
A Smart Compressed XML Data on Networks

Xu Huang and Dharmendra Sharma
School of Information Sciences and Engineering, University of Canberra

Canberra, ACT, 2617, Australia

(Xu.Huang, Dharmendra.Sharma)@canberra.edu.au

Abstract—It is well known that XML became an official
recommendation of the World Wide Web Consortium (W3C) in
1998, it is now increasingly being used to transmit data on
networks but is a verbose format and needs an efficient encoding
to send relatively large amounts of data efficiently, which is most
attractive to wireless data communications. It is a common
technical challenge for researchers in XML-driven networks to
have good performance. There are many papers discussed this
issues, such as one may employ a middleware to enhance
performance by minimizing the impact of transmission time [1, 3].
Normally, to reduce the amount of data sent the XML documents
are converted to a binary format using a compression routine
such as Gzip. However while this would reduce the amount of
data, it results in an increase in the CPU time as the XML
document must be compressed before being sent and
uncompressed when it is received. In this paper we extended our
previous research results [2, 11-15] to an enabling technology,
namely Dynamic Adaptive Threshold Transmission (DATT) for
XML data on networks, in particularly focusing on “dynamic”
nature. We also show the experimental results obtained from our
technique and that from the Network Adaptable Middleware
(NAM) established by Ghandeharizadeh et al [1]. Experimental
results show that our method is superior to the NAM method [1],
which supported by the fact that the time taken is 220.6 times
better in the applied regions.

Keywords-XML, network adaptable middleware, efficient XML,
internet middleware, efficient communication on a network.

I. INTRODUCTION
It is well known that XML has become an increasingly

important data standard for use in organizations as a way to
transmit data [4, 5, 6, 7] and has also attracted the attentions of
those people who are working in areas of wireless
communications, in particular for so called small wireless
devices. Additionally it is being used to enable web services
and similar, often custom, RPC functionality to allow greater
access to data across multiple systems within an organization
and allowing the possibility of future systems to be created
from collections of such RPC functionality.

However, XML is a verbose, text based format with strict
requirements on structure and is often criticized for its large
space requirements. This large size can be particularly
problematic for use in transmission across a network, where
network bandwidth restrictions can cause significant delays in
receiving the transmission, which has drawn great attention
from the wireless communications.

One solution to this problem is to look at reducing the size
of these transmissions by rendering them in a binary format,
such as by using XMill or Gzip to compress an XML
document. However such methods can take longer as
compressing and decompressing may take more time than
what is saved transmitting the smaller XML document.

Another solution to this problem may be the Network
Adaptable Middleware (NAM) raised by Ghandeharizadeh et
al [8], even though there are some ways to directly compress,
such as column-wise compression and row-wise compression
for large message sizes [9]. This solution estimates the time it
will take to compress, transmit in binary format and
decompress a document compared to an estimate of how long
it would take to transmit the document as uncompressed text.
The estimates are based on a persistent collection of
information on how the system has performed in the past and
provides an accurate estimate on whether it would be faster
too compress the document before transmission or not.

We have introduced another way of determining when to
compress an XML document before transmitting it in our One
Pass Technique (OPT) and extend OPT to Dynamic Adaptive
Threshold Transmission (DATT) [2, 11-15]. In this technique
we determine a threshold size value for the networks. Any
XML document that is smaller than this threshold will be sent
uncompressed while any XML document larger than this size
will be compressed before it is sent.

As we knew that the performances on networks depend on
various parameters, such as traffic situations, bandwidths,
transferring rates, etc. We shall use the adapted dynamic
threshold to represent the characteristics of the running
networks, by which the transferring XML data on networks
will be controlled with the optimum condition in terms of
transferring decision time defined in the next sections. The
following sections are as follows, in section 2, we shall briefly
review the established OPT technique and show that there is
possible to improve the OPT technique. In section 3 the
Dynamic Adaptive Threshold Transmission (DATT) for XML
data on networks will be demonstrated, together with the
experimental setup design, which is the natural research
project, extended from the previous research results. We shall
present the conclusion of this paper in the section 4 in
particular we are going to highlight the “dynamic” issue as the
extending part of our previous paper.

