
 
 

 

  
Abstract—Multiple biological sequence alignment is a 
challenging task due to its high demands for computational power, 
memory capacity and bandwidth and a number of novel 
algorithms have been developed for this. In this paper, an MPI 
based parallel multiple sequence alignment (MSA) algorithm is 
implemented with the Divide-and-Conquer approach. With this 
approach, the sequences are first cut down into smaller 
subsequences to minimize the computational space. Then these 
subsequences are run in parallel on different available processors 
using MPI. Each of those processors first builds an individual 
guide tree and then aligns the subsequences by 
Needleman-Wunsch algorithm for biological sequence 
comparison.  After aligning, the results are then sent to the main 
processor where they concatenate to produce the final alignment. 
Because of the creation of multiple guide trees, this approach 
achieves a significantly better speed up than a simple MPI based 
parallel MSA algorithm. But some quality of the alignment is 
compromised for the introduction of gaps at the start or end of 
subsequence alignments. Therefore, some heuristic methods for 
fixing the cut points were suggested for future improvement.  

 
Index Terms— Multiple sequence alignment, Guide tree, 
Divide-and-Conquer technique, Alignment sensitivity. 

 
 

I. INTRODUCTION 
Multiple sequence alignment (MSA) continues to be an 

active field of research in Computational Biology and a number 
of novel approaches have been developed during the last years. 
Until some years ago, research on sequence alignment was 
mainly concerned with aligning proteins or single genes. 
During the last few years, however, comparison of genomic 
sequences became a crucial tool for uncovering functional 
elements such as genes or regulatory sites. Consequently, the 
focus of alignment research shifted to large genomic 
sequences. MSA helps us to organize, visualize and analyze 
sequence data, to estimate evolutionary distance, to highlight 
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conserved sights or regions, and to uncover changes in gene 
structures etc.  

Alignment of sequences in the order of hundreds of 
kilobases or megabases is computationally demanding and 
classified as an NP-hard problem [1]. Some extremely efficient 
tools have been developed that are able to align entire 
chromosomes or genomes. These approaches, however, work 
best on aligning closely related species; they are unable to 
compare sequences with larger evolutionary distances, i.e. less 
than 30% similarity    

There are different approaches for sequence alignment, 
such as, exact algorithm, progressive algorithm, 
Divide-and-Conquer algorithm, and iterative algorithm.  In this 
work, progressive and Divide-and-Conquer approaches are 
collectively used for sequence alignment.  

 

A. Progressive Alignment 
The most commonly used heuristic methods are the 

tree-based progressive alignment strategy. The idea is to 
establish an initial order (i.e. a guide tree) for joining the 
sequences and to follow this order in gradually building up the 
alignment.  

The difficulty with progressive alignments is that they 
depend upon the initial pair-wise sequence alignments.  If the 
sequences are closely related, then the likelihood is high that 
the initial alignment contains relatively few errors.  However, if 
the initial sequences are distantly related, then there will be 
more errors in the alignment, which will propagate through the 
rest of the alignments. Furthermore, suitable scoring matrices 
and gap penalties must be chosen to apply to the sequences as a 
set [2]. 

 

B. Divide-and-Conquer Alignment 

The general idea of DCA is based on Carillo and Lipman 
algorithm [3] to limit the computation to a smaller space and to 
cut each sequence in two behind a suitable cut position 
somewhere close to its midpoint. This way, the problem of 
aligning one family of (long) sequences is divided into the two 
problems of aligning two families of (shorter) sequences, the 
prefix and the suffix sequences. This procedure is reiterated 
until the sequences are sufficiently short - say, shorter than a 
pregiven stop size L which is a parameter of DCA - so that they 
can be aligned optimally by MSA. Finally, the resulting short 
alignments are concatenated, yielding a multiple alignment of 
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the original sequences. The following figure sketches this 
general procedure [1]. 

 

 
 

Fig. 1: General approach for Divide-and-Conquer algorithm 

 

II. MPI-BASED DIVIDE-AND-CONQUER ALGORTITHM FOR 
MULTIPLE SEQUENCE ALIGNMENT 

A. Basic Idea 

Progressive alignments use an approximation of a guide 
tree between the sequences as a guide tree that dictates the 
alignment order. The progressive strategy is appropriate for 
many alignment problems, but also suffers from its greediness. 
Errors made in the first alignments during the progressive 
protocol cannot be corrected later as the remaining sequences 
are added in. attempts to minimize such alignment errors have 
generally been targeted at global sequence weighting [4], 
where the contributions of individual sequences are weighted 
during the alignment process. However, such global 
sequence-weighting schemes carry the risk of propagating 
rather than reducing error when used in progressive 
multiple-alignment strategies [5]. 

