

Multiple Skip Multiple Pattern Matching Algorithm (MSMPMA)

Ziad A.A. Alqadi1, Musbah Aqel2, & Ibrahiem M. M. El Emary3

1 Faculty of Engineering, Al Balqa Applied University, Amman, Jordan
 E-mail:ntalia@yahoo.com
 2 Faculty of Engineering, Applied Science University, Amman, Jordan
 E-mail: musbahaqel@yahoo.com

3 Faculty of Engineering, Al Ahliyya Amman University, Amman, Jordan
E-mail: doctor_ebrahim@yahoo.com

Abstract-- A new algorithm to search for
multiple patterns simultaneously is proposed.
The multiple pattern algorithms can be used in
many applications that require such type of
search and matching. For example, a multi-
pattern matching can be used in lieu of
indexing or sorting data in some applications
that involve small to medium size datasets. One
of its advantages is that no additional search
structure is needed and no preprocessing phase
is required. The proposed algorithm is simple
and can suit for multiple patterns matching in
a file with unlimited size. The time complexity
of the algorithm is O (n*m), but because of the
skips it moves to around O (n).
The number of comparisons rapidly decreased
after the first match, and for multiple
matching, it will be little greater than n (file
size). The algorithm was implemented and
compared with some popular multi-pattern
matching algorithms and it has shown more
enhancement in performance and faster than
others.

Index Terms-- DNA, MSMPMA, String
matching algorithms, and CPC

I. INTRODUCTION
The multi-pattern matching technique can be used
in many applications. It is used in data filtering or
what is called data mining, to find selected
patterns, for example, from a stream of news feed,
also, it is used in security applications to detect
certain suspicious keywords and it can be used in
searching for patterns that can have several forms
such as dates. However, it is used in glimpse [10]
to support Boolean queries by searching for all
terms at the same time and then intersecting the

results; and it is used in DNA searching by
translating an approximate search to a search for a
large number of exact patterns [2].
String matching algorithms also used in Intrusion
Detection Systems (IDSs) that have become
widely recognized as powerful tools for
identifying, deterring and deflecting malicious
attacks over the network. Essential to almost
every intrusion detection system is the ability to
search through packets and identify content that
matches known attacks. Space and time efficient
string matching algorithms are therefore
important for identifying these packets at line rate.
[13]. besides there are, many other applications,
that can be find in [9, 10, 11, 12].

Aho and Corasick [1] presented a linear-time
algorithm for this problem, based on automata
approach. This algorithm serves as the basis for
the UNIX tool fgrep. A linear-time algorithm is
optimal in the worst case, but as the regular
string-searching algorithm by Boyer and Moore
[4] demonstrated, it is possible to actually skip a
large portion of the text while searching, leading
to faster than linear algorithms in the average
case. Commentz-Walter [5] presented an
algorithm for the multi-pattern matching problem
that combines the Boyer-Moore technique with
the Aho-Corasick algorithm. The Commentz-
Walter algorithm is substantially faster than the
Aho-Corasick algorithm in practice. Hume [8]
designed a tool called gre based on this algorithm,
and version 2.0 of fgrep by the GNU project [6] is
using it. Baeza-Yates [3] also gave an algorithm
that combines the Boyer-Moore-Horspool
algorithm [12] (which is a slight variation of the
classical Boyer-Moore algorithm) with the Aho-
Corasick algorithm.

IAENG International Journal of Computer Science, 34:2, IJCS_34_2_03
__

(Advance online publication: 17 November 2007)

 II. STRING MATCHING ALGORITHMS

String searching algorithms are an important class
of string algorithms that try to find a place where
one or several strings (i.e. patterns) are found
within a larger string or text. Let Σ be an alphabet
(finite set). Formally, both the pattern and
searched text are concatenation of elements of Σ.
The Σ may be usual human alphabet (A-Z). Other
applications may use binary alphabet (Σ = {0, 1})
or DNA alphabet (Σ = {A, C, G, T}) in
bioinformatics. Table 1 summarizes the most
popular algorithms used for single and multiple
pattern matching. Where m is the pattern length
and n is the file size. The first thing worth noting
is that the relevant body of literature for this
problem is the multi-pattern string matching
problem, which is somewhat different from the
single pattern string matching solutions that many
people are familiar with such as Boyer-Moore
[14]. For single-pattern string matching, there is a
large body of work in which a single string is to
be searched for in the text. This is processing used
in word processing applications, e.g., in search
and-replace operations.

