TAENG International Journal of Computer Science, 34:1, IJCS 34 1 20

XML Externalization Built into Compiler
Front-Ends Using a Parser (Generator

Kazuaki Maeda *

Abstract—This paper describes XML externaliza-
tion built into compiler front-ends and its applica-
tion to quick reverse engineering tool development. A
parser generator MoJay was developed to build XML
externalization functionality into compiler front-ends.
After replacing the original parser generator with
MoJay, generating a parser using it, and modifying
a few lines of source code in the compiler, we were
able to obtain a special compiler that externalizes
three types of information in the form of XML docu-
ments, namely, lexical information, syntactic informa-
tion, and parse tree. The syntactic information was
applied to develop a reverse engineering tool for C#.
The tool shows a performance penalty from the view-
point of the generated XML document size. However,
even with a storage penalty, the quick development is
a far superior option.

Index Terms — parser generator, reverse engineer-
ing tool, XML, C#

1 Introduction

The growth in computing power and the proliferation of
the Internet have made XML a very popular tool for the
representation and exchange of data. Today, the use of
XML has spread across many fields of applications. For
example, it is used for setting application configurations,
storing data in databases, retrieving data from databases,
exchanging data over the Internet, invoking remote meth-
ods, et al.

XML is a markup language derived from the standard
generalized markup language (SGML), and it is designed
to be a text-based, human-readable, and self-describing
language. It is independent of all platforms; hence, it can
be used across different computers, different operating
systems, and different programming languages.

The specification of XML does not restrict any specific
libraries to process XML documents. If the libraries con-
form to XML standards, any tools based on the libraries

*This research was partly supported by a grant of the
Open Research Center Promotion Project from Ministry of Ed-
ucation, Culture, Sports, Science and Technology in Japan.
The contact information of the author is Department of Busi-
ness Administration and Information Science, Chubu University,
1200 Matsumoto, Kasugai, Aichi 487-8501, Japan, Tel: +81-568-
51-1111, Fax: 4+81-568-52-1505, Email: kaz@acm.org.

can read, analyze, and write XML documents. In order
to process XML documents, many libraries have already
been implemented for a majority of the programming lan-
guages.

The orientation of XML documents is generally either
document-centric or data-centric[l, 2]. The aim of the
document-centric XML documents is visual consump-
tion, and hence, they have less structured characteris-
tics. Books, articles, and emails are the typical examples
of document-centric XML documents. XHTML is a lan-
guage to describe web pages as document-centric XML
documents.

In contrast, data-centric XML documents typically in-
clude very granular collections of data, and they are ap-
plied to computer processing and database storage. For
example, bibliography data and order forms are typical
examples of data-centric XML documents. The data ex-
changed with web services is mostly data-centric. Here-
after, a data-centric XML document will be referred to
as “XML data” in this paper.

The compiler is a traditional basic software that is in-
dispensable for developing software. The main purpose
of a compiler is only the generation of efficient object
code. However, there are rare cases where a compiler
is used for different purposes from the code generation.
The compiler includes excellent algorithms and valuable
information based on the results of years of research. This
paper describes XML externalization built into compiler
front-ends by using a parser generator MoJay and its ap-
plication to the quick development of a reverse engineer-
ing tool.

In section 2, the modification of a free and open source
compiler and a reverse engineering tool will be explained.
In section 3, the XML representation of information in
compiler front-ends will be explained. In section 4, the
quick development of a reverse engineering tool using
XML will be explained. The final section is the summary
of this paper.

(Advance online publication: 15 August 2007)

TAENG International Journal of Computer Science, 34:1, IJCS 34 1 20

C# Syntax Source Code
Rules (c#)
i [
H Y
Lexical
Analysis

3 ¢

~----3p| Syntax Analysis
(Parser)

!

Semantic Analysis

!

Optimization, Code
Generation

v

Object Code

Figure 1: Conceptual structure of the typical compiler

Jaidwon

2 Background and Motivation
2.1 Modified Mono C# Compiler

Mono[3] is an open source implementation of Microsoft
.NET development environment and tools. It provides a
C# compiler called “gmcs,” which complies with the C#
2.0 language specification[4]. In order to implement the
compiler, there are some classes for lexical analysis, syn-
tax analysis, semantic analysis, optimization, and code
generation, as shown in Figure 1. Jay is used to develop
the syntax analysis program (i.e., parser) in gmcs. Jay is
a parser generator that accepts Yacc-compatible syntax
rules[5]. It reads syntax rules for C# programming lan-
guage and generates a parser written in C# to analyze
C+# source code.

In order to build an XML externalization functionality
into the compiler, Jay is replaced with a parser generator
MoJay, which has been developed by the author. After
replacing Jay with MoJay, generating a parser by MoJay,
and modifying a few lines of source code in the compiler,
we obtain a special version of gmcs, as shown in Fig-
ure 2. In this paper, this special version is referred to as
“mocs.” It externalizes three types of XML data after ex-
ecuting the compiler front-ends. Additional information
is described in section 4.1.

2.2 Reverse Engineering Tools and Com-
piler Front-ends

In many cases the system design documents are not up-
dated after the source code is modified. Reverse engineer-

C# Syntax Source Code
Rules G (c#)

H A
4 : T
Lexical a
Analysis —~
MoJa
d ®
T '\\ i D
/AN T
! M.__§| SyntaxAnalysis
* \ (Parser)
\

1
!
]

C# Syntax
Rules H

Parser Behavior
(XML)

Figure 2: Modified version of the Mono C# compiler

ing tools have been developed as a solution for finding
discrepancies between the source code and design docu-
ments.

A Dbasic function of the reverse engineering tools is to
generate class diagrams from the source code. For exam-
ple, a reverse engineering tool for C#, which the author
developed in C#, can generate class diagrams from the
source code, as shown in Figure 3. The class diagram
in the figure shows a part of the class hierarchies for the

Mono C# compiler gmcs .

Expression

+eclass:ExprClass
-type:Type
-loc:Location
-almostMatchedMembers:ArrayList

T

Constant

T

DoubleConstant

IntegralConstant

LN

IntConstant LongConstant ShortConstant

FloatConstant

+Value:float +Value:double

+Value:int +Value:short

+Value:long

Figure 3: A generated class diagram for the Mono C#
compiler

IMethods in the classes are intentionally eliminated.

(Advance online publication: 15 August 2007)

TAENG International Journal of Computer Science, 34:1, IJCS 34 1 20

using System;
namespace Com.Xyz

{
public class Hello
{
b

X

Figure 4: A sample C# source code

In order to develop the reverse engineering tools, capa-
bility similar to a compiler front-end must be developed
to analyze the source code. A typical compiler front-
end reads the source code and executes lexical analysis,
syntax analysis, and semantic analysis, as shown in Fig-
ure 1. However, the development of the compiler front-
end capability involves some complicated tasks because
the specifications of modern programming languages are
becoming more complex with each passing year. Much
workload is required develop it according to the language
specification.

This paper describes XML externalization built into com-
piler front-ends and its application to quick reverse engi-
neering tool development.

3 Externalizing Information in the Form
of XML Data

There are three types of information in the compiler in
the form of XML data, which is externalized by mocs,
lexical information, syntactic information, and parse tree.
These XML data are useful to develop reverse engineering
tools.

3.1 XML Data of Lexical Analysis

A sample C# source code is shown in Figure 4. It is
intentionally simplified in order to explain externalizing
information in the form of XML data in this section. Af-
ter the modified C# compiler mocs reads the C# source
code, it externalizes lexical XML data, as shown in Fig-
ure 5. The externalized XML data includes the types of
lexical items, string images, line numbers, and column
numbers. By using only the XML data, it is possible to
reconstruct the C# source code. It is also possible to
generate the HTML document for the C# source code
in color, e.g., blue italic keywords and green comments
when the C# source code is reconstructed.

3.2 XML Data of Syntax Analysis

The parser generated by MoJay is a bottom-up one based
on LALR, which is the same as Yacc[5]. It executes
some actions such as reading a token, shifting a token,
and reducing a rule during the analysis of the source
code. When the modified C# compiler mocs analyzes

<lex st="0" tk="USING" va="using" 1i="1" co="1" />

<lex st="3" tk="IDENTIFIER" va="System" 1i="1" co="7" />
<lex st="30" tk="SEMICOLON" va=";" 1i="1" co="13" />

<lex st="6" tk="NAMESPACE" va="namespace" 1i="2" co="1" />
<lex st="50" tk="IDENTIFIER" va="Com" 1i="2" co="11" />
<lex st="72" tk="DOT" va="." 1i="2" co="14" />

