
 
 

 

  
Abstract— Recently, several biclustering methods have been 
suggested to discover modules in gene expression data matrices. A 
module, namely a bicluster, is defined as a subset of genes that 
exhibit a highly correlated expression pattern over a subset of 
conditions. Most existing methods produce sub-optimal solutions 
by approximation approaches since biclustering requires 
combinational searches for pairs of genes and conditions in a large 
search space. In this paper, we propose a fast biclustering method, 
BiModule, that exhaustively searches modules in real time based 
on a closed itemset mining algorithm. We show that BiModule can 
discover functionally-enriched biclusters better than the 
approximation approaches, while maintaining a comparably fast 
running time. In addition, we apply BiModule to a gene expression 
data matrix obtained from various human tissues/cells and 
demonstrate that genes found in each bicluster well reflect the 
functions and morphology of specific tissues/cells. 
 

Index Terms—biclustering, closed itemset, gene expression 
module,  LCM.  
 

I. INTRODUCTION 
The advent of high-throughput gene expression profiling 
techniques such as cDNA microarray has made it possible to 
simultaneously analyze expression levels for thousands of genes 
under a number of different conditions. Gene expression data is 
usually arranged in the form of a matrix, in which each row 
corresponds to a gene, each column corresponds to a condition 
and each element represents an expression level of a gene under 
a condition. The typical approach to analyze gene expression 
data is clustering such as hierarchical clustering and k-means 
clustering. Clustering divides genes into mutually exclusive 
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groups with similar expression patterns across all conditions. 
However, one would expect that many gene groups might 
exhibit similar expression patterns only under a specific set of 
conditions. We refer to such a group as a gene expression 
module, or simply module.  

Recent studies have focused on the problem of discovering 
hidden module structures in large expression matrices. This 
involves simultaneous clustering of genes and conditions and is 
thus an instance of biclustering. Using that terminology, the 
modules we seek can be referred to as biclusters. The aim of 
biclustering is to identify subset pairs (each pair consisting of a 
subset of genes and a subset of conditions) by clustering both 
the rows and the columns of an expression matrix. This is a 
combinatorial search problem in an exponentially large search 
space. Hence most existing biclustering algorithms are based on 
greedy or stochastic heuristic approaches and produce possibly 
sub-optimal solutions. Cheng and Church [1] gave a greedy 
algorithm that searches biclusters with a mean squared 
difference less than δ. Tanay et al. [2], [3] identified biclusters 
based on a bipartite graph-based model and using a greedy 
approach to add/remove vertices to find maximum weight 
sub-graphs. Ben-Dor et al. [4] proposed a randomized 
algorithm to find the order-preserving sub-matrix (OPSM) in 
which all genes have same linear ordering. Ihmels et al. [5] 
proposed a random Iterative Signature Algorithm (ISA) which 
uses gene signatures and condition signatures to find biclusters 
with both up and down-regulated expression values. Such 
approximation approaches may produce many similar biclusters 
since the explored regions of the search space may be limited. 
We expect that interesting biclusters (or at least their cores) can 
be obtained by exhaustively enumerating every maximal 
bicluster. 

In this paper, we propose a fast biclustering method, 
BiModule, that allows fast exhaustive search of maximal 
biclusters from discretized expression data matrices. This is 
based on a closed itemset mining algorithm that has been 
actively studied in data-mining and knowledge discovery. A 
well known application of closed itemset mining is pattern 
discovery from large point of sale (POS) data. The aim here is to 
find the maximal sets of items purchased by customers at the 
same time, namely closed itemsets. In the same manner, we can 
obtain maximal biclusters by finding closed itemsets for 
conditions over which genes have identical discretized 
expression values. BiModule achieves exhaustive enumeration 
of maximal biclusters in polynomial time by a fast and efficient 
algorithm called LCM (Linear time Closed itemset Miner) [8], 
[9]. Prelic et al. [10] developed an exhaustive biclustering 
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method for binary expression data based on a 
divide-and-conquer algorithm. In contrast, BiModule can 
address multi-valued expression data as well as binary data. In 
this study, we conducted benchmark tests using S. cerevisiae 
expression data to compare the performances of salient methods 
with that of BiModule. In addition, we applied BiModule to an 
expression data from various human tissues/cells and 
investigated the biological meaning of the generated biclusters. 
The rest of the paper is organized as follows. In the next section, 
we give the definition of “closed itemset” and explain its 
application to biclustering. In section III, we describe the 
procedure of BiModule. In section IV, we compare the 
performance of BiModule with other prominent methods by 
conducting enrichment analysis on four different kinds of 
functional information: Gene Ontology terms, protein-protein 
interaction pairs, functional motifs and metabolic pathways. In 
section V, we show the results of enrichment analysis and 
biological interpretations on biclusters discovered from human 
tissue/cell expression. In section VI, we summarize and close 
with our conclusions from this study and some ideas for future 
work. 
 