II. THRESHOLD METHOD AND ITS APPLICATION
Before we establish our Dynamic Adaptive Threshold

Transmission (DATT) for XML data on networks, we need briefly to

IAENG International Journal of Computer Science, 34:1, IJCS_34_1_19
__

(Advance online publication: 15 August 2007)

mailto:Dharmendra.Sharma}@canberra.edu.au

recall our previous method, titled “One Pass Technique” (OPT)
and show OPT needs to be changed if we want it work well on a
network. Then, we extend out previous results to current
DATT in next section.

In contrast to the five network factors that contribute to the
latency time of delivering a query output [1] based on the
analysis of the one gigabyte TPC-H benchmark [10], our
method presented here is utilizing an established “ threshold”
for the current working status and then to have “one-pass”
transmission. We defined a threshold value for the network
such that the transmitted time, for XML documents whose size
has been compressed (such as via Gzip) and uncompressed,
will be comparable. To determine what this value could be,
we first need to determine the networks characteristics. As the
networks characteristics will evolve with time the threshold
value needs to dynamically change with the network.

Before OPT can be used on a network we need to determine
the threshold value by making a number of XML transfers of
different sizes across the network. The transmissions need to
be made both with the document compressed, using Gzip as an
example, (and decompressed where it is received) and by
transmitting the document without compression. An estimate
of how long it takes to transmit a document of a given size can
then be determined by curve fitting to these results. The
threshold value is set to be the size when the estimated time to
transmit it without compression is equal to the estimated time
to transmit it with compression. In some situations this may
result in a threshold value that will require compression of all
documents or one that will never require compression of a
document.

There are a number of factors that can prevent OPT from
yielding the best result for all cases. The threshold value will
only be valid for the network bandwidth it is calculated for, so
if that bandwidth changes a threshold value will give an
inaccurate result and a new threshold value will need to be
determined.

The compression and decompression times are dependent
on the CPU load. If the load on a CPU is heavier (or lighter)
than it was when calculating the threshold value it may not
make the appropriate decision on whether or not to use
compression on the XML document. Similarly the technique
works best with a homogenous set of CPUs. Different CPUs
will take different time periods to compress and decompress
the XML documents. The compression/decompression time
of two low end CPUs on a network will be different to the
compression/decompression time of two high end CPUs on
the same network using the same threshold value. This can
also lead to the OPT making a wrong decision on whether or
not to compress the document.

OPT can also be affected by changes in the networks traffic
density. If the network is under a heavier load than it was
when the threshold value was calculated the technique is more
likely to transmit an uncompressed XML document when a
compressed document would have been faster, and with a
lighter network load compressed XML transmissions are more
likely to occur when an uncompressed transmission would
have been faster. OPT is best used in a homogenous

environment where the network bandwidth is well known and
network traffic is reasonably stable.

As we discussed that a threshold depends on many factors
on the network, if OPT works for a network, it must be
changed from time to time depending on the current status of
the network, namely it must be dynamically changed to
control the transfer date on network. This is the basic idea of
our Dynamic Adaptive Threshold Transmission (DATT) for
XML data on networks.

III. DATA FOR XML DATA ON NETWORKS AND
 EXPERIMENTAL RESULTS

It’s noted that there is another solution to this problem titled
Network Adaptable Middleware (NAM) [1, 8]. This solution
estimates the time that it will take for the whole process, that
is to compress, transmit in binary format and decompress a
document, compared to the time that it would take to transmit
the document without compressing it. These estimates are
based on a persistent collection of information on how the
system has performed in the past and provides a reasonably
accurate estimate of whether it would be faster to compress
the document before transmission or not.

Whenever NAM transmits an XML document it uses
records of the times taken for different events to estimate how
long such events are expected to take for the current XML
document. NAM then decides if it should send the XML
document compressed as a result of the comparison, which
can be expressed as:

If tUncompressed Transmission > tDocument Compression + tCompressed

Transmission + tDocument Decompression
Then transmit_compressed,
Else transmit_uncompressed.

(1)

where t is the time.

So if the time taken to transmit the XML document
uncompressed is less than the time taken to compress, transmit
and then decompress the document, the XML document will
be sent uncompressed.

As the estimate must be calculated whenever a document is
to be sent it is the case that NAM can spend a significant
amount of time in determining if the document should be
compressed or not. Additionally, as the estimates are based on
the size of the XML document being transmitted, NAM
assumes that when two different XML documents with the
same physical size in bytes are compressed the result will also
have the same physical size.