Table 1: String matching algorithm summary

Algorithm Preprocessing time
Complicity

matching time

Naïve string search algorithm 0 (no preprocessing) O((n-m+1) m)

Trie-matching 0 (no preprocessing) O (m + #pat · n)

Rabin-Karp string search algorithm θ(m) O((n-m+1) m)

Finite automata O(m |Σ|) θ(n)

Knuth-Morris-Pratt algorithm θ(m) θ(n)

Boyer-Moore string search algorithm O(m) average O(n/m), worst O(n m)

On the other hand, the multi-pattern string
matching problem searches a body of text (in our
case an application file such as DNA sequence or
a text file regardless it's size) for a set of strings
(patterns). One can trivially extend a single
pattern string matching algorithm to be a multiple
pattern string matching algorithm by applying the
single pattern algorithm to the search text for each
search pattern. Obviously this does not scale well
to larger sets of strings to be matched. Instead,
multi-pattern string matching algorithms generally
preprocess the set of input strings, and then search
all of them together over the body of text.
Previous work in precise multi-pattern string
matching includes Aho-orasick [15], Commentz-
Walter[16], Wu-Manber [17], and others.

There has also been even more recent work in
imprecise string matching algorithms using
hashing and signature based techniques [18], [19].
Although these methods may meet the criteria of
having deterministic execution time text, there is a
problem of positive matches that must be
revivified using a precise string matching
algorithm. Thus, the performance of the
underlying precise matching algorithm is still
important, albeit at a reduced level.

 The simplest and least efficient way to see where
one string occurs inside another is to check each
place that it may contain, one by one, to see if it's
there[17]. So, first it should be seen if there's a
copy of the pattern in the first few characters of
the file; if not, we look to see if there's a copy of
the pattern starting at the second character of the
file; if not, we look starting at the third character,
and so forth. In the normal case, we only have to
look at one or two characters for each wrong
position to see that it is a wrong position, so in the
average case, this takes O(n + m) steps, where n is
the length (size)of the file and m is the length of
the pattern; but in the worst case, searching for a
string like "aaaab" in a string like "aaaaaaaaab", it
takes O(nm) steps.

Tries offer text searches with costs which are
independent of the size of the file being searched,
and so are important for large files requiring
spelling checkers, case insensitivity, and limited
approximate regular secondary storage. The cost

IAENG International Journal of Computer Science, 34:2, IJCS_34_2_03
__

(Advance online publication: 17 November 2007)

of the trie-matching is independent of file size [17,
18].

 Imprecise string matching also introduces the
possibility that certain innocent data streams may
introduce a rate of sequential false positives that
overwhelm the exact matching algorithm unless it
is capable of processing at line rate. We do not
address the open question of whether imprecise
methods are completely appropriate for use in
situations where worst-case performance is an
important metric, but assert that in any case the
underlying precise multi-pattern string matcher
performance is still important.

As mentioned above, multiple patterns matching
algorithms are now used in variant application, so
we will focus on two mostly used algorithms,
which have good performance in string matching
to find the number of occurrences of a certain
pattern within a certain file, the Brute-Force and
the trie-matching algorithms.

A multiple skip multiple pattern matching
algorithm is proposed based on Boyer - Moore
ideas. The algorithm is implemented and
compared with Brute-Force, and Trie algorithms.

III. THE PROPOSED ALGORITHM

The MSMPMA algorithm scans the input file to
find all occurrences of a pattern within this file,
based on skip techniques, and can be described as
follows:

- Fix the file index in a cretin position.
- Use this position as a starting point of

matching
- Compare the file contents from the defined

point with pattern contents.
- Find the skip value depending on the

match number(ranges from 1 to m-1)
- Perform the above sequence while the file

position dose not reaches n-m.