II. CLOSED ITEMSET MINING AND BICLUSTERING 

A.  Closed Itemsets  
A closed itemset mining searches co-occurring items from a 
transaction database as shown in Fig.1. First, we define the 
closed itemset more formally. Let I be a set of items. A 
transaction database is a subset of the power set of I. In other 
words, it is a set of sets Ti = {t1, t2, …, tm} of items from I. Each 
Ti is called a transaction. Fig. 1 is an example of a transaction 

database that consists of six transactions and nine items. A 
subset of I is called an itemset. For an itemset P, a transaction 
which contains (i.e. is a superset of) P is called an occurrence of 
P. The set of occurrences of P is denoted S(P). The size of S(P) 
is called the support of P, denoted by supp(P). Given a constant 
θ, called a minimum support, itemset P is frequent if supp(P) ≥ 
θ. A closed itemset is maximal for its set of occurrences. In other 
words, an itemset P is a closed itemset if there exists no itemset 
P’ such that P⊂P’ and supp(P)=supp(P’). For example, in the 
transaction database in Fig.1, the itemset {A, G, I} is a closed 
itemset because this is the maximum set of items shared by 
transactions {1, 3, 4}. For a minimum support of 2, the itemset 
{A, G, I} is a frequent closed itemset because supp(A, G ,I)>2. 
{A, G} is not a closed itemset since all of the transactions 
including items A and G also include the item I.  
    Next we describe how we apply the closed itemset problem to 
biclustering gene expression matrices. For simplicity, suppose 
each gene expression value is represented by 0 or 1 (up or down 
regulation). In this context, Fig.1 can be transformed to a table 
such as Fig.2. This is the same form as a typical gene expression 
matrix, where a gene (row) corresponds to a transaction and a 
condition (column) corresponds to an item. If a condition is 
activated by a specific gene, the corresponding element takes a 
value of 1. A set of conditions in a bicluster is a maximal set of 
conditions in which a certain set of genes exhibit common 
expression values. For example, a condition set {A, G, I} is a set 
of conditions composing a bicluster because this is a maximal 
set with a value of 1 for genes {1, 3, 4}. In this way, closed 
itemset mining corresponds to extracting condition sets 
composing biclusters under the restriction of using discretized 
expression values. However, the above formulation can deal 
with only the binary states, such as up or down regulation. Prelic 
et al. [10] proposed a biclustering algorithm based on binary 
discretization of gene expression matrices. Such a rough 
discretization may blur the original structure of gene expression 
matrices and consequently obscure biologically meaningful 
modules. In contrast, our method can deal with multi-valued 
discretization levels and thus can discover not only biclusters 
with constant values but also biclusters with expression patterns 
changed over conditions. The former bicluster is called a 
constant bicluster and the latter is referred to as an additive 
bicluster.  

B. Closed Itemset Enumeration Algorithm 
To date, several efficient algorithms have been proposed to 
enumerate every closed itemset from a transaction database 
[6]-[9]. We chose to use LCM (Linear time Closed itemset 
Miner), which received the best implementation award in the 
data-mining contest FIMI’04 [9]. LCM achieves a fast 
enumeration of closed itemsets using a unique technique called 
prefix preserving closure extension (ppc extension for short), 
which is an extension from a closed itemset to another closed 
itemset. The extension induces a search tree on the set of 
frequent closed itemsets, thereby enabling the completely 
enumeration of closed itemsets without duplication. Because of 
this efficient traversal of itemsets LCM can avoid redundant 
calculation without keeping a list of previously obtained closed 

Fig.1: Transaction database. 

