
 

 

Abstract—This paper proposes the design of PID-like fuzzy 

logic controller (PIDFLC), on Field Programmable Gate Array 

(FPGA) device. The Fuzzy Inference System (FIS) used in the 

controller is aided with Active Rules Selection Mechanism. 

Developments were made to this FIS to make it able to 

manipulate signed numbers, (which is important issue in 

control system), then, it was blended with integral and 

derivative control components of tunable gains. These new 

features enable the controller to function as a PDFLC, a 

PIFLC, and a PIDFLC efficiently. The design utilizes 1394 

slices of the target FPGA, and is able to produce an output at 

0.421 µµµµsec with maximum frequency of 40.295 MHz. 

Mathematical model of linear plants were used to test the 

controller. The simulation results using the proposed controller 

connected to these plants in unity feedback system were 

compared with simulation results of a similar system that uses 

a software-based controller. The plant responses controlled by 

the proposed controller were smooth and much similar to the 

plant responses when using software based controller. 

 
Index Terms—Industrial application , FPGA, Fuzzy logic, PID-

like fuzzy controller. 

 

I. INTRODUCