
An Integrated Quality-of-Service Model for
Video-on-Demand Application

∗D. N. Sujatha 1, K. Girish 2, K. R Venugopal 1, L. M. Patnaik 3

1 University Visvesvaraya College of Engineering, Bangalore University, Bangalore-560001, India.
2 B. M. S College of Engineering, Basavanagudi, Bangalore-560019, India.

3 Microprocessor Applications Laboratory, Indian Institute of Science, Bangalore-560012, India.
∗

Abstract— The tremendous growth of the Internet

paradigm has given rise to Quality of Service (QoS)

problems in heterogeneous, ubiquitous, distributed

real time applications such as video-on-Demand

(VoD). The challenging task in VoD applications is

to satisfy diverse client requests for discrete videos

with restrained resources by invoking versatile QoS

schemes. In this paper, a hybrid QoS strategy,

which is a combination of batching and recursive

patching is implemented in the local server to en-

sure starvation-free resource management thereby

enhancing the throughput. Batching shares network

resources efficiently whereas recursive patching is

adopted to reduce the time difference between the

requests. The suggested algorithm delivers the

complete video to the users based on one of the

three communication channels: broadcast, multicast

and unicast depending on whether the video is

very popular, average popular and least popular

respectively. The experimental results show that our

strategy accomplishes 35% - 40% reduction in terms

of blocking ratio and throughput is 10% - 15% higher

than the Poon’s strategy, which guarantees that not

only the resources are efficiently utilized but also a

suitable Quality of Service is provided to each user.

Keywords:Quality of Service, Video-on-Demand,

Blocking ratio, Start-up delay, Jitter.

1 Introduction

Distributed computing is a decentralized paradigm with
wide geographic dispersion of resources. The main goal
of distributed computing system is to connect users
and resources in a transparent, open and scalable way
enabling more fault tolerant than stand alone system
thereby ensuring that each subsystem is continually open
to interaction with other systems. Hence distributed
system can be altered to accommodate changes in a

∗Tel.: +91-080-2662 2130-35; fax: +91-080-2661 4357.
E-Mail Address : suj sat@yahoo.com

number of user, resources and computing information.
Present Video-on-Demand system are designed using
client-server architecture. In this architecture client
will send a request to a video server requesting for a
specific video and the server transmits it to the client for
playback. As the number of severs increase the server
will reach its limit on the capacity. In this case further
increase in load enable introduction of a new server. The
cost on the video server is tremendously increasing and
the communication network also need to be upgraded
with additional bandwidth. This problem was alleviated
with the birth of the Distributed system. The distributed
system reduces the cost overhead as it reduces the the
need for dedicated server. This architecture is inherently
scalable as addition of new user to the system adds both
streaming load and streaming capacity to the system. In
this architecture it is necessary to decide the placement
policy for videos, an algorithm to schedule and transmit
the video. As the videos are distributed in the entire
system an index table is required for retrieval of the
videos. As there is no centralized control each machine
should manage heterogeneity, addition and deletion of
nodes.
QoS has emerged as an important research area in ubiq-
uitous, distributed multimedia applications like Internet
shopping, games, news-on-demand, tele-teaching and
Video-on-Demand which involve many geographically
distributed clients. Distributed multimedia applications
rank as one of the highest consumers of resources: CPU,
bandwidth and buffer as they need resource management
to ensure end-to-end QoS and to regulate resource con-
tention for fair sharing of resources. In order to provide
continuous media service such as Video-on-Demand, a
suitable QoS requested by the user (client) has to be
guaranteed by taking into account, the characteristics
offered by the media data, the processing capabilities of
both the client and the video server.
Quality-of-Service represents the set of those quanti-
tative and qualitative characteristics of a distributed
multimedia system like Video-on-Demand that are
necessary to achieve the required functionality of an
application. Quality-of-Service becomes an important

IAENG International Journal of Computer Science, 34:1, IJCS_34_1_1
__

(Advance online publication: 15 August 2007)