Fig.2: Gene expression table. 
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itemset. Hence, the memory use of LCM does not depend on the 
number of frequent closed itemsets. The computational time of 
LCM is theoretically linear in the number of frequent closed 
itemsets. (cf. [8] for a detailed description of LCM). The LCM 
program is available from [11].   
 

III.  METHODS 
Fig.3 is the procedure of BiModule. BiModule consists of the 
four parts: 1) normalize and discretize gene expression data, 2) 
generate a transaction database, 3) enumerate biclusters (closed 
itemsets) and 4) filter out unnecessary biclusters.   

A.  Normalization and Discretization 
In our procedure expression data from each microarray sample 
are linearly normalized to have mean 0 and variance 1, and this 
normalized data is discretized. Fig.3a illustrates an example of a 
discretized data matrix, where the number of levels is set to 3, 
namely (-1, 0, 1), for simplicity. ‘M’ in this matrix denotes a 
missing value. The interval for each expression level is given by 
uniformly dividing the difference between the maximum and the 
minimum in the normalized data. However, if the maximum or 
the minimum takes an extreme value (outlier), most of the data 
will be unevenly assigned to a few levels because unduly large 
intervals are needed to include the outlier. Hence, we perform 
the following processing for outliers before discretization. Data 
farther than a threshold (3 standard deviations in this work) are 
regarded as outliers and are temporarily removed. The rest of 
data are renormalized and if the renormalized data contains new 
outliers the procedure is repeated until no outliers remain. At 

this point the temporarily removed outliers are given values 
equal to the corresponding extreme value of the final 
normalized data (minimum for outliers below the mean, 
maximum for outliers above the mean). The discretization is 
performed on this data. 

B. Transaction Data 
We prepare an itemization table that contains IDs representing 
each discretization level in each condition. Fig.3b shows the 
itemization table for the discretized data in Fig.3a. In this figure, 
for example, discretization level ‘1’ in condition ‘B’ is specified 
by ID ‘7’. Subsequently, the discretized data are converted to a 
transaction database as shown in Fig.3c by reference to the 
itemization table. The transaction data for a gene is represented 
by a set of IDs (corresponding to items), where IDs for missing 
values are not included. In this manner, an item in the 
multi-valued discretization indicates a combination of a 
condition and a discretized value. Thus, itemization enables us 
to extract additive biclusters as well as constant biclusters. 

C. Enumeration of Biclusters 
We use LCM to enumerate closed itemsets and their 
corresponding biclusters. The input to LCM is a transaction 
database and a minimum support value, i.e., the minimum 
number of genes in extracted biclusters. The output is closed 
itemsets with IDs as shown in Fig.3d. In this figure, an example 
of a closed itemset enumerated by LCM is shown. We can 
convert the IDs to the condition names and discretized values by 
reference to the itemization table. In Fig.3d, it is shown that the 
closed itemset {3, 10, 13, 19} can be converted to the conditions 

 
Fig.3: The procedure of BiModule. 
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A, C, D and E taking discretized values 1, 0, -1 and 1, 
respectively. Corresponding biclusters can be completed by 
selecting the genes which match the required discretized value 
for each condition.    

D. Selection of Biclusters 
In most cases, a large number of biclusters are enumerated, e.g., 
115,737 for a 2000×200 matrix with the parameters L=7, 
Mg=40 and Mc=5 (see E. Implementation). However, most of 
them are small biclusters and most of their elements overlap 
with larger biclusters. We filter out such small biclusters by the 
following procedure. First, the enumerated biclusters are sorted 
using the following score F: 

             )(log)(log)( 22 cgABF uu .          (1) 
In (1), B is a bicluster, A represents the average of the absolute 
values of the discretized values in the conditions included. g and 
c are the number of genes and the number of conditions, 
respectively. Subsequently, biclusters overlapping more than 
25% with a bicluster having higher score are filtered out and the 
remaining biclusters are output to the user.   