A .Description of the algorithm:
 The proposed algorithm MSMPMA
assumes that their is input text file (T) that has
size (n) and their is a pattern (P) with size (m)
so the algorithm proceeds as follows:

 1. Input text T of size n and pattern (P) of
size (m)

2. Output starting index of all substring
occurrences of (T) that is equal to (P)
and output (-1) if no such substring exists

 3. Initialization: skip=1, index i of T=1 ,
and number of occurrence = 0
 4. Check index, if index <= n-m then
proceed to step 5, else go to step 12
 5. Set index j of P to 1, and save i if (k=i)
 6. Check j. If j<=m go to step 7, else go to
step 8

7. Compare T(k) and P(j) . If they are
equal increment k and j and go to step 6

 8. Skip if skip=j
 9. Increment number of occurrences
 10 add skip to i
 11 go to step 4
 12 return number of occurrences

IV. MSMPMA IMPLEMENTATION

The algorithm was implemented using object-
oriented programming with C++, and it was
tested using different DNA sequence with
different file sizes. However, the proposed
algorithm is compared with other three
algorithms. They are Brute-Force, Trie, and
Naïve string search algorithm. These algorithms
are selected due to common features with the
proposed algorithm as follows:

- Multiple string matching
- No preprocessing operations(and thus no

preprocessing time)
- Maintaining different type of files (in

contents and sizes).

 The implementation and comparison with other
algorithms process is carried out When text file
size = 1024 bytes, using different patterns and
sizes in implementation process. The results are
obtained and shown in the following tables.

AGAACGCAGAGACAAGGTTCTCATTG
TGTCTCGCAATAGTGTTACCAACTCGG
GTGCCTATTGGCCTCCAAAAAAGGCT
GTTCAACGCTCCAAGCTCGTGACCTC
GTCACTACGACGGCGAGTAAGAACGC
CGAGAAGGTAAGGGAACTAATGACGC

IAENG International Journal of Computer Science, 34:2, IJCS_34_2_03
__

(Advance online publication: 17 November 2007)

GTGGTGAATCCTATGGGTTAGGATCGT
GTCTACCCCAAATTCTTAATAAAAAAC
CTAGGACCCCCTTCGACCTAGACTATC
GTATTATGGACAAGCTTTAACTGTCGT
ACTGTGGAGGCTTCAAAACGGAGGGA
CCAAAAAATTTGCTTCTAGCGTCAATG
AAAAGAAGTCGGGTGTATGCCCCAATT
CCTTGCTGCCCGGACGGCCAGGCTTA
TGTACAATCCACGCGGTACTACATCTT
GTCTCTTATGTAGGGTTCAGTTCTTCG
CGCAATCATAGCGGTACTTCATAATGG
GACACAACGAATCGCGGCCGGATATC
ACATCTGCTCCTGTGATGGAATTGCTG
AATGCGCAGGTGTGAATACTGCGGCT
CCATTCGTTTTGCCGTGTTGATCGGGA
ATGCACCTCGGGGACTGTTCGATACG
ACCTGGGATTTGGCTATACTCCATTCC
TCGCGAGTTTTCGATTGCTCATTAGGC
TTTGCGGTAAGTAAGTTCTGGCCACCC
ACTTCGAGAAGTGAATGGCTGGCTCC
TGAGCGCGTCCTCCGTACAATGAAGA
CCGGTCTCGCGCTAAATTTCCCCCAG
CTTGTACAATAGTCCAGTTTATTATCAA
AGATGCGACAAATAAATTGATCAGCAT
AATCGAAGATTGCGGAGCATAAGTTTG
GAAAACTGGGAGGTTGCCAGAAAACT
CCGCGCCTACTTTCGTCAGGATGATTA
AGAGTATCGAGGCCCCGCCGTCAATA
CCGATGTTCTTCGAGCGAATAAGTACT
GCTATTTTGCAGACCCTTTGCCAGGCC
TTGTCTAAAGGTATGTTACTTAATATTG
ACAATACATGCGTATGGCCTTTTCCGG
TTAACTCCCTG