In order to have a Dynamic Adaptive Threshold
Transmission (DATT) for XML data on networks, we make a
programmed process to check the current network working
situation that depends on the current traffic parameters
discussed in above sections. Then, the current threshold is
worked out based on the same principle described for OPT in
section II. The obtained threshold will replace the previous
one to work (control) the traffic communications. Since the
threshold is monitored dynamically the adaptive threshold will
always keep record of the times taken in transferring the data

IAENG International Journal of Computer Science, 34:1, IJCS_34_1_19
__

(Advance online publication: 15 August 2007)

In order to investigate our Dynamic Adaptive Threshold
Transmission (DATT) for XML data on networks, we design
our experimental work as shown in Figure 1.

Server - Athlon 64

3200+, 2GB

Memory

Client-Intel Celeron

2.8 GHz, 512MB

Memory

Router - Billion

BIPAC 7402

100 Mb

Ethernet

Connection

100 Mb

Ethernet

Connection

Figure 1: The experimental setup diagram for DATT
The connection was made across the router using a raw TCP

connection created for each transmission. The client used a
listener to listen for the incoming files (port 9013). The server
was running a Cron style task scheduler to initiate
communication and deliver the file.

A number of XML documents (1200 files) were gathered to
test using a time based threshold as shown in Figure 2 to
decide on when to compress a document and when not to.
These files were of different sizes. An application program
was written to transmit these documents a number of times
across a network using a threshold value. Any XML
document with a size greater than the threshold value is
transmitted compressed while all other XML documents are
sent uncompressed.

Hence we have the protocol as shown below:

If SizeDocument > SizeThreshold Then transmit_compressed, Else
transmit_uncompressed

Figure 2: Curve fitting example sets of uncompressed and compressed
transmission data to determine the Threshold Value.

A similar application was set up to transfer the documents
using the NAM methodology (Ghandehazrizadeh, 2003).
NAM uses measured network and computer characteristics to
compare estimates on how long it would take to transmit an
uncompressed document against an estimate of how long it
would take to transmit a compressed document. The
algorithm used is:

If TimeUncompressed Transmission > TimeDocument Compression +
TimeCompressed Transmission + TimeDocument Decompression Then
transmit_compressed, Else transmit_uncompressed.

We carried out the experiments with the SOAP XML
documents and the CSV files. Table 1 shows the results seen
when compressing an empty SOAP message.

Table 1. Size of an empty SOAP message

 Uncompressed
file

WinZip
compressed

WinRAR
compressed

SOAP363 bytes 311 bytes 279 bytes

Table 2 shows the compression of a SOAP message that
contains a single entry. Compressing the SOAP message
results in a size reduction of about 50%, however it is still
significantly larger than the CSV file.

Table 2. Size of a SOAP message with one entry

Uncompressed
file

WinZip
compressed

WinRAR
compressed

SOAP 1,136 bytes 523 bytes 564 bytes
SOAP 773 bytes 212 bytes 285 bytes
CSV 138 bytes 221 bytes 187 bytes

Table 3 shows the compression of a SOAP message with

two entries. With two data entries the size cost saving is up to
30%. The CSV file is still significantly smaller, particularly
when similarly compressed.

Table 3. Size of a SOAP message with two entries

 Uncompressed
file

WinZip
compressed

WinRAR
compressed

SOAP 1,878 bytes 622 bytes 574 bytes
SOAP, per
data entry

758 bytes 156 bytes 148 bytes

CSV 298 bytes 271 bytes 240 bytes
CSV, per
data entry

379 bytes 136 bytes 120 bytes

With the ten data entries seen in Table 4 the size cost saving

is now around 18%. The CSV file is actually larger than the
compressed SOAP file and the compressed CSV files offer
only a small size cost improvement.

IAENG International Journal of Computer Science, 34:1, IJCS_34_1_19
__

(Advance online publication: 15 August 2007)

Table 4 . Size of a SOAP message with ten entries

 Uncompressed
file

WinZip
compressed

WinRAR
compressed

SOAP 8,384 bytes 1,484 bytes 1,358 bytes
SOAP, per
data entry

802 bytes 117 bytes 108 bytes

CSV 2,153 bytes 933 bytes 923 bytes
CSV, per data
entry

215 bytes 93 bytes 92 bytes

The twenty data entries shown in Table 5 show the size cost

saving is now 14% and there is decreased difference between
the compressed SOAP document when compared to the
compressed CSV file.