E.   Implementation 
We implemented the procedure above in Java except for the 
closed itemset enumeration by LCM. The LCM program is 
implemented in the C language [11]. The input to BiModule is a 
pre-normalized gene expression matrix and three parameters: L, 
Mg and Mc, where L is the number of discretization levels, Mg 
is a minimum number of genes and Mc is a minimum number of 
conditions. As for the number of discretization levels, users can 
choose from L=3, 5 and 7. In this study, we use L=7 because 
BiModule shows the best performance with this setting, both in 
terms of the extraction accuracy of modules and running time 
[14].   
 

IV. PERFORMANCE WITH BENCHMARK DATASETS 

A. Compared Biclustering methods 
We compare the performance of BiModule with that of other 
prominent biclustering methods using benchmark datasets. The 
test platform is a desktop PC with Pentium 4, 2.4GHz CPU and 
1GB RAM running the Linux operating system. The methods 
selected here are: Order Preserving Submatrix Algorithm 
(OPSM) [4], Iterative Signature Algorithm (ISA) [5], Samba [2], 
[3], the Cheng and Church algorithm (CC) [1] and Bimax [10]. 
These are all based on greedy search strategies. We downloaded 
the software, BicAt developed by Barkow et al. [12] and 
EXPANDER developed by Shamir et al. [13]. BicAt 
implements Bimax, ISA, CC and OPSM in Java. Samba is 
available in EXPANDER. In our comparative test, the 
parameters for these algorithms were set to the values 
recommended in the corresponding publications.  

B. Experimental Results 

 Synthetic Data 
Prelic et al. provides synthetic datasets that contain the sets of 
data matrices with artificially-implanted modules. In the 
previous report [14], we compared the performances of the 
selected methods with that of BiModule using the synthetic 
datasets, where extraction accuracies of constant, additive and 
overlapping modules (illustrated in Fig.4) were evaluated 
according to two performance scores, relevance and recovery. 
As a result, it was shown that BiModule can discover modules 
with higher accuracy than competing methods, for any of the 
three module types [14].  
 S. cerevisiae Data 

Prelic et al. also provides S. cerevisiae expression data 
containing 2,993 genes and 173 conditions [15], derived from 
Gasch’s dataset [16]. This includes expression data for several 
conditions under 13 different environmental stresses such as 
heat shock, nitrogen depletion etc. In this section, we use this 
dataset as a benchmark and compare the functional enrichment 
of biclusters discovered by each method. The input parameters 
used for BiModule are L=7, Mg=40 and Mc=5. For all of the 
biclustering methods, we filtered out biclusters overlapped by 
more than 25% with a larger bicluster and output the resultant 
biclusters up to 100 in descending order of size.  

In [14], we presented the proportions of biclusters containing 
significantly over-represented Gene Ontology (GO) terms [17] 
and protein-protein interaction (PPI) pairs. The GO enrichment 
test was performed using a web tool FuncAssociate [18], while 
for PPI pairs, we used interaction data obtained from the DIP 
database [19]. The significance of PPI enrichment was 
calculated by using the z-test to check whether the proportion of 
non-interacted pairs in each bicluster is significantly smaller 
than the expected values for random gene groups under normal 
distribution model. In this work, we also test for the enrichment 
InterPro motifs [20] and KEGG pathways [21]. The 
experiments were performed using a web-based tool 
GENECODIS [22] that allows integrative extraction of 
frequently co-occurring annotations in a given gene list across 
different sources such as GO terms, InterPro motifs, KEGG 

Fig.4: Example of the three types of modules, (a) constant, (b) additive, 
and (c) overlapping. (d) Example of constant modules implanted into a 
background matrix 
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pathways and Swiss-Prot keywords. GENECODIS uses the 
apriori algorithm [23] to mine frequent itemsets, i.e., 
co-annotations satisfying a minimum support value (see section 
II) and then a statistical test (the hypergeometric distribution or 
the χ2-test) is applied to identify significant combinations of 
annotations. The p values can then be adjusted for multiple tests 
using a simulation-based correlation approach [18] or the false 
discovery rate (FDR) method [24]. In this paper, we use the 
hypergeometric distribution for statistical tests and the FDR 
method for adjustments of multiple tests. 