issue as systems are more open, therefore less pre-
dictable. In such a context, expected Quality-of-Service
is difficult to achieve with static approaches. In dynamic
approaches, services are adapted to provide the best
Quality-of-Service according to the execution context.
In recent years there has been a flurry of research
activity devoted to the development of new architectures
and service models to accommodate next generation
applications demanding Quality-of-Service.
In spite of the diversity, dynamic and heterogeneous
nature of the client, the design of these applications re-
quires careful consideration of QoS for streaming videos.
The diffusion of mobile telecommunication and mobile
access to the Web further widens the heterogeneity of
Internet client devices. Users tend to require differentia-
tion and tailoring of QoS, based on personal preferences
and classes of usage such as business/economics/free of
charge by considering accounting aspects. The key issue
in any video service is to provide an acceptable QoS to
the end user. The video service applications that are
currently being deployed have some significant problems,
user dissatisfaction due to poor QoS and low cost per-
formance ratio due to inefficient management of system
resources especially when guaranteed service is desired.
In order to resolve these issues, it is necessary to identify
the bottlenecks in the system that are responsible for
poor response time.
The design, implementation and deployment of data
sharing techniques can significantly enhance the function-
ality of Video-on-Demand system. Batching, adaptive
piggybacking, patching and bridging are the variegated
data sharing techniques. Batching cummulates the
requests for the like video, hence batching alleviates
the load on the server. Among many different batching
techniques, batching by timeout and batching by size
[1] are the two commonly used schemes. Inspite of
simplicity both the schemes introduce initial latency,
hence adaptive piggybacking [2] and patching [3] are
proposed. In adaptive piggybacking, different requests
are merged into a single stream by varying the play-out
rates. Patching expands the multicast tree [4] dynami-
cally to include new requests, so it reduces the request
waiting time but requires additional bandwidth and
buffer space at the client. Bridging uses buffer space
to retain certain portions of the video as they play
for a particular viewer, then a viewer who is trailing
can be served from this buffer. To manage resource
contention for unbiased data sharing we should identify
the loop holes in the system those are responsible for
poor response time. The challenging issue for wide
deployment of Video-on-Demand is to provide QoS with
value added services.

Motivation: The fundamental parameters in achiev-
ing QoS for various applications are reliability, delay,
jitter and bandwidth. Reliability and delay need not
be stringent for a VoD system as it can tolerate a

small amount of error and if all the video segments
are delayed uniformly by a few seconds, there is no
loss. Jitter and bandwidth are the two stringent QoS
parameters considered for analysis. User satisfaction
and resource management are critical in order to provide
Quality of Service in a VoD system. User satisfaction
is abstract and is subject to the visual perception of
the individual. Although resources like bandwidth and
buffer are available in abundance, it is to be efficiently
managed. The proposed Hybrid Quality of Service
strategy - HQoS addresses the following issues: to
optimize resource utilization by using data sharing
schemes, to reduce network bandwidth requirements by
using appropriate data transmission techniques and to
curtail start-up latency and reneging probability thereby
providing jitter-free video to the users.

Contributions: The proposed Data Sharing Strategy
(DSS) for guaranteeing Quality-of-Service in Video-
on-Demand application addresses the following issues:
to optimize resource utilization by using data sharing
schemes, to reduce network bandwidth requirements by
using appropriate data transmission techniques and to
curtail initial latency and reneging probability thereby
providing jitter-free video to the clients.

Outline of the Paper: The paper is organized into
various sections as follows: Related works in the area
of Quality of Service in Video-on-Demand system are
presented in Section 2. Section 3 discusses the system
architecture, the functional models and formulates the
problem for providing QoS. Section 4 proposes Hybrid
QoS strategy to solve the problem. Section 5 evalu-
ates the Hybrid QoS strategy in VoD system through
extensive analysis and simulation. Section 6 presents
conclusions.

2 Related Works

This section presents a brief description of the exist-
ing research works in the area of Quality of Service in
Video-on-Demand systems. The fundamental problem
in large-scale networks is to satisfy QoS to the end user
and achieve economic viability. The problem of resource
allocation is discussed in [4] by partitioning the requests
based on divide and conquer scheme and precomputation
techniques. Divide and conquer scheme reduces the com-
putational complexity independent of the network size.
The overall network performance is maximized by adapt-
ing to a suitable apportioning scheme, thereby satisfying
the end-to-end QoS requirements. In precomputation
techniques, certain computations are performed in ad-
vance during the period when the resource is not in use.
This reduces the time required to handle the request. The
precomputation technique is carried out based on estima-
tion which is based on heuristics leading to inconsistency.
In [5], admission control and resource reservation schemes

IAENG International Journal of Computer Science, 34:1, IJCS_34_1_1
__

(Advance online publication: 15 August 2007)

Figure 1: Distributed Architecture for VoD System.