<lex st="70" tk="IDENTIFIER" va="Xyz" 1li="2" co="15" />
<lex st="80" tk="OPEN_BRACE" va="{" 1i="3" co="1" />

<lex st="468" tk="PUBLIC" va="public" 1i="4" co="5" />
<lex st="63" tk="CLASS" va="class" 1i="4" co="12" />

<lex st="206" tk="IDENTIFIER" va="Hello" 1i="4" co="18" />
<lex st="495" tk="OPEN_BRACE" va="{" 1i="5" co="5" />

<lex st="729" tk="CLOSE_BRACE" va="}" 1i="6" co="5" />
<lex st="785" tk="CLOSE_BRACE" va="}" 1i="7" co="1" />

Figure 5: An example of lexical XML data

the source code, it externalizes XML data, as shown in
Figure 6. The XML data represents the bottom-up parser
actions, which is referred to as “parser behavior” in this
paper. The parser behavior records a sequence of parser
actions in XML during the syntax analysis. Table 1 shows
the names and meanings of the elements, and Table 2
shows the names and meanings of their attributes.

<parse name="hello.cs">

<lex st="0" tk="USING" va="using" 1i="1" co="1" />

<shi fr="0" to="3" />

<lex st="3" tk="IDENTIFIER" va="System" 1i="1" co="7" />
<shi fr="3" to="30" />

<lex st="30" tk="SEMICOLON" va=";" 1i="1" co="13" />
<red st="30" ru="319" />

<red st="33" ru="316" />

<red st="31" ru="28" />

<shi fr="32" to="T71" />

<red st="71" ru="21" />

<red st="14" ru="18" />

<red st="11" ru="10" />

<red st="9" ru="7" />

<lex st="6" tk="NAMESPACE" va="namespace" 1i="2"
<red st="6" ru="53" />

<shi fr="16" to="50" />

<lex st="50" tk="IDENTIFIER" va="Com" 1i="2" co="11" />
<shi fr="50" to="72" />

<lex st="72" tk="DOT" va="."
<red st="72" ru="319" />
<red st="33" ru="316" />
<shi fr="80" to="70" />

<lex st="70" tk="IDENTIFIER" va="Xyz" 1i="2" co="15" />
<shi fr="70" to="116" />

<red st="116" ru="318" />

<lex st="80" tk="OPEN_BRACE" va="{" 1i="3" co="1" />
<red st="80" ru="22" />

<shi fr="196" to="294" />

<red st="294" ru="29" />

<lex st="468" tk="PUBLIC" va="public" 1i="4" co="5" />

co="1" />

1i="2" co="14" />

Figure 6: An example of parser behavior in XML

3.3 XML Data Representing a Parse Tree

When a typical compiler completes the syntax analysis,
the parser builds up an abstract syntax tree, which cor-
rectly represents the hierarchical syntactic structure of
the source code. Compiler developers need to embed

(Advance online publication: 15 August 2007)

TAENG International Journal of Computer Science, 34:1, IJCS 34 1 20

Table 1: Elements in the parser behavior
| Name | Meaning of the element \

lex reading a token
shi shift action

red reduce action
xdc XML documentation comment
acc acceptance

Table 2: Attributes in the parser behavior
’ Name \ Meaning of the attribute

st state number

fr source state number for shift action

to destination state number for shift action
tk kind of a token

va string image of a token

li line number

co column number

ru syntax rule number

functions in the parser to build an abstract syntax tree.

A parse tree is a representation of a derivation that fil-
ters the order in which productions are applied to replace
non-terminals[6]. If the syntax rules of a programming
language are defined, the parse tree can be automatically
constructed by analyzing the source code. However, the
parse tree is not used as a result of syntax analysis; in-
stead, it can be only used to explain syntax analysis in
textbooks on compiler construction, or it is sometimes
used to debug the parser. The modified C# compiler
mocs writes out the parse tree in the form of XML data,
as shown in Figure 7.