Fig.5 summarizes the proportion of biclusters with one or 
several over-represented GO terms (p<10-5), PPI pairs (p<10-3), 
InterPro motifs (p<10-3) or KEGG pathways (p<10-3) in the 
selected methods, which are hereafter referred to as GO, PPI, 
Motif and Pathway. As can be seen in this figure, all biclusters 
discovered by BiModule contain significantly over-represented 
GO terms. This is the best score among the compared methods. 
BiModule also attains the highest scores for PPI and Motif, 
92.3% and 80.8% respectively. As for Pathway, although 
BiModule is second behind OPSM, an obvious difference in the 
variations of the pathway names was observed; all of the 
significant biclusters by OPSM were associated with ribosome 
synthesis-related pathways and furthermore were similar to each 
other, namely overlapped in most of their genes and conditions. 
In contrast, BiModule generated not only ribosome 
synthesis-related biclusters but also biclusters corresponding to 

distinct metabolic pathways such as the sulfur metabolism or the 
nitrogen metabolism. These results suggest that BiModule can 
discover diverse modules in actual problem.  

Fig.6 shows the running times (in seconds) of the respective 
methods for this dataset. Among them, Samba is the fastest and 
BiModule is second only to this. It is noteworthy that the 
running time of BiModule by the exhaustive approach is 
comparable to that of Samba using the probabilistic approach 
and furthermore is faster than the other approximation methods. 
 

V. APPLICATION TO THE HUMAN TISSUE DATA 
Currently, we have been carrying out comprehensive analysis of 
the human transcriptome toward elucidation of the functional 
and morphological diversity in various tissues/cells. As a part of 
this study, we have applied BiModule to gene expression data 
of human tissues/cells measured by iAFLP method (introduced 
Amplified Fragment Length Polymorphism) [25]. In this section, 
the results are evaluated by functional enrichment analysis and 
an investigation of the function of genes found in the generated 
biclusters. 

A. Dataset and Preprocessing 
The iAFLP has high specificity and sensitivity for transcript 
detection and a throughput level comparable to that of DNA 
microarray hybridization [25]. The iAFLP expression data used 
here is a matrix of 20,703 gene (probe) profiles measured under 
83 tissues/cells of adult humans. Since iAFLP quantitates 
expression levels of multiple samples based on a gene by gene 
approach; as a preprocessing step, the expression values of each 
gene are normalized to a normal distribution with mean 0 and 
variance 1. The input parameters used for BiModule were L=7, 
Mg=50 and Mc=5. As a result, 166 biclusters were obtained and 
the top 100 scoring biclusters were used for the analysis.      

B. Statistical Annotation Enrichment Analysis 
First, functional enrichment analyses for generated biclusters 
were conducted on four different types of functional 
information (hereafter called themes): GO terms, PPI pairs, 
InterPro motifs and KEGG pathways. In this experiment, 
GENECODIS was used to find co-occurring annotations for all 
themes except PPI. PPI was analyzed in the same manner as 

Fig.7: Results of enrichment analysis on biclusters from human tissue/cell 
data.  In addition to GO, PPI, Motif and Pathway, proportion of biclusters 
significantly enriched in one or more themes (One or More) are shown. 

Fig.5: Proportion of biclusters significantly enriched by GO terms (GO), 
protein-protein interactions (PPI), InterPro motifs (Motif) and KEGG 
metabolic pathway (Pathway).  

Fig.6: Running time (in second) of the methods. 
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shown in section IV (see also [14]), using interaction data 
obtained from the HPRD database [26]. The results are shown 

in Fig.7, where “One or More” indicates the number of 
biclusters judged to be significant for one or more themes. As 

Fig.8: Examples of biclusters discovered by BiModule. The upper half shows a bicluster specific for cardiac muscles, and the lower shows a bicluster 
consisting of genes that are up-regulated in brain tissues and repressed/down-regulated in cardiac muscles 

BC1 

BC2 
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seen in this figure, 86 biclusters have significant annotations (p 
< 0.05) in one or more theme. The number of significant 
biclusters in each theme is 65 for GO, 50 for PPI, 56 for Motif 
and 12 for Pathway, respectively. These results are substantially 
smaller in number compared to those obtained with the S. 
cerevisiae data. This may be due to the incompleteness of 
annotation for human biological data. For example, about 60% 
of the GO term annotations for human gene products are 
inferred by computer programs, in contrast all annotations for S. 
cerevisiae are based on biological evidences.   