are addressed. The admission control scheme divides the
problem into smaller sub-problems: division of end-to-
end QoS into the local QoS requirement, mapping of the
local QoS requirement into the resource requirement, and
reclaiming of the resource allocated in excess. The re-
source allocation problem is addressed by establishing a
multicast tree and then reserve the necessary resources
reducing the call rejection probability. The algorithm is
developed for static groups where all the receivers are
known before the session starts.
Distributed multimedia applications require dynamic
QoS [6] for continuous streaming of multimedia. Load
balancing can be achieved by minimizing load on heavily-
loaded machines i.e., minimizing Bottleneck Resource
Utilization (BRU). A client server architecture; Adaptive
Distributed Multimedia System (ADMS) along with re-
duced BRU, is proposed. In ADMS, the user has to state
the QoS requirements. The system has the flexibility to
accept or reject the request based on the availability of
the resources. It presents a unified feasible way to solve
admission policy but fairness is not guaranteed.
In order to deliver good QoS, the VoD service should be
nearly immediate and continuous [7], [8]. A set of work
load models are developed to identify the limitations of
greedy allocation algorithm: (i) they do not minimize
customer’s waiting time. (ii) they perform poorly when
load conditions vary. To solve these limitations, a set of
rate-based policies are proposed, which work by ensuring
that the channels are available for allocation on consis-
tent basis. In this method, it is difficult to determine the
number of channels needed to provide the desired QoS.
In [9], [10], [11], [12], [13], various issues to manage group
dynamics, resource reservation, allocation of resources
and admission control in multicast applications are ex-
amined. Dynamic group management is critical as mem-
bers can join and leave the group at any instant of time.
Resources must be reserved appropriately as excess reser-
vation leads to the wastage of the resources. Poon et

al. [14] proposed an algorithm to dynamically find the
batching time by newly updated arrival rate so as to min-
imize the bandwidth which is a complex procedure and
time consuming. The Patching scheme proposed in [15],
[16], [17] extends the capability of the standard multicast
to support true Video-on-Demand. All the above tech-
niques will perform efficiently only if enough resources are
available. Ramesh et al. [18] proposed a hybrid strategy
which is a combination of two popular approaches: pyra-
mid broadcasting and recursive patching. Fragmentation
of video into segments enables VCR functions like pause
and resume, rewind and forward to be handled easily.

3 System Architecture

3.1 Definitions

• QoS is the collective effect of service performances
which determine the degree of satisfaction of the
client.

• Initial latency is defined as the time gap between the
instance when the request is submitted to the system
and the beginning of service.

• Scheduling is the process of assigning a video request
to a set of resources.

• Jitter is the maximum delay between two consecutive
frames. It increases under chaotic load patterns. If
jitter is high, play-out process will pause, annoying
the client.

• Throughput is defined as the ratio of the number of
video requests served to the total number of video
requests.

The distributed architecture for providing Quality of
Service in Video-on-Demand system is shown in Fig. 1.
Many servers geographically separated from each other

IAENG International Journal of Computer Science, 34:1, IJCS_34_1_1
__

(Advance online publication: 15 August 2007)

Figure 2: QoS Mapping from Local Server to Client.

are interconnected in hierarchy. A typical Video-on-
Demand service allows the remote users to play any video
from a large collection of videos stored on one or more
servers. In response to a request, the server delivers the
videos to the clients. The number of users supported by
a server depends on the available bandwidth. Streaming
of multimedia data, synchronization of audio and video
data, monitoring of network resources, negotiation and
adaptation of QoS parameters based on the available
resources are the tasks of the local server. Hence QoS
provided by the system varies with respect to the users
focus.

The QoS mapping from local server to client is de-
picted in Fig.2, it includes the following process:

Client QoS Specification: The QoS specification for
a Video-on-Demand system is a sequence of acceptable
QoS requirements, where the client specifies his requisites
in terms of a client ID, requested video ID, VCR function
to the local server, in order to obtain the desired QoS.

Mapping client QoS Specification to the Available
Resources: The local server compares the resources
required for a specific video requested by the client
with the available resources. If necessary resources are
available, they are reserved and the client can start
watching the video as per negotiation; else the client
reduces the QoS requirements and once again submits
the new requirements to the local server. This process
repeats until the client specifications are matched with
the available resources.

QoS Resource Bottleneck: Although the level of
service can be negotiated, problems can occur during
communication. A part of the route might become
unavailable i.e., resource can drop due to network failure
/ congestion or some hosts may use more resource than
available and hence these situations deteriorate the per-
formance of the system. In order to avoid this situation
various congestion control techniques are adopted.

3.2 Problem Definition

We model the network as an undirected graph M(L,U).
The multimedia server M consists of a finite set of local
servers L = l1, l2, . . . , ln. Each local server li is connected
to a set of clients U = u1, u2, . . . , um, with uj �= uk

where j, k ∈ 1, 2, 3, . . . , m. We associate e with each link,
represented by P(e) which denotes the available resources
e.g., bandwidth and buffer. For each client u requesting
for a video v, P (v) describes the quantity of resources
required by the video. In this model, a tree T is rooted at
the multimedia server M spanning all the local servers L
and all the clients U satisfying the condition P (v) ≤ P (e).

