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     Abstract—Recent technological advances require 
computer algorithms that can effectively analyze and 
classify data on a large scale that was unachievable just a 
few years ago. For instance, in response to a query, 
commercial search engines routinely consider web pages 
amounting into billions while genomic searches may deal 
with a search space of a similar or even higher 
magnitude. Clustering algorithms are an ideal choice to 
quickly categorize data; they are conceptually simple and 
require little background knowledge. Many clustering 
algorithms have been introduced in recent decades; but 
each approach brought along new challenges to consider, 
such as outlier handling, detection of arbitrary shaped 
clusters, processing speed, and dependence on user-
supplied parameters. PYRAMID, or parallel hybrid 
clustering using genetic programming and multi-
objective fitness with density, is a clustering algorithm 
that we introduced in a previous research. It addresses 
several of the above challenges by using a combination of 
data parallelism, a form of genetic programming, and a 
multi-objective density-based fitness function. This paper 
summarizes some of the characteristics of PYRAMID 
along with experiments that were performed on multiple 
challenging datasets. Empirical results derived from 
these experiments are presented and future directions are 
proposed.    
 

       Index Terms—Data Mining, Clustering, Genetic 
Programming, Density, Parallelism. 

I.  INTRODUCTION 

     Clustering algorithms are frequently employed in 
situations where large amounts of data must be 
categorized and little background knowledge is 
available. Such applications include document 
clustering, which has become a major focus of search 
engine technology [7], gene processing in 
bioinformatics, a field that has grasped considerable 
attention in the last decade [4], and pattern recognition 
[10].  
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Recent decades have witnessed several clustering 
approaches that introduced new challenges, including 
outlier handling, detection of arbitrary shaped clusters, 
processing speed, and dependence on user-supplied 
parameters. In [18], we introduced PYRAMID, or 
Parallel hYbrid clusteRing using genetic progrAmming 
and Multi-objective fItness with Density, which uses a 
combination of data parallelism, a form of genetic 
programming (GP), and multi-objective fitness 
function to remedy some of these challenges. 
PYRAMID employs data parallelism to improve 
performance by dividing the clustering data among 
multiple processors. It attempts to detect arbitrary 
shaped clusters by leveraging the flexible 
representational power of genetic programming and 
addresses outlier detection by employing a density 
based fitness function. The experiments conducted in 
[18], which used data sets of various sizes and 
irregular cluster shapes have demonstrated positive 
results. These results are used to compare cluster and 
outlier detection between PYRAMID and existing 
known algorithms such as BIRCH [20], CURE [6], 
DBSCAN [5], and NOCEA [13].  
     This paper borrows from [18] and provides a brief 
introduction to the PYRAMID algorithm. It also 
elaborates on its detection capabilities by summarizing 
the results of several experiments on various data sets 
that present special challenges such as variable shapes, 
extensive outliers, and clusters with holes, sharp 
contours, and pointy extremities. 
     The rest of this paper is organized as follows. 
Section 2 provides a listing of related literature work. 
Section 3 introduces key concepts in this study. 
Section 4 provides a brief overview of PYRAMID. 
Section 5 presents some of the experiments as well as a 
description of the data sets. Finally, Section 6 states the 
conclusion of this research and future directions. 

II. RELATED WORK 
     Several clustering algorithms were introduced in 
the last two decades, which addressed some of the 
challenges mentioned above. For instance, CURE [6] 
used data samples as well as an interesting shrinking 
mechanism to detect outliers. BIRCH [20] employed 
data summarization for best detection on circular 
clusters. DBSCAN [5] used density for better cluster 
detection. RBCGA [12] utilized genetic algorithm to 
discover rectangular cluster shapes. NOCEA [13], a 
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successor of RBCGA, provided better detection but 
mostly resulted in coarse detections [13]. The next two 
sections borrow directly from [18] in the subsequent 
definitions and description of the PYRAMID 
approach. 