Table (2-a): pattern=A (m=1)
 Algorithm Numb

er of
occurr
ences

Numbe
r of

compar
isons

Comparison
s per

character

MSMPMA 259 1024 1
Brute-Force 259 1024 1

Trie-
matching

259 1025 1.001

Naïve String
Search

Algorithm

259 1024 1

Table (2-b): patter=AG (m=2)
Algorithm Number

of
occurren

ces

Number of
comparisons

Comparisons
per character

MSMPM
A

53 1230 1.201

Brute-
Force

53 1282 1.252

Trie-
matching

53 1284 1.254

Naïve
String

Search
Algorithm

53 1281 1.250

Table (2-c): pattern=CAT (m=3)

 Algorithm Number of
occurrenc

es

Number of
comparisons

Comparisons
per character

MSMPMA 11 1298 1.268
Brute-
Force

11 1318 1.287

Trie-
matching

11 1321 1.290

Naïve
String

Search
Algorithm

11 1310 1.279

Table (2-d): pattern=AACG (m=4)

Algorithm

Number of
occurrences

Number of
comparisons

Comp
arison
s per
chara
cter

MSMPMA 5 1359 1.327
Brute-
Force

5 1376 1.344

Trie-
matching

5 1380 1.348

Naïve
String

Search
Algorithm

5 1376 1.340

IAENG International Journal of Computer Science, 34:2, IJCS_34_2_03
__

(Advance online publication: 17 November 2007)

Table (2-e): pattern=AAGAA (m=5)

Algorithm
Number

of
occurre

nces

Number of
comparison

s

Compari
sons per
characte

r
MSMPMA 2 1375 1.343

Brute-
Force

2 1388 1.355

Trie-
matching

2 1393 1.360

Naïve
String
Search

Algorithm

2 1387 1.354

Table (2-f): pattern=AAAAAAGG (m=8)
Algorithm Number of

occurrences
Number

of
compari

sons

Compari
sons per
characte

r
MSMPMA 1 1394 1.365

Brute-
Force

1 1409 1.376

Trie-
matching

1 1417 1.384

Naïve
String
Search

Algorithm

1 1407 1.374

Table (2-g): pattern=TTCTTAATAAAA
(m=12)

Algorithm Number of
occurrences

Number
of

comparis
ons

Compar
isons
per

charact
er

MSMPMA 1 1390 1.356
Brute-
Force

1 1390 1.356

Trie-
matching

1 1402 1.369

Naïve
String
Search

Algorithm

1 1399 1.366

Table (2-h):
pattern=GGCTGTTCAACGCTCC

(m=16)
Algorithm Number

of
occurren

ces

Number of
compariso

ns

Compar
isons
per

charact
er

MSMPMA 1 1349 1.317
Brute-
Force

1 1349 1.317

Trie-
matching

1 1365 1.333

Naïve
String

Search
Algorithm

1 1349 1.317

V. RESULTS ANALYSIS

After the implementation of the proposed
algorithm, the following points could be
concluded from the obtained results in table (3)
as follows:

- The number of comparisons per
character(CPC) which is equal to:
(Number of comparisons/file size) can be used as
a measurement factor, this factor affects the
complexity time, and when it is decreased the
complicity also decreased.
- From the above results we can see that
CPC is always around 1, which means that the
complexity depends only at the file size. (O (n)).
- If we take in consideration the number of
matching (occurrences), we can say that the
complicity is less than O (n), since we need less
number of comparisons for the second match and
less for the third and so on.
- For small, medium and large files
complexity remains without changing and still
depends on file size.
- The pattern length does not affect the
complexity.
- The pattern length and the multiple
patterns matching do not negatively affect the
algorithm performance.
- The proposed algorithm can suit any type
of files with any size.

IAENG International Journal of Computer Science, 34:2, IJCS_34_2_03
__

(Advance online publication: 17 November 2007)

However, from the comparison in table (3),
between the proposed algorithm and the other
three most common algorithms(i.e. Brute-force,
Trie-matching, and Naive string), it is clear that
the proposed algorithm has shown a good
improvement in enhancement that is less number
of comparisons and less value of CPC.

 The proposed algorithm can be described as quite
simple in description and in implementation with
following main features:

- Good time complexity
- Unlimited size of the pattern.
- Unlimited size of the text file.
- Multiple patterns matching (finding all the

occurrences of the pattern in the text file).
- Multiple skip technique in the matching

process.
- The number of comparisons which affects

the processing time rapidly decreased after
the first match, and the total number of
comparisons for all occurrences will be
around n(text file size).

