –
downweighting the sequences that are very similar to other
ones in the data set and upweighting the most divergent
sequences. The weights will be calculated directly from the
branch lengths in the initial guide tree for single-tree
implementation and all the guide trees for multiple-tree
implementation. Thirdly, affine gap penalties and varying
substitution matrices may be applied dynamically in the
progressive alignment.

REFERENCES

[1] A.W.M. Dress, G.FÃllen and S.W. Perrey, “A Divide-and-Conquer
approach to multiple alignment,” in the proceedings of the 3rd
International Conference on Intelligent Systems for Molecular Biology
(ISMB 95), AAAI Press, Menlo Park, CA, USA, 1995, pp. 107-113.

[2] Joanne Bai and Siamak Rezaei, “Parallelized multiple sequence
alignments with multi threads,” in the proceedings of the 27th Annual
Conference of the IEEE Engineering in Medicine and Biology Society
(EMBS)-2005, Sanghai, China, Sptember 1-4, 2005.

[3] H. Carillo. and D. Lipman, “The multiple sequence alignment problem in
biology”, SIAM Journal of Applied Mathematics, vol. 48(5), 1998, pp.
1073–1082, 1998.

[4] Higgins,D.G. and Gibson,T.J., “CLUSTALW: improving the sensitivity
of progressive multiple sequence alignment through sequence weighting,
position-specific gap penalties and weight matrix choice,” Nucleic Acids
Research, vol. 22, 1994, pp. 4673–4680.

 SP-Scores with respect to the number of
processors (tested for large sequences)

0

0.2

0.4

0.6

0.8

1 2 3 4 5

Number of pr ocessor s

Single-tree

Multiple-tree

S
P
|
S
c
o
r
e

[5] J. Heringa, “Two strategies for sequence comparison:
Profile-preprocessed and secondary structure-induced multiple
alignment,” Computer Chemistry, vol. 23, 1999, pp. 341-364.

[6] J. Thompson, F. Plewniak, et al., “BAliBASE: A comprehensive

comparison of multiple alignment programs,” Nucleic Acids Research,
vol. 27(13), 1999, pp. 2682-2690.

[7] J. Thompson, F. Plewniak, et al, “BAliBASE (version 2.0): A benchmark

alignment database, including enhancements for repeats, transmembrane
sequences and circular permutations,” 1999.