III. DEFINITIONS 
     This section briefly introduces terms and concepts 
that are pertinent to the PYRAMID algorithm. For 
simplicity, the rest of this study focuses on two-
dimensional data space as in [18] and leaves higher 
dimensions for future research. The reader is 
encouraged to refer to [18] for further details.  
     A minimum bounding rectangle (MBR) is the 
smallest rectangular area in the data space that contains 
all points in a specific data set [11]. Binning within an 
MBR is the division of the x and y axes, respectively, 
into tx and ty non-overlapping segments, called bins, 
having the same lengths per dimension. The 
intersections of the bin lines, or quantization, construct 
a 2-dimensional grid that divides the MBR into 
contiguous non-overlapping 2-dimensional cells.  
     A Rule r is a rectangular sub-region of the MBR 
that contains one or more contiguous cells. This study 
does not allow overlapping rules, i.e. sharing common 
cells, within the same solution. An Individual I is 
formed by the union of rules within the MBR. The size 
of an individual size(I) is the number of rules in I. 
Refer to [18] for further details about the cardinality, 
volume, and density of a cell, rule, and individual. 
Geometric Division is an algorithm that divides the 
data space into quadrants, each containing a data 
subset formed by the data points that belong to its 
constituent cells. The details of this algorithm are 
outlined in [18] and exemplified in Fig. 1. 

 
Fig. 1.  Sample geometric division. 

IV. THE APPROACH 
     The PYRAMID algorithm, summarized in Fig. 2, is 
a multi-step hybrid approach that utilizes the above 
concepts. It is further described in the following 
sections. 
 

  Master Processor 
1. Initiate binning. 
2. Perform geometric division. 
3. Send each subset to a different slave. 
4. Receive p resulting subsets of discovered 

data points from p slaves. Determine 
cells that contain returned points.  

5. Merge returned cells into global solution 
that labels every cell with a cluster. 

Slave Processor 
1. Receive data subset P from master. 

Perform quantization on local data. 
2. Run genetic program on the local data 

points in P (on current slave processor). 
3. After algorithm finishes, send points in 

discovered cells to master processor. 

Fig. 2.  Master and slave roles in PYRAMID. 
 

A. Master-Slaves Communication 
    The first step in PYRAMID is executed by the 
Master processor, which performs the geometric 
division, forming quadrants as groups of cells. 
Subsequently, the master processor sends each 
quadrant’s data subset to a separate slave processor 
that executes the following genetic program. 
 

B. Genetic Program 
     In this study, a genetic program is used that encodes 
every individual, I, as a tree having leaf nodes 
representing I’s constituent rules. This representation 
offers more flexibility than genetic algorithm-based 
bit-strings [10], as demonstrated by the example in Fig. 
3, which represents individual I  from Fig. 4. As in 
standard genetic programming, the internal nodes 
correspond to the functions that apply to the leaf nodes 
[10]. In this study, union is the only function 
employed. It symbolizes that the individual is formed 
as a combination of its constituent rules.  

1

 
Fig. 3.  Tree representation of Individual I  1 in Fig. 4. 

IAENG International Journal of Computer Science, 34:1, IJCS_34_1_14
______________________________________________________________________________________

(Advance online publication: 15 August 2007)



 
Fig. 4.  Rules for individual in Fig. 3. 

 
1) Genetic Operators 
     The main genetic operators used by PYRAMID are 
crossover, smart mutation, architecture altering (also 
called structural), and repair. This section provides a 
brief overview of these operators, but the reader is 
referred to [18] for further details. 

Crossover acts at the rule level by swapping rules 
between individuals thus producing two new 
individuals. Smart mutation has two flavors: enlarge 
mutation, which attempts to add cells in dense 
neighborhoods and shrink mutation, which takes out 
cells with respect to a specific dimension. Mutation 
always produces one new individual. Architecture 
altering adds a new rule to an individual or deletes an 
existing one from it. An operator was added in [18], 
called repair, which reshapes overlapping rules into 
new ones that align better with the distribution of the 
data points. This is demonstrated by the example in 
Fig. 5 where the frame depicts the area covered by the 
original rule. 

 
Fig. 5.  Sample PYRAMID repair operation. 