Table 5. Size of a SOAP message with twenty entries

 Uncompressed
file

WinZip
compressed

WinRAR
compressed

SOAP 16,623 bytes 2,352 bytes 2,175 bytes
SOAP, per
data entry

813 bytes 102 bytes 95 bytes

CSV 4,572 bytes 1,667 bytes 1,654 bytes
CSV, per data
entry

229 bytes 83 bytes 83 bytes

Table 6 shows the results of a SOAP message with fifty

entries. The size cost saving by compressing the SOAP
message is down to 11% of the uncompressed size. The
compressed SOAP document is now only about 12% larger
than the compressed CSV file.

Table 6. Size of a SOAP message with fifty entries

 Uncompressed
file

WinZip
compressed

WinRAR
compressed

SOAP 41,426 bytes 4,742 bytes 4,515 bytes
SOAP, per
data entry

821 bytes 89 bytes 84 bytes

CSV 11,915 bytes 3,853 bytes 3,851 bytes
CSV, per
data entry

238 bytes 77 bytes 77 bytes

Table 7. Size of a SOAP message with one hundred entries

 Uncompressed
file

WinZip
compressed

WinRAR
compressed

SOAP 83,320 bytes 8,971 bytes 8,798 bytes
SOAP, per
data entry

830 bytes 87 bytes 85 bytes

CSV 24,708 bytes 7,903 bytes 7,900 bytes
CSV, per data
entry

247 bytes 79 bytes 79 bytes

The results of one hundred data entries in a SOPA message

are shown in Table 7. The size cost saving is still about 11%

of the uncompressed SOAP message size. The compressed
SOAP document is now only about 9% larger than the
compressed CSV file.

All the observations show that the efficiency of the
compression applied to an XML document improves as more
data instances are added. This would be expected given that
the structured nature of the XML format means that each data
instance would include the same opening and closing element
tags. What was interesting is how the compressed SOAP
XML documents began to approach the size of the compressed
CSV files. As more data instances are added to the SOAP
XML document and to the CSV file the difference in their
compressed sizes is becoming negligible. The SOAP XML
documents richly structured format would make this a
preferable format for describing large sets of data.

A similar application was set up to transfer the documents
using the NAM methodology (Ghandehazrizadeh, 2003).
NAM uses measured network and computer characteristics to
compare estimates on how long it would take to transmit an
uncompressed document against an estimate of how long it
would take to transmit a compressed document. The
algorithm used is:

The experiment was conducted using a client PC (754pin
Athlon64 3200+@2.05GHz with 1GB RAM), one Server PC (
Celeron D 2.8@2.79GHz with 512MB RAM) connected by a
Router (Billion BIPAC 7402G) over a 100MBit Ethernet
connection.

For the DATT the time taken is calculated by the follows:

calculation time + compression time + transfer time +

decompression time + threshold calculation time

In order to obtain good statistics and fair distributed results,

a set of twenty-nine runs were carried out for each technique,
namely DATT and NAM, sandwiched for one hour. For such
a setup the whole running process covers more than 41 hours
without breaking.

In order to change the working environments from time to
time, the network, while it was processing, has been disturbed
by various activities such as “downloading files” in different
sizes, browsing the Internet, playing audio on the computer,
etc. In order to determine the characteristics of the network
before the applications they were run against it, solving the
quadratic equations used to get the time and size estimates
NAM uses in its decision algorithm and determining the
threshold value for the current network traffic load for the
OPT. When the threshold value was found at the particular
time it will be used for controlling the XML data transferred
on the network.

The results for the decision time, in terms of average for all
the runs, for DATT are shown in Figure 3. As the process of
determining the threshold has been passed out to a separate
process, the decision times for DATT are very short.

All the running results will be recorded by five types of
results, namely the original file size in bytes, decision time
(for DATT and NAM, it is the time to decide whether the
current file should be compressed and sent or just sent,

IAENG International Journal of Computer Science, 34:1, IJCS_34_1_19
__

(Advance online publication: 15 August 2007)

mailto:2.8@2.79GHz

according to the principle of DATT or NAM respectively),
compression time, transferring time, and decompression time.

0 200 400 600 800 1000 1200
0

0.5

1

1.5

2

2.5

3
x 10

6

Run No.

D
ec

is
io

n
T

im
e

(n
s)

Decision Time (DTT)

Average
Time

Figure 3: The experimental results for the average decision time of the

DATT described in section III.