The objective of this paper is to

• reduce the blocking ratio, thereby increase the
throughput.

• share resources efficiently using data sharing tech-
niques like batching and recursive patching.

• minimize the initial latency to the client.

• provide VCR functions On-Demand.

IAENG International Journal of Computer Science, 34:1, IJCS_34_1_1
__

(Advance online publication: 15 August 2007)

A combination of recursive patching with / without
batching is adopted in this model. Broadcasting along
with recursive patching and batching is used for the pop-
ular videos. Multicasting along with recursive patching
without batching is used for the average popular videos
and the least popular videos are unicast. Initially, the
requested videos that need to be broadcast, multicast
and unicast are assigned one channel each and the re-
maining channels are used for recursive patching. The
channels are allocated based on ECPV [14]. The popular
videos are patched using multicast technique and average
popular videos by unicast. Table 1 indicates the list of
variables used in this paper.

Table 1: List of Variables.

Notation Description

M The number of videos stored in the
server.

UB The bandwidth for unicast channel.
MB The bandwidth for multicast channel.
BB The bandwidth for broadcast channel.
λj The arrival rate for video j with

Poissons arrival rate.
λmax

j The upper bound on the
average popular requests.

λmin
j The lower bound on the

average popular requests.
Lenj The length of video request j.
W The patching window for most popular

video.
Y The batching time for most popular

video.
RID The ID for regular channel.
PID The ID for patching channel.
skew The difference in the length of the

video between time of arrival of new
request and the start of patching
window.

workload The length of the video that is to be
transmitted by a patching request.

3.3 Analytical Model

A combination of recursive patching with / without
batching is adopted in this model. Broadcasting along
with recursive patching and batching is used for the pop-
ular videos. Multicasting along with recursive patching
without batching is used for the average popular videos
and the least popular videos are unicast. Initially, the
requested videos that need to be broadcast, multicast
and unicast are assigned one channel each and the
remaining channels are used for recursive patching. The
channels are allocated based on ECPV [14]. The popular

videos are patched using multicast technique and average
popular videos by unicast. Table 1 indicates the list of
variables used in this paper.

The requests are batched based on the criteria; max(δ,
Y) where δ is the number of requests arriving within a
specified time. It can be represented mathematically as
follows:

Requests for video j =
{

δ n(Rj) = δ
n(Rj) tj = nY.

where n is the number of requests arriving at time
tj . Mean number of customers arriving within the
batching time Y is given by max((λ ∗ Y), 1). A new
transmission stream is initiated at the start of the
patching window W. Patching is carried out only if the
length of the video streamed is less than W.

Case (a):
The request Rn, where n = 1, 2, 3, . . . , m requesting for a
video vi where i = 1, 2, 3, . . . , y arriving at the beginning
of a patching window p is represented by,

Rn+1 =
n∑

i=1

vi+1 *Ri + (v1*p)

Case (b):
As shown in Fig. 3, if a new request arrives before 60%
of the video is transmitted, then it can be patched as
follows; for example, if the new request R2 arrives at
time t11 and the end of the video segment is t2 then
patching can be done according to,

R2 = ((t2 − t11)* R1 + (t11 − t1)*p)

The number of channels are fixed, hence in the
worst case a request which needs patching might need to
wait until the free channels are available. The requests
arrive according to Poisson process denoted by ((λx)*
(eλ))/ x! represented as p, where λ is a constant and x
is a random variable. The service time of the patching
requests is uniformly distributed between 0 and W,
denoted by u. The maximum patching size is 2W and
the minimum is zero. Hence average service time is 2W
/ 2k where k = 0, 1, 2, 3,. . . ,n. All the requests are
handled using single server. The patchi1ng service is
modeled as p / u / 1 queuing model. If v is the video
that is to be transmitted to the nodes (n1, n2, . . . , nx),

v ∗
x∑

i=1

ni represents the the video transmitted at once

to all the nodes in the network. Let gi denote the group
which consists of nodes (n1, n2, . . . , nx) belonging to the
multicast group. The videos delivered to a group gi is

denoted by v ∗
x∑

i=1

gi(ni). The video delivered to a node

in the network is represented as (v∗ni) ∀i = 1, 2, 3, . . . , n.