 
2) Fitness Function 
     PYRAMID uses a fitness function that focuses on 
three main factors to achieve good solutions: coverage, 

dense neighborhoods, and smaller individuals by 
means of parsimony pressure [18]. Therefore, 
PYRAMID’s fitness function, incorporates the 
following three main objectives, as shown in (1). 
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3) Selection Operator and Elitism 
This study adopts a selection operator that is based 

on tournament selection with a tour size of three [3]. It 
also implements one-individual elitism, whereby in 
every iteration, the best performer is carried over to the 
next generation [2]. 
4) Main Algorithm 
     The GP that is run on each slave processor is 
summarized in Fig. 6. After each operator is applied, 
the fitness of resulting individuals is evaluated. 
 

t = 0 
Initialize population t 
Evaluate population t 
While (not termination condition) 
 Begin 
  t = t + 1 
  s = selection from population t-1 
  c = crossover 2 individuals in t               
  m = smart mutation                                         
  a = architecture-altering  
  e = elitism 
 Evaluate(fitness) population t                             

 End 
 

Fig. 6.  Serial GP algorithm. 
 
C. The Merge Phase 
     In this final phase of the PYRAMID algorithm, the 
discovered points are reported back to the master, 
which traverses their associated cells, assigning them 
cluster labels based on their neighborhoods. The merge 
algorithm was discussed in details in [18]. 

V. EXPERIMENTS 
     Our previous study [18] included multiple 
experiments that tested the ability of PYRAMID to 
detect clusters of arbitrary shapes, to dynamically 
determine the number of clusters, to achieve speedup 
using parallelism, its independence of the order of 
input, and its handling of outliers. Another study that 
we conducted [19] added further experiments using a 
new challenging data set and proved the resilience of 
PYRAMID to user-supplied parameters. This study 
adds more experiments that test data sets bearing other 
aspects, such as special contours and curvatures. The 
rest of this section revisits some of the experiments 
from [18], [19], as well as the ones mentioned above.  
     In [18], the experiments were run over existing 
two-dimensional data sets that were used by other 
algorithms like NOCEA, CURE, DBSCAN, and 
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RBCGA. Table 1 shows a list of these data sets.  In 
addition, a new data set called DS5, which we 
introduced in [19], is also included in this table. 

 

TABLE 1. DATA SETS USED IN PYRAMID EXPERIMENTS. 
DATA SETS POINTS CLUSTERS 

DS1 8,000 6 
DS2 10,000 9 
DS3 100,000 6 
DS4 1,120 3 
DS5 100,000 100 

 

Fig. 7, Fig. 8, and Fig. 9 provide a comparison 
between the PYRAMID detection of DS1, DS2, and 
DS3 against NOCEA, CURE, and DBSCAN. It is 
evident that PYRAMID provides smoother detection 
than NOCEA, better discovery and outlier handling 
than CURE and DBSCAN [9]. Fig. 10 demonstrates a 
smoother detection by PYRAMID than RBCGA. 
 

 
Fig. 7.  PYRAMID cluster discovery. 

 

 
Fig. 8.  NOCEA cluster discovery [13]. 

 

 
Fig. 9.  DS1, DS2, DS3 by CURE and DBSCAN [9]. 

 

 
Fig. 10.  DS4 by PYRAMID versus RBCGA [12]. 

 

The independence of PYRAMID on the order of data 
input was also demonstrated in [18], as shown Fig. 11, 
which depicts the detection of the same data set with a 
different data order. It is evident that both detections 
are similar, thus demonstrating the independence of 
PYRAMID on the order of input. 
 

 
Fig. 11.  Detection with different data order. 

 

Other experiments were conducted in [18] to evaluate 
the improvements in speed that PYRAMID achieved 
from serial to parallel with four and sixteen slave 
processors, for data sets DS1, DS2, and DS3. The 
results showed considerable speedup improvements 
that ranged from 1.8 to 6.43. The reader is encouraged 
to refer to [18] for additional details.  