C. Biological Interpretations 
Subsequently, we investigate the functions of genes in the 
significant biclusters obtained by the above enrichment analysis. 
In these biclusters, the same types of tissues/cells tend to be 
assigned into identical biclusters and the functions of the 
tissues/cells are well characterized by the genes contained in 
each bicluster. Below, we discuss the biological meaning of the 
two biclusters shown in Fig.8. These biclusters are hereafter 
referred to as BC1 (upper) and BC2 (lower), respectively. 
Although these biclusters actually contained 43 genes for BC1 
and 69 genes for BC2, in Fig. 8 we show the genes that seem to 
be associated with the tissues/cells of each bicluster. 
     BC1 consists of 27 genes expressed in cardiac muscle cells. 
In this bicluster, besides genes involved in myofibril formation 
such as actin, myosin and troponin genes, several novel genes 
discovered in recent years are also contained. For example, 
Papanikolaou et al. [27] reported that the expression of HFE2 is 
restricted to liver, heart and skeletal muscle, similar to that of 
hepcidin, a key protein implicated in iron metabolism. Nojiri et 
al. [28] showed that ITGB1BP3, a modulator of muscle 
proliferation and differentiation, is specifically up-regulated for 
cardiac oxidative stress.  
    The bicluster BC2 is composed of genes that are up-regulated 
in brain tissues (cerebellum, right cerebellum and callosum) but 
are repressed/down-regulated in cardiac tissues (left atrium and 
right atrium). Potassium channels are important in shaping the 
action potential, and in neuronal excitability and plasticity. This 
bicluster has several potassium channel-related genes, KCNA2, 
KCND2, KCNJ6, KCNJ10 and KCNMA1. AMPA glutamate 
receptors are composed of four subunits, GRIA1-GRIA4, that 
are believed to play critical roles in synaptic transmission. BC2 
contains three of them, GRIA1, 2 and 3. Besides the above 
genes, BC2 includes several brain-specific genes such as 
GALNT9, 13[29] and MOBP [30].  

As demonstrated above, BiModule enables us to find genes 
co-activated in certain tissue/cell types (such as BC1) as well as 
genes regulated exclusively between different tissue groups 
(such as BC2). Besides these biclusters, we obtained several 
interesting biclusters such as biclusters specific for blood cells, 
intestine cells or lymphoid cells. In future work, the functions of 
unannotated genes in generated biclusters could be investigated 
according to sequence homology/orthology or literature surveys, 
and so on. 

 

VI. CONCLUSIONS 
We proposed a new biclustering method, BiModule, that allows 
exhaustive search of gene expression modules based on a fast 
closed itemset enumeration algorithm. In this study, we use the 
S. cerevisiae expression data as a benchmark for performance 
comparisons with six prominent methods. The performance was 
evaluated based on functional enrichment analysis in the 
generated biclusters. As a result, BiModule exhibited the best 
performance in the enrichment analyses on GO terms, 
protein-protein interaction pairs and functional motifs. 
Moreover, the running time of BiModule was comparable to 
those of approximation algorithms. We also applied BiModule 
to human tissue data. As a result, we obtained intriguing 
biclusters derived from not only single organs but also multiple 
organs, and we were able to confirm that those biclusters 
include important genes characterizing the functions and roles 
of the respective tissues/cells. 

BiModule does have some limitations. BiModule searches 
for biclusters in which the rows in each bicluster are completely 
identical. Therefore, if a large amount of noise is included in 
some elements of a true module, the observed expression value 
may not fall into the desired interval during the discretization 
process. In such case, true modules will be subdivided into some 
smaller biclusters. Furthermore, since BiModule cannot extract 
biclusters with a gene size smaller than Mg, such small 
biclusters are ignored by the process of the closed itemset 
enumeration. Consequently, with Mg set to an excessively large 
value, BiModule may not be able to properly detect small 
biologically meaningful biclusters.  

As future work, in order to reduce noise in gene expression 
data, we will incorporate a de-noising method such as [31] to 
BiModule.  We are currently implementing a parallel computing 
version of BiModule toward the development of a web tool.  
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