 The results for the decision time, in terms of average for all

the runs, for NAM are shown in Figure 4. It is seen that, as
NAM accumulates more data from which to make a decision
increases, the time it takes to actually make a decision
increases to allow all the data to be read.

In the both diagrams, the average decision time were
marked as dashed lines.

It is important to highlight two items, one is that the
horizontal axis, titled as run number, for the two figures are
about 1200, which are the “average” results from 41 hours
running as described in above, another one is that the plotted
run order should not be meanness due to the fact that we put
two results, compressed files and uncompressed files together.
In other words, when the input file is picked up and sent to be
judged either by the DATT or the NAM, the output will be
sent to two groups, one is compressed (if the file was
compressed and then sent) another one is uncompressed (if the
file was not compressed and directly sent). Because we do
care about the average time taken by the decision rather than
when the decision made for the plotting so we just put them
together. Also one may find the plotting results seem to be
“periodic” results, in particular for Figure 3, which, however,
are not real time results.

In these experiments, the average decision time for DATT is
0.187622 milliseconds and for NAM is 41.381926
milliseconds, which means NAM takes 220.56 times longer
than DATT to make a decision.

It is also a very interesting to note that the experimental
results show the number of compressed files with DATT is
587 files of 1201 running files, which gives the compressing
ratio = 0.488. In contrast to DATT, the NAM has 510 files
compressed from total 1219 running files, which gives a
compressing ratio = 0.418. Therefore, the compressing ratio
NAM is about 86.4% as that of DATT. This shows that, in
comparison with DATT, NAM is always (or in terms of

average) making cautious decisions to keep itself in optimum
states but causes heavier network traffic, which means the
DATT will make higher quality network transfers for XML
data on networks. This improvement for DATT against to
NAM is about a quarter percent.

0 200 400 600 800 1000 1200
1

2

3

4

5

6

7

8

9

10
x 10

7

Run No.

D
ec

is
io

n
T

im
e

(n
s)

Decision Time (NAM)

Average
Time

Figure 4: The experimental results for the average decision time of the

NAM described in section III.

In terms of the performances for both the DATT and NAM
techniques in this experimental setup they used the same
software for compressing and decompressing software, but the
processing is different due to the different principles used by
each technique. Thus, the data shows, in terms of average, the
compressing time and decompressing time are about balanced,
shown by the fact that “Time taken by DATT” divided by
“Time taken by NAM” is 0.91 for compressing time and 0.895
for the decompressing time. However, DATT technique is
more stable processes for compressing supported by the fact
that the standard deviation of compressing time is almost ten
times small than that of NAM, even the standard deviation of
decompressing is fairly comparable, which is understandable
since for DATT when the threshold is obtained the rest of the
job is much easier than that of NAM. This is further evidence
to show the DATT technique will keep running networks in a
better service quality.

One of the questions needs to be answered is how frequent
time period is the period time taken for DATT for the nature
of “dynamic” issue. Since the total time taken for DATT and
NAM varies depending on the traffic situations in the
networks. For example when the traffic is busy the DATT
will take more time than that for NAM since the “threshold”
calculation together with the comparisons then decision made
will be dearer than that for NAM. In contrast the traffic
situation is reasonable relaxant the time costs for DATT will
be less than that for NAM due to the “threshold” calculation
and comparisons will be easier. We take the traffic
distributions as Poisson distributions and from the PDM of
traffic distribution from 8:00 am to 8:00 pm as “effective”
distribution as the common cases. The data shows that when
the traffic ranges between 40% of the peck the DATT will be
suggested to use otherwise the NAM will be suggested.

IAENG International Journal of Computer Science, 34:1, IJCS_34_1_19
__

(Advance online publication: 15 August 2007)

IV. CONCLUTIONS
We have extended our previous research results to Dynamic

Adaptive Threshold Transmission (DATT) for XML data on
networks. We compared this technique (DATT) to another
control technique, the Network Adaptable Middleware
(NAM), and found that the DATT technique is much better
than NAM in terms of decision time taken, which was about
220.56 times for the DATT of the decision time less than that
of the NAM’s. Also the DATT will give running networks
better performance by as much as one quarter in comparison
with NAM. In the real life the simulation results suggest that
both two methods may be combined that will give better
results.