     Further experiments were performed in [19] that 
evaluate the performance of PYRAMID with a more 
challenging data set, referred to as DS5, which 
contains one hundred clusters that are close and 
surrounded with a considerable amount of outliers. In 
[19], we also evaluated PYRAMID’s independence on 
user-supplied parameters.  
Independence of PYRAMID on user parameters: 
     This experiment was performed in [19] to evaluate 
the impact of modifying different parameters on the 
outcome of the PYRAMID algorithm. The results have 
shown that detection remained fairly similar even 
when crucial parameters such as the genetic program 
population size, number of rules per individual, and the 
genetic operator percentages. This is demonstrated in 
Fig. 12 where these parameters were changed and the 
results are compared to the original PYRAMID run for 
DS2 shown in Fig. 7. 
 

  
Fig. 12. PYRAMID with different parameters on DS2. 
 
Experiments with other data sets: 
     This study adds more experiments using other data 
sets, obtained from [1], which do not contain a large 
number of points but rather present different 
challenges such as clusters with holes, sharp contours, 
and pointy extremities. As demonstrated in the next set 
of figures, PYRAMID shows fairly good detection of 
clusters in these data sets. The left side of all these 
figures is the actual data as drawn by gnuplot. 
     It is noticeable in Fig. 13 that PYRAMID captured 
the shape of DS6 data distribution but missed a small 
detail on the top right corner of the cluster. A similar 
scenario is encountered in Fig. 14 where the detection 
is fairly similar to the actual data distribution with 
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some subtle differences. This demonstrates how 
PYRAMID detects a cluster that contains a hole, in 
this case with an oval shape. 
 

TABLE 2. DATA SETS USED IN PYRAMID EXPERIMENTS. 
DATA SETS POINTS CLUSTERS 

DS6 459 1 
DS7 388 1 
DS8 857 1 
DS9 489 1 

DS10 4961 1 
 

 

 
Fig. 13. DS6 detection using PYRAMID. 

 

 
Fig. 14. DS7 detection using PYRAMID. 

 
Fig. 15. DS8 detection using PYRAMID. 

 

  
Fig. 16. DS9 detection using PYRAMID. 

 

 
Fig. 17. DS10 detection using PYRAMID. 

 
Fig. 15 shows another close detection by PYRAMID 
for a cluster with a hexagon-shaped hole. Fig. 16 
demonstrates the detection of sharp curvatures while 
Fig. 17 shows the detection of sharp rectangular 
shapes, referred to as T-cells in [1]. It is worth noting 
in this last figure that there are some missing 
detections, which are mostly due to the non-
deterministic nature of the GP-based algorithms that 
may result in a slightly different detection with every 
run, as demonstrated in more than one experiment in 
[18]. 

VI. CONCLUSION AND FUTURE WORK 
     In [18], we introduced a novel approach to 
clustering large data sets, called PYRAMID. It 
employed a hybrid combination of GP’s global search 
and strong representational capabilities along with a 
powerful density-aware multi-objective fitness 
function as well as data parallelism to achieve speedup. 
The experiments that were performed in [18] used 
renowned data sets that were tested by other 
algorithms like CURE, BIRCH, and NOCEA. They 
demonstrated that PYRAMID detects clusters of 
arbitrary shapes, is mostly immune to outliers, and 
does not depend on the order of data input. In addition, 
its inherent data parallelism allows it to improve 
performance.  
     In another study [19], we also exercised the ability 
of PYRAMID to detect a more challenging dataset, 
DS5, which was employed in previous well known 
clustering research [15]. The results showed a 
performance by PYRAMID that was slightly better 
than WaveCluster.  Another experiment that we 
performed also attested to the independence of 
PYRAMID on user-supplied parameters.  
     This study added other data sets that present 
different types of challenges such as clusters with oval 
and hexagon shaped holes, as in DS7 and DS8, sharp 
contours, as in DS9 and DS10, and pointy extremities 
like DS6 and DS7. As seen in the above figures, 
PYRAMID has shown that it is able to detect their 
clusters to a good degree. 
     One potential avenue for future research is to 
explore the performance of PYRAMID through 
speedup with higher dimensions. Other avenues 
include exploring the use of rules with variable shapes, 
not strictly rectangular, and using other forms of 
parallelism.  
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