Reneging occurs when a customer decides to leave

IAENG International Journal of Computer Science, 34:1, IJCS_34_1_1
__

(Advance online publication: 15 August 2007)

Figure 3: Request Arrival.

the system without being serviced after waiting for some
time. This is expressed in terms of variable γ, such that
the customer for a video will not wait for more than γ
units of time. The function for reneging or blocking ratio
is denoted by Renege(x), which is the fraction of the
rejected customers who leave after waiting for x units
of time. Reducing blocking ratio improves throughput.
The blocking ratio of the customer for a video in an
interval t is given by,

P (t) = 1
t

∫ t

0
Renege(x)dx at any instant of time.

We expect the reneging probability to be small since all
the customers do not leave the system. Initial latency
is defined as the time difference between the request
submission and the request service. The average initial
latency is defined as

∑
(rser − rsub) / N , where rser is

the time required to service a request, rsub is the time at
which a request is submitted to the system and N is the
total number of requests.

4 Algorithm

A user submits the request using the token (CID, VID,
VCR) to the server, where CID denotes the client ID,
VID the ID of the requested video and VCR represents
that the request is for VCR function. Users with the
above token form a queue and wait for service. The
requests are fetched from the queue using FCFS queue
discipline. Users requesting for videos are classified into
very popular, average popular, and least popular, based
on the popularity of the requested video which follows
Zipf distribution.
If a user requests for the VCR function, if enough
resources are available, then the VCR function is pro-
vided to the user using a dedicated channel. The video
requested by the user is divided into the fixed number
of segments and the dedicated channel is divided into
the same fixed number of channels. Each segment is
continuously broadcast on each of the specific channels,
a user can use VCR function by tuning to a particular
channel. However, if sufficient resource is not available,
then the user is requested to wait for some time until the
resources becomes available or reneging time is reached.
Table II shows the algorithm for Hybrid Quality of
Service strategy - HQoS. The functions for very popular
videos, average and least popular videos, Stream Rou-
tine(), FreeUnicastChannnel() are depicted in table III,
IV, V and VI respectively.

Table 2: Hybrid Quality of Service Strategy - HQoS
{Input: Request token(CID,VID,VCR)}
{Output: Allocation of different types of channels based
on popularity of the video.}
1. Classify the requests into very popular videos,

average popular videos and least popular videos.
2. If the request is for very popular videos, then call the

function for very popular videos- Table III
else call the function for average and least popular
videos- Table IV.

Table 3: Function for Very Popular Videos
Fetch a request from the FCFS Queue
if λj > λmax

j then
if (none of the existing regular broadcast currently
serving video j) then PID=Null

RID=FreeBroadcastChannel
else if (skewj > Wj) then PID=Null

RID=FreeBroadcastChannel
else RID=LatestRegularBroadcast

Workload = Skewj

n=number of pid’s serving video j
for (i = 0; i < n; i + +)

PID[i]=LastPatchingChannel[i]
Workload=Workload-PID[i].Workload

end for
PID[i+1]=FreeUnicastChannel(j)

end if
update LatestRegularBroadcast=PID
Start Streaming using Stream Routine (j)
end if

end if

Very Popular Videos: If the arrival rate for a video j
with Poisson distribution denoted by λj is greater than
the upper bound on the average popular videos denoted
by λmax

j , then the request is for very popular videos.
If the skew for the video j is greater than the patching
window, then FreeBroadcastChannel is initiated; else the
request is patched to the LatestRegularBroadcast. The
number of channels that are to be used for patching is
calculated by FreeUnicastChannel() and the requested
video starts streaming to the user by using Stream
Routine().

Average and Least Popular Videos: If the arrival rate
for a video j with Poisson distribution denoted by λj is

IAENG International Journal of Computer Science, 34:1, IJCS_34_1_1
__

(Advance online publication: 15 August 2007)

Table 4: Function for Average popular and Least Popular
Videos

if λj > λmin
j then

if (none of the existing regular multicast currently
serving video j) then PID=Null

RID=FreeMulticastChannel
else if skewj > W then

PID=Null
RID=FreeMulticastChannel
else RID=LatestRegularMulticast

n=number of pid’s serving video j
for (i = 0; i < n; i + +)
PID[i]=LastPatchingChannel[i]
Workload=Workload-PID[i].Workload

end for
PID[i+1]=FreeUnicastChannel(j)
end if
update LatestRegularMulticast=PID
Start Streaming using Stream Routine (j)

else
PID=Null
RID=FreeUnicastChannel(j)
Start Streaming using Stream Routine (j)

end if
end if

Table 5: Function for Streaming the Video - Stream Rou-
tine (j)