Simultaneous alignments are high quality heuristics that 
deliver an alignment usually very close to optimality. They 
nonetheless remain an extremely CPU and memory-intensive 
approach, applicable only to about nine sequences of average 
length for the fastest implementation (DCA). From Figure 1 
one can easily notice that the divide-and-conquer technique 
actually provides a perfect structure for parallel programming, 
and each sub problems can be computed independently. 
Another major advantage of using divide-and-conquer 
technique is that extremely long sequences can be also 
acceptable by a multiple sequence alignment program as long 
as the sequences can be cut into small enough pieces.  

Based on the characteristics of both progressive and 
divide-and-conquer alignments, long sequences will be first cut 
into several sets of sub-sequences, and each of these 
sub-sequences will be aligned progressively and independently 
by a number of processors. In some cases, the sequences are 

extremely long and cannot be feed very well into a 
simultaneous alignment program even after they are divided 
into several shorter pieces. That is why sometimes progressive 
alignment is still considered for the sub-sequences alignments. 

This MPI based multiple sequence alignment approach 
actually combines the idea of divide-and-conquer alignment 
and progressive alignment. In order to check the alignment 
speed and sensitivity, two different alignment programs, 
depending on how the guide tree(s) would be applied, are done 
for getting a better sense. One program is called the single-tree 
alignment, in which a guide tree is built for the full-length 
sequences at the beginning, and after the sequences are cut into 
sub-sequences, all the sub-alignments will follow the single, 
uniformed tree. Multiple-tree alignment is thus the other 
implementation, in which sequences will be cut first and each 
of the sub-sequences will build their own guide tree to guide 
their individual alignments. 
 

B. Algorithm 

In our implementation, we have developed two programs 
for MSA using C++ language. One program is for single-tree 
implementation and the other program is for multiple-tree 
implementation. In the single-tree implementation, the main 
processor will build the guide tree first and then divide the 
sequences into n subsequences by using Divide-and-Conquer 
technique. Then one of these subsequences are kept by the main 
processor and the rest of the sub sequences are sent to n-1 
processors in parallel. Message passing technique is used for 
sending these n-1 subsequences to n-1 processors. Then those 
processors (including main processor) will execute the MSA 
module of the program according to the previously built guide 
tree in parallel but independently [6]. After doing the 
subsequence alignment, all of these n-1 processors will send 
the alignment results to the main processors. The main 
processor will merge the sub sequence alignment, sent by n-1 
processors, to complete the final alignment.   

On the other hand, in multiple-tree implementation, the 
Divide-and-Conquer technique is applied first to the sequences 
to make subsequences. Then one of these subsequences are 
kept by the main processor and the rest of the sub sequences are 
sent to n-1 processors in parallel. Message passing technique is 
used for sending these n-1 subsequences to n-1 processors. 
Then each of those processors (including main processor) will 
build guide tree from their own subsequences and execute the 
MSA module of the program according to their own guide tree 
in parallel. After doing the subsequence alignment, all of these 
n-1 processors will send the alignment results to the main 
processors. The main processor will merge the sub sequence 
alignment, sent by n-1 processors, to complete the final 
alignment.   

The computers used in this implementation are UNIX 
networked workstations from the laboratory of Computer 
Science department of University of Northern British 
Columbia, Canada. The laboratory has nearly 80 workstations. 
We have used maximum 10 workstations for our testing. But it 
can be tested with more than 10 processors. The number of 
processors depends on the number of cuts in the initial 
sequences. The minimum size that the processors can handle is 



 
 

 

two (L=2) i.e., there must be at least two characters in very 
subsequences.  

The pseudo code for our implementation (multiple tree 
approach) is given below.  

 
 

 
Po: Read sequence 
      Break sequence (sequence, subsequence[n])           
      Parallel do t=0 to n do 
           Send (processor[n], subsequence[n]) 
           Pi: Parallel do s = 0 to m do 
                Break sequence (subsequence,                    
                                           blockwisesubsequence[m])  
                Send (processor[m],  
                           blockwisesubsequence[m]) 
                     Pj:      Make scoring matrix 
                                Send (processor, scoring matrix) 
                Receive (scoring matrix[m],) 
                Build guide tree(scoring matrices) 
                Analyze guide tree for independency 
                Send independent tree alignments  
                   (processor[m], independent tree elements) 
                     Pj:    Receive independent tree element 
                              Perform alignment 
                             Send partial alignment of sequence to   
                                                    (alignment, processor) 
                 Receive partial alignments from Pj 
                 Make alignments for subsequences by  
                                             progressive alignment 
                 Send alignments (alignment, processor) 
         Receive alignment (alignment, processor[n]) 
   End do 
   Make final alignment 
End 
 

  
 

III. SIMULATIONS AND COMPARISON RESULTS 
 

The main idea behind implementing parallelism deployed 
in the program was based on the divide-and-conquer technique 
structure and on the creation of single or multiple-tree. On one 
hand it is clear that optimal cut positions exist; on the other 
hand it is clear that it is NP-hard to find them [1]. In this 
implementation, all the initial sequences are chopped into same 
size sub sequences according to the number of available 
processors.  