<compilation_unit>
<outer_declarations>
<outer_declarations>
<outer_declaration>
<using_directive>
<using_namespace_directive>
<USING va="using"/>
<namespace_name>
<namespace_or_type_name>
<member_name>
<IDENTIFIER va="System"/>
</member_name>
</namespace_or_type_name>
</namespace_name>
<SEMICOLON va=";"/>
</using_namespace_directive>
</using_directive>
</outer_declaration>
</outer_declarations>
</outer_declarations>
</compilation_unit>

Figure 7: An example of XML data for parse tree

First Step

Source Code Parser Behavior
(cH (XML)

Second Step

Analysis of
Class
Information

Class
Diagram

Figure 8: Two-steps for quick parser development

4 Tool Development Using XML Data

4.1 Quick Parser Development Using the
Parser Behavior

It is possible to quickly develop the parser for reverse
engineering tools using the parser behavior represented
in XML. In this paper, the development approach is re-
ferred to as “two-step parsing.” The parser is separated
into two-steps for quick parser development, as shown in
Figure 8. If we develop a reverse engineering tool for
C#, mocs is available for the first step. It reads the C#
source code and writes the parser behavior in XML. After
the parser behavior is written in the first step, the parser
behavior is read and class diagrams are generated in the
second step.

As previously shown in Figure 2, MoJay reads the syntax
rules G and generates a parser in the first step. More-
over, it generates lexical information and C# syntax rules
H for the second step. When MoJay generates H, it re-
moves the action codes in G to be invoked when the rules
are recognized, and adds special symbols to identify each
syntax rule.

A lexical analyzer in the second step sequentially reads
the lexical information, as shown in Figure 9, from the
parser behavior in XML, which is written by the first
step. In the second step, it notifies lexical tokens and the
timing for reduce actions to the parser.

The original parser generator Jay reads H, which is gen-
erated by MoJay in the first step, and then Jay generates
a parser in the second step. After finishing the first step,
all the lexical information and the matching order of syn-
tax rules are already known so that the generated syntax
rules cannot have any conflicts.

The parser in the second step does not build anything;
instead it only checks the input from the viewpoint of the
syntax rules. If we want to analyze class definitions and

(Advance online publication: 15 August 2007)

TAENG International Journal of Computer Science, 34:1, IJCS 34 1 20

C# Syntax Parser Behavior
Rules H (XML)
i |
% v

Lexical

Analysis @

Jay ysi o
$ (@]

) >

" o
A, $| Syntax Analysis C'_I.?
(Parser) [0

©

!

Analysis of Class
Information

\4
Class Diagram

Figure 9: The second step for generating class diagrams

generate class diagrams, we need to embed appropriate
functions in the syntax rules.

4.2 XML and Interoperability

The author developed a reverse engineering tool using
two-step parsing. It reads C+# source code and generates
the class diagram that is shown in Figure 3. The tool
was developed on Mac OS X using Mono. After complet-
ing the development of the production quality version,
the source code was transferred to another PC (running
on Windows XP), and we attempted to build the exe-
cutable file using Cygwin[7] and Visual Studio 2005[8].
This building work was very simple, and it was carried
out without any problems. This is because XML and
C# function independently of all operating systems and
computers.

Due to the interoperability of XML, we can implement
the second step in different programming languages. The
second step is developed by using the syntax rules gen-
erated by MoJay. The syntax rules for MoJay and Jay
are compatible with Yacc and they are independent of all
programming languages. This naturally indicates that
mocs is used as the first step and the second step is im-
plemented in another programming language (e.g. Java
or C++).

XML documents utilize a lot of storage space to repre-
sent data that could be similarly modeled using a binary
format or a simple text file format. This is because the
XML documents are human-readable, platform-neutral,
meta-data-enhanced, structured code. They can be 3 to
20 times as large as a comparable binary or alternate text
file representation[9].

An experiment was designed to check the generated XML
data size. In the case of a large file with 7,052 lines, the
source code was translated to the parser behavior in XML
with a size of TM bytes. The size of the parser behav-
ior exceeded that of the conventional XML document.
However, storage cost is not a serious problem nowadays
because the price of hard disk drives is increasingly be-
coming cheaper. Hence, even with a storage penalty, the
quick parser development is a far superior option.

4.3 Application to SQL Parser

Two-step parsing is independent of the programming lan-
guage and the platform. In order to clarify the indepen-
dence, two-step parsing was applied to develop a SQL
parser using PostgreSQL[10]. The conceptual structure
of the query processor in PostgreSQL, as shown in Fig-
ure 10, is similar as one of the C# compiler.