RID.transmitted = RID.Transmitted+RID.Bandwidth
Transj = Transj + RID.transmitted
for (i = 0; i < n; i + +)
if (PID[i].transmitted < PID[i].workload) then
PID[i].transmitted=PID[i].transmitted+PID[i].Bandwidth
Transj = Transj + PID[i].transmitted
else PID[i] = Null
end if
end for
if Transj = Lenj then RID=Null
end if

Table 6: Function to calculate channels-
FreeUnicastChannel(j)

if λj > λmax
j then T= Skew Time

X= (BB/ UB)* T/(2W-T)
else if λj > λmin

j then T=Skew Time
X=(MB/UB) * T/(2Y-T)

else X= UB
end if

end if
return X

greater than the lower bound on the average popular
videos denoted by λmin

j , then the request is for the
average popular videos; else it is for least popular videos.
If the skew for the video j is greater than the patching
window, then FreeMulticastChannel is initiated; else the
request is patched to the LatestRegularMulticast. The
number of channels that are to be used for patching is
calculated by FreeUnicastChannel() and the requested
video starts streaming to the user by using Stream
Routine(). The least popular video is served using a
dedicated channel.

FreeUnicastChannel(): This routine is used to keep
track of the bandwidth available. When a very popular
or average popular video requires patching, it is necessary
to compute the available channels. FreeUnicastChannel()
is used to find out the number of channels that can be
assigned to a patching request.

Stream Routine(): This routine updates the length
of video Transmitted by the patching and the regular
channel. It also modifies the length of video that is
to be transmitted (Trans) to the user. The process of
updating is carried out periodically according to the
available bandwidth and the play-back rate of the client.

5 Performance Evaluation

In this section, we evaluate the performance of the Data
Sharing strategy (DSS) and compare it with the PQoS.
We evaluate the initial latency, blocking ratio, bandwidth
utilization and throughput by analysis and simulation.
Simulation is carried out in order to evaluate the effec-
tiveness of our algorithm. The video requests follow Pois-
son process and the popularity of the videos follows Zipf
distribution with the parameter of 0.271 [16]. Simula-
tion is carried out for 600 minutes with 100 videos, each
video is of 120 minutes duration. The maximum time a
client waits for service is 3 minutes. The capacity of each
channel is assumed to be 1 Mbps. Maximum number of
channels that are available in order to service the request
is assumed to be 20. The buffer is managed effectively in
the local server. Simulation experiments are conducted
on an NT workstation using Visual Basic 6.0 as front end
and Oracle 9i as back-end. Visual Basic 6.0 is chosen,
as it is an event driven programming language the coded
lines of the program are not written and executed in a se-
quential logic because the client action of clicking a key or
check box or button, triggers an event. Since, the event
like selection of the category of a video does not occur in
a sequential order, it is preferable to use an event-driven
programming language.
Fig. 4 shows the number of requests serviced in both the
schemes. In earlier stages (till 60 seconds), both the tech-
niques serve the requests and none of them has completed
the service. Later, the number of requests served grows
linearly in both the schemes. Since recursive patching is

IAENG International Journal of Computer Science, 34:1, IJCS_34_1_1
__

(Advance online publication: 15 August 2007)

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

Time in seconds

N
um

be
r

of
 r

eq
ue

st
s

HQoS
PQoS

Figure 4: Number of Requests Serviced.

0 50 100 150 200 250 300 350
1

2

3

4

5

6

7

Request Number

La
te

nc
y

in
 s

ec
on

ds

HQoS
PQoS

Figure 5: Average initial latency in Secs.

adopted, more number of requests are processed in HQoS
strategy and hence achieve significantly greater through-
put than that of PQoS. Requests are served faster using
the available resources and the resources which enable
other requests to be served are released. For example, at
time 250, in our scheme almost 250 requests are served
when compared to the other scheme where only 200 re-
quests are served which clearly indicates that in our ap-
proach more than 20% of the requests are served when
compared to PQoS.

Initial latency is a significant parameter from clients per-
spective which determines the QoS in a VoD system. The
performance in terms of initial latency in both the strate-
gies is shown in Fig. 5. Very popular videos are batched
and then only serviced, hence incurring initial latency.
Majority of requests are for very popular videos, hence
initial latency is observed in the graph. It is evident from
the graph that in PQoS strategy initial latency always
increases. After 250 requests, our scheme shows a signifi-
cant decrease in initial latency as efficient buffer manage-
ment technique is implemented in the local server.

0 50 100 150 200 250 300 350 400
0

1

2

3

4

5

6

7

8

9

10

Request Number

R
eq

ue
st

 R
ej

ec
te

d
in

 %

HQoS
PQoS

Figure 6: Blocking Ratio.