- It can be used in different ranges of
applications such as: text editors, DNA
matching, computer viruses detection,
Noise detection (in communication
systems).

VI. CONCLUSION
A new algorithm to search for multiple patterns
simultaneously is proposed. The proposed
MSMPMA algorithm proves some performance
enhancements compared with Brute-Force, Trie-
matching, Naïve string algorithms. These
enhancements were measured by CPC, and the
testing results have shown that MSMPMA
algorithm has the minimum value of CPC and less
number of comparisons.

REFERENCES
[1] Aho, A. V., and M. J. Corasick, ‘‘Efficient
string matching: an aid to bibliographic
 Search,’’ Communications of the ACM 18
(June 1975), pp. 333 340.
[2] Altschul S. F., W. Gish, W. Miller, E. W.
Myers, and D. J. Lipman, ‘‘Basic local

 alignment search tool,’’ J. Molecular Biology
15 (1990), pp. 403 410.
[3] Baeza-Yates R. A., ‘‘Improved string
searching,’’ Software — Practice and
 Experience 19 (1989), pp. 257 271 .
[4 Boyer R. S., and J. S. Moore, ‘‘A fast string
searching algorithm,’’
 Communications of the ACM 20 (October
1977), pp. 762 772.
[5] Commentz-Walter, B, ‘‘A string matching
algorithm fast on the average,’’ Proc.
 6th International Colloquium on Automata,
Languages, and Programming (1979),
 pp. 118 132.
[6] Haertel, M., ‘‘Gnugrep-2.0,’’ Usenet archive
comp.sources.reviewed, Volume 3
 (July, 1993).

[7] Horspool, N., ‘‘Practical Fast Searching in
Strings,’’ Software — Practice and
 Experience, 10 (1980).
[8] Hume A., personal communication (1991).
[9] U. Manber, ‘‘Finding Similar Files in a Large
File System,’’ Usenix Winter 1994
 Technical Conference, San Francisco (January
1994), pp. 1 10.
[10] U. Manber and S. Wu, ‘‘GLIMPSE: A Tool
to Search Through Entire File
 Systems,’’ Usenix Winter 1994 Technical
Conference, San Francisco (January
 1994),
[11] Wu S., and U. Manber, ‘‘Agrep — A Fast
Approximate Pattern-Matching Tool,’’
 Usenix Winter 1992 Technical Conference,
San Francisco (January 1992), pp.
 153 162.
[12] Wu S., and U. Manber, ‘‘Fast Text Searching
Allowing Errors,’’
 Communications of the ACM 35 (October
1992), pp. 83 91.
[13] M. Roesch. Snort – lightweight intrusion
detection for networks.
 In Proceedings of LISA’99: 13th Systems
Administration Conference,
 pages 229–238, November 1999.
[14] R. S. Boyer and J. S. Moore. A fast string
searching algorithm.
 Communications of the ACM, 20(10):761–
772, 1977.

IAENG International Journal of Computer Science, 34:2, IJCS_34_2_03
__

(Advance online publication: 17 November 2007)

[15] A. V. Aho and M. J. Corasick. Efficient
string matching:
 An aid to bibliographic search.
Communications of the ACM,
 18(6):333–340, 1975.
[16] B. Commentz-Walter. A string matching
algorithm fast on the
 average. Proceedings of ICALP, pages 118–
132, July 1979.
[17] S.Wu and U. Manber. A fast algorithm for
multi-pattern searching.
 Technical Report TR-94-17, Department of
Computer Science,

 University of Arizona, 1994.
[18] E.P. Markatos, S. Antonatos, M.
Polychronakis, and K.G. Anagnostakis.
 Exclusion-based signature matching for
intrusion detection. In Proceedings of the
 IASTED International Conference on
Communications and Computer Networks
 (CCN), pages 146–152, November 2002.
[19] S. Dharmapurikar, P. Krishnamurthy, T.
Sproull, and J. Lockwood.
 Deep packet inspection using parallel bloom
filters. In 11th Symposium on High
 Performance Interconnects, August 2003.

IAENG International Journal of Computer Science, 34:2, IJCS_34_2_03
__

(Advance online publication: 17 November 2007)