SQL Syntax Source Code
Rules (saL)
I [
H \J
Lexical
Analysis

: '

‘eeea-Pp| Syntax Analysis
(Parser)

!

Optimizer,
Executor

Jose.bisod

\4
Query Results

Figure 10: Conceptual structure of the query processor

There are some functions for lexical analysis, syntax anal-
ysis, optimizer, and executor which are implemented in
the C programming language. Bison[11] is a parser gener-
ator to accept Yacc-compatible syntax rules. In the case
of PostgreSQL, it reads more than 1,600 syntax rules for
SQL and generates a parser written in C to analyze SQL
source code.

The parser generator Bison used in the PostgreSQL is
replaced with a modified parser generator MoBison. The
input specification of MoBison is completely the same
as one of Bison. MoBison reads the SQL syntax rules
and generates the parser for the first step. Moreover, it
statically generates lexical information and SQL syntax
rules for the second step.

At run-time of the first step, the modified query processor
in PostgreSQL analyzes the SQL source code, stores the

(Advance online publication: 15 August 2007)

TAENG International Journal of Computer Science, 34:1, IJCS 34 1 20

parser behavior as large objects and other information,
and it returns the object id, as shown in Figure 11. The
parser in the second step sends a query to the PostgreSQL
in order to obtain the parser behavior generated in the
first step.

The parser in the second step does not build anything;
instead it only checks the input from the viewpoint of
the syntax rules. In the author’s experience, it took only
one day to develop only the SQL parser by effectively
using two-step parsing. If we want to analyze schema
definitions and generate schema diagrams, we need more
works to embed appropriate functions in the syntax rules,
analyze relationship between table definitions, and draw
schema diagrams.

Client PostgreSQL
Source Parser
Code »| in First
(saL) j~l 1 Step
Object Id
Query Parser
Behavior
Query | Processor ML)
Parser |-)
in Second Source Code
Step |[w| Parser (saL)
I Behavior

Figure 11: Two-step parsing for SQL parser

5 Concluding Remarks

This paper described XML externalization built into
compiler front-ends and its application to quick reverse
engineering tool development. A parser generator MoJay
was developed to build XML externalization functionality
into the compiler front-ends. After replacing an original
parser generator with MoJay, generating a parser using it,
and modifying a few lines of source code in the compiler,
we were able to obtain a special compiler that generates
three kinds of XML data, namely, lexical information,
parser behavior, and parse tree.

The parser behavior was applied to quickly develop a re-
verse engineering tool for C#. During the tool develop-
ment, a compiler front-end is separated into two-steps.
In the first step, a special C# compiler mocs reads C#
source code, analyzes it, and writes the parser behavior
in XML. In the second step, the parser behavior in XML
is read and analyzed. The reverse engineering tool shows
a performance penalty from the viewpoint of the gener-
ated XML document size. However, even with a storage
penalty, the quick development is a far superior option.

Free and open source software is rapidly proliferating in
many fields. To accelerate this phenomenon, applications

based on this paper must be extended to develop new
technologies using XML.

References

[1] Akmal B. Chaudhri, Awais Rashid, and Roberto Zi-
cari ed., XML Data Management, Addison Wesley
(2003).

[2] Ronald Bourret, XML and Databases,
http://www.rpbourret.com/xml/
XMLAndDatabases.htm.

[3] Main Page - Mono,
http://www.mono-project.com/Main_Page.

[4] ECMA International,
C# Language Specification,
http://www.ecma-international.org/publications/
standards/Ecma-334.htm.

[5] Stephen C. Johnson. Yacc: Yet Another Compiler
Compiler. In UNIX Programmer’s Manual, Vol.2,
pp. 353-387 (1979).

[6] Alfred V. Aho, Monica S. Lam, and et al.,
Compilers — Principles, Techniques, & Tools,
Pearson Education (2006).

[7] Cygwin Information and Installation,
http://www.cygwin.com/.

[8] Microsoft, Visual Studio 2005,
http://msdn.microsoft.com/vstudio/.

[9] Zap Think, The “Pros and Cons” of XML,
Zap Think Research Report (2001).

PostgreSQL. http://www.postgresgl.org/.

The Free Software Foundation,
Bison - GNU parser generator.
http://www.gnu.org/software/bison/.

(Advance online publication: 15 August 2007)