0 50 100 150 200 250 300 350 400
0

2

4

6

8

10

12

14

16

18

20

22

Time in seconds

C
ha

nn
el

s
in

 u
se

HQoS
PQoS

Figure 7: Resource Utilization.

Fig. 6 shows the blocking ratio which is the ratio of
the number of requests rejected to the total number of
requests. This is an important parameter to determine
the QoS in a VoD system. This ratio needs to be less in
order to provide a suitable QoS. Our scheme has block-
ing ratio of around 4%, whereas the PQoS strategy has a
blocking ratio of 10%.

Fig. 7 shows the utilization of bandwidth in both the
schemes. Initially, in both the schemes the resource
utilization is not maximum. After 30 requests, all 20
channels are utilized and after 300 secs new requests
do not arrive; the existing requests finish the service
with pre-allocated channels. Hence, all the channels
are not utilized. On an average, in our scheme 90% of
the channels are utilized whereas 77% of the channels
are utilized in PQoS strategy which demonstrates the
superiority of our approach.

IAENG International Journal of Computer Science, 34:1, IJCS_34_1_1
__

(Advance online publication: 15 August 2007)

6 Conclusions

To maximize the performance of VoD system and to avail
the benefits of data sharing techniques, it is crucial to as-
certain the amount of resources to be awarded to a partic-
ular client. In this paper, we have proposed a plausible
data sharing strategy which promises a desirable QoS.
The limitations of other designs are (i) they suffer com-
putational overhead for average popular videos as slot-
ted rate is adopted for broadcasting the video, (ii) the
resource utilization is not optimum as the patched de-
mands are always served with double rate duration, even
if more resources are available. To sweep over these limi-
tations, we have projected a data sharing strategy which
is combination of batching and recursive patching with
following advantages: (i) the technique of slotted rate
is not adopted thus computational overhead is minified,
(ii) the resources are efficiently handled by using patch-
ing window which ensures that the patched requests are
served using available bandwidth, (iii) recursive patching
is used for a brief period to broadcast first few minutes
of video instead of broadcasting the entire video, hence
more batches can be serviced per unit time. The clas-
sification model used in data sharing strategy is useful
to service providers to fix different pricing schemes for
various categories of videos.

References

[1] A. Dan, K. Sitaram, P. Shahabuddin, ”Dynamic
Batching Policies for an On-demand Video Server”,
Multimedia Systems, vol. 4, pp. 112-121, 1996.

[2] L. Golubchik, C. S. Lui, R. R. Muntz, ”Adaptive
piggy backing : a novel technique for data sharing
in Video-on-Demand Servers”, Multimedia Systems,
vol. 4, pp. 140-155, 1996.

[3] Kien A Hua, Ying Cai Simon Sheu, ”Patching: A
Multicast Technique for True Video-on-Demand Ser-
vices”, ACM Multimedia 1998, pp. 191-200.

[4] Murali Kodialam, Steven H. Low, ”Resource Alloca-
tion in a Multicast Tree”, INFOCOM 99, pp. 262-
266.

[5] Ariel Orda, Alexander Sprintson,”A Scalable Ap-
proach to the Partition of QoS Requirements in Uni-
cast and Multicast”, IEEE INFOCOM 2002, pp. 685-
694.

[6] Victor Firoiu, Dow Towsley, ”Call Admission and
Resource Reservation for Multicast Sessions”, IEEE
INFOCOM ’96, pp. 94-101.

[7] Mohammad Riaz Moghal, Mohammad Saleem Mian,
”QoS−Aware Adaptive Resource Management in
Distributed Multimedia System Using Server Clus-
ters”, IEEE Intl. Conference on Cluster Computing,
2003, pp. 238-242.

[8] Mary Y. Y. Leung, John C. S. Liu, Leana Golubchik,
”Use of Analytical Performance Models for System
Sizing and Resource Allocation in Interactive Video-
on-Demand System Employing Data Sharing Tech-
niques”, IEEE Trans. on Knowledge and Data Engi-
neering, vol. 14, no. 3, May/June 2002, pp. 508-511.

[9] Kevin C. Almeroth, Asit Dan, Dinkar Sitaram,
William H. Tetzlaff, ”Long Term Resource Alloca-
tion in Video Delivery Systems”, IBM Research Re-
port: RC 20249.

[10] Nalini Venkatasubramanian, Klara Nahrstedt, ”An
Integrated Metric for Video QoS”, ACM Multimedia
Conference, Nov. 1997, pp. 371-380.

[11] A. Striegel, G Manimaran, ”Managing Group Dy-
namics and Failures in QoS Multicasting”, IEEE
Communications, June 2002, pp. 249-257.