REFERENCES

[1] S. Ghandeharizadeh, C. Papadopoulos, M. Cai, and K. K. Chintalapudi,
Performance of Networked XML-Driven Cooperative Applications”, In
Proceedings of the Second International Workshop on Cooperative
Internet Computing Hong Kong, China, August 2002.

[2] Alexander Ridgewell, Xu Huang, and Dharmendra Sharma, “Evaluating
the Size of the SOAP for Integration in B2B”, the Ninth International
Conference on Knowledge-Based Intelligent Information & Engineering
Systems Melbourne, Australia, September, 2005. Part IV, pp.29.

[3] H. Liefke and D. Suciu. XMill: An efficient Compressor for XMLL
Data. Technical Report MSCIS-99-26, University of Pennsylvania,
1999.

[4] Curbera, F. Duftler, M. Khalaf, R. Nagy, W. Mukhi, N and
Weerawarana, S.: Unraveling the web services web: An introduction to
SOAP, WSDL, UDDI. IEEE Internet Computing, 6(2): 86-93, March-
April 2002.

[5] Fan, M. Stallaert, J. and Whinston, A. B.: The internet and the future of
financial markets, Communications of the ACM, 43(11):83-88,
November 2000.

[6] Rabhi, F.A. and Benatallah, B.: An integrated service architecture for
managing capital market systems. IEEE Network, 16(1):15-19, 2002.

[7] Kohloff, Christopher and Steele, Robert: Evaluating SOAP for High
Performance Business Applications: Real-Time Trading Systems, 2003,
http://www2003.org/cdrom/papers/alternate/P872/p872\kohlhoff.html,
accessed 22 March 2005.

[8] S. Ghandeharizadeh, C. Papadopoulos, M. Cai, R. Zhou, P. Pol NAM: A
Network Adaptive Middleware to Enhance Response Time of Web
Services, 2003, MASCOTS 2003: 136

[9] R.R. Iyer and D. Wilhite. “ Data Compression Support in Databases.” In
Proceedings of the 20th International Conference on Very Large Dasta
Bases, 1994

[10] M. Poess and C. Floyd. “New TPC Benchmarks for Decision Support
and Web Commerece.” ACM SIGMOD Record, 29(4), Dec 2000.

[11] Xu Huang, Alexander Ridgewell, and Dharmendra Sharma, “Efficacious
Transmission Technique for XML Data on Networks,” International
Journal of Computer Science and Network Security, pp.14-19. Vol.6
No.3, March 2006.

[12] Xu Huang, Alexander Ridgewell and Dharmendra Sharma, “A Dynamic
Threshold Technique for XML Data Transmission on Networks”, The
tenth International Conference on Knowledge-Based Intelligent
Information & Engineering Systems, Bournemouth, UK, Oct 2006. B.
Gabrys, R.J.Howlett and L.C. Jain (Eds) KES 2006 Part III. LNAI 4253
pp1163-1167, 2006 ©Springer-Verlag Berlin Heidelberg 2006.

[13] Xu Huang and Dharmendra Sharma, “A New Efficient Transmission for
XML Data on Networks”, International Multi-Conference of Engineers
and Computer Scientists 2007, Hong Kong, 21-23 March, 2007.
Proceedings of the International MultiConference of Engineers and
Computer Sciences 2007, Volume II, pp1238-1241.

[14] Xu Huang, Alexander Ridgewell, and Dharmendra Sharma, “Efficacious
Transmission Technique for XML Data on Networks,” IEEE Consumer
Communications and Networking Conference, Las Vegas, NV, USA.
11-13 January 2007.

[15] Xu Huang and Dharmendra Sharma, “A New Efficient Transmission for
XML Data on Networks”, International Multi-Conference of Engineers
and Computer Scientists 2007, Hong Kong, 21-23 March, 2007.
Proceedings of the International MultiConference of Engineers and
Computer Sciences 2007, Volume II, pp1238-1241.

IAENG International Journal of Computer Science, 34:1, IJCS_34_1_19
__

(Advance online publication: 15 August 2007)

http://www.latrobe.edu.au/kes/AboutMelbourne.htm
http://www2003.org/cdrom/papers/alternate/P872/p872/kohlhoff.html
http://www.informatik.uni-trier.de/~ley/db/conf/mascots/mascots2003.html#GhandeharizadehPPZ03

	I. Introduction
	II. Threshold Method and its application
	III. Data for XML data on networks and experimental results
	IV. conclutions
	References