Since progressive alignment only performs global 
alignment and match sequences over their full lengths, 
problems with this approach can arise when highly dissimilar 
sequences are compared. Especially when there is a large 
difference in the lengths of two sequences to be compared, 
global alignment routines become unwarranted. This is because 
highly similar internal regions may be overshadowed by 
dissimilar regions and the high gap penalties normally are 
required to achieve proper global matching. Moreover, many 
biological sequences are modular and show shuffled domains, 
and the repeats of internal sequence can also severely limit the 
applicability of global methods. Therefore, in our simulations, 

only sequences with similar length and over 40% identical are 
tested for the single-tree and multiple-tree alignment programs. 

 

A. Speed Comparison 

The major advantage of MPI programming is program 
speedup in terms of time, because each process processes a 
different piece of the same job simultaneously and 
independently. However, this is obviously the case for the 
multiple-tree alignment program, but not quite true for the 
single-tree alignment, which does not gain any speed 
improvement after some point. The reason is that in single-tree 
implementation, no matter how many processors are used, 
every time a single guide tree for the full length sequences are 
built at the beginning for the processors sub-alignments, and it 
appears to be the most time-consuming part of all alignment 
procedures. 

For testing the implementation over various length 
sequences, three sample input files are chosen from a publicly 
available database BAliBASE (Refs 2) [7], which have 
benchmark alignments. The first file consists of 15 sequences 
each approximately 57 characters long, second file consists of 
15 sequences each approximately 404 characters long and the 
third file consists of 34 sequences each approximately 1400 
characters long. After simulations, for multiple-tree 
implementation we obtained a very good speedup for large 
sequences compared to single-tree implementation. We also 
obtained sufficiently satisfactory speed up for small and 
medium sequences. The results of the simulations are shown in 
the following figures: 

 

Speed Comparison for small length sequences
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Fig. 2: Speed up with respect to the no. of processors for small 
length sequences 

Speed Comparison for medium length 
sequences
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Fig. 3: Speed up with respect to the no. of processors for 
medium length sequences 

Speed Comparison for large sequences
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Fig. 4: Speed up with respect to he no. of processors for large 
sequences 

 

B. Alignment Sensitivity Comparison 

BAliBASE provides a module (BaliScore) that defines two 
scores. SP is the ratio of the number of correctly aligned pairs 
of positions in the test (predicted) alignment to the number of 
aligned pairs in the reference (structurally informed) alignment. 
TC is the ratio of the number of correctly aligned columns in 
the test alignment to the number of aligned columns in the 
reference alignment. Both SP and TC range from 1.0 for perfect 
agreement to 0.0 for no agreement. The designers of 
BAliBASE recommend SP as the best quality score for Refs1, 2 
and 3, TC as the best score for Refs4 and Refs5. 

Currently, our tests were done mainly based on Refs2, thus 
following figure (fig. 5) reflects the average SP scores 
calculated by BAliScore in terms of the number of processors 
for the single-tree and multiple-tree alignment programs. It 
turns out that the quality of alignments drops down for both 
approaches when the number of processors increases, as 
unwanted gaps are inserted at the start or the end positions of 
the sub-alignments, thus bring more gaps in the final full-length 
alignments and infects the values of SP scores. 

 
 
 
 
 

 

 

 

 

 

 

Fig. 5: SP-scores with respect to the number of processors, 
tested for large sequences 

 

IV. CONCLUSIONS  
 

Divide-and-Conquer technique with the progressive 
alignment approach is implemented to incorporate more 
parallelism in biological sequence alignment algorithm to face 
the problem of growing computational power in the biomedical 
field as the complexity and the volume of data increases. 
Multiple-tree alignment seems to have a better speedup 
performance than single tree alignment for large sequences. It 
also obtains sufficiently satisfactory speed up for small and 
medium sequences. But both approaches decrease alignment 
sensitivity as the number of processors increases.  

 

V. FUTURE SUGGESTIONS 
 

To overcome the problem of unwanted gaps introduced at 
the start and end of the sub sequence alignments, which affect 
the sensitivity performance, the following three ways can be 
thought of and deployed in the future. Firstly, in stead of cutting 
the sequences into same size subsequence, some more effective 
calculations should be found and performed to decide the cut 
points. For this, overlapping alignment or sliding window cut 
points calculation approach can be used. Secondly, weights 
could be considered and given to the sequences – 
downweighting the sequences that are very similar to other 
ones in the data set and upweighting the most divergent 
sequences. The weights will be calculated directly from the 
branch lengths in the initial guide tree for single-tree 
implementation and all the guide trees for multiple-tree 
implementation. Thirdly, affine gap penalties and varying 
substitution matrices may be applied dynamically in the 
progressive alignment. 
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