[12] De-Nian Yang, Wanjiun Liao, Yen-Ting Lin,”MQ:
An Integrated Mechanism for Multimedia Multicas-
ting”, IEEE Trans. on Multimedia, vol. 3, no.1,
March 2001, pp. 82-97.

[13] Murali Kodialam, Steven H. Low, ”Resource Alloca-
tion in a Multicast Tree”, INFOCOM 99, pp. 262-
266.

[14] A. Dan, D. Sitaram, P. Shahabuddin,”Scheduling
Policies for an On-Demand Video Server with
Batching”, Proc. ACM Multimedia 1994, pp. 391-
398.

[15] W. F. Poon, K. T. Lo, J. Feng, ”Adaptive Batching
Scheme for Multicast Video-on-Demand Systems”,
IEEE Trans. on Broadcasting, vol. 47, no. 1, March
2001, pp. 66-70.

[16] Kien A Hua, Ying Cai Simon Sheu, ”Patching: A
Multicast Technique for True Video-on-Demand Ser-
vices”, ACM Multimedia 1998, pp. 191-200.

[17] Ying Cai, Kein A. Hua, ”Sharing Multicast Videos
Using Patching Streams”, Multimedia Tools Appli-
cations, 2003, pp. 125-146.

[18] S. Sen, L Gao, D. Towsley, ”Optimal Patching
Schemes for Efficient Multimedia Streaming”, Proc.
IEEE NOSSDAV, June 1999, pp. 255-263.

[19] Ramesh Yerraballi, Xiaoru Zhao, Jasmin Kanabar,
”A New Asynchronous Hybrid Mechanism for Video-
on-Demand”, IEEE Conference on New Waves in
System Architecture, 2003, pp. 230-238.

IAENG International Journal of Computer Science, 34:1, IJCS_34_1_1
__

(Advance online publication: 15 August 2007)

D. N. Sujatha is a Ph.D. student in
Computer Science at Bangalore Uni-
versity. Currently she is working as
Assistant Professor and Head, De-
partment of M. C. A, B. M. S Col-
lege of Engineering, Bangalore. She
received Bachelors degree in Science

and Masters degree in Computer Applications from the
University of Mysore in the year 1988 and 1991 respec-
tively. She is a member of ACM. Her research interests
are multimedia applications like Video-on-Demand
systems, distributed systems and mobile networks.

Girish K received his B.Sc. degree
in Electronics from the University
of Mysore in 2001, Masters degree
in Computer Applications from the
Visvesvaraya Technological Univer-
sity in 2004. He is currently working
as Lecturer, Department of M.C.A,
B.M.S College of Engineering, Bang-

alore. He is a member of IEEE. His research interest
includes computer networks, multimedia applications
and sensor networks.

K. R. Venugopal obtained his
Bachelor of Technology from Uni-
versity Visvesvaraya College of
Engineering in 1979. He received his
Masters degree in Computer Science
and Automation from Indian Insti-
tute of Science Bangalore. He was
awarded Ph.D. in Economics from

Bangalore University and Ph.D. in Computer Science
from Indian Institute of Technology, Madras. He has
a distinguished academic career and has degrees in
Electronics, Economics, Law, Business Finance, Pub-
lic Relations, Communications, Industrial Relations,
Computer Science and Journalism. He has authored
several books on Computer Science and Economics,
which include Petrodollar and the World Economy, Pro-
gramming with Pascal, Programming with FORTRAN,
Programming with C, Microprocessor Programming,
Mastering C++ etc. He has been serving as the Professor
and Chairman, Department of Computer Science and
Engineering, University Visvesvaraya College of Engi-
neering, Bangalore University, Bangalore. He has over
110 research papers to his credit. His research interests
include computer networks, parallel and distributed
systems and database systems.

L M Patnaik is a Professor since
1986 with the Department of Com-
puter Science and Automation, In-
dian Institute of Science, Bangalore.
During the past 35 years of his ser-
vice at the Institute. He has over 400
research publications in refereed In-

ternational Journals and Conference Proceedings. He is
a Fellow of all the four leading Science and Engineering
Academies in India; Fellow of the IEEE and the Academy
of Science for the Developing World. He has received
twenty national and international awards; notable among
them is the IEEE Technical Achievement Award for his
significant contributions to high performance computing
and soft computing. His areas of research interest
have been parallel and distributed computing, mobile
computing, CAD for VLSI circuits, soft computing, and
computational neuroscience.

IAENG International Journal of Computer Science, 34:1, IJCS_34_1_1
__

(Advance online publication: 15 August 2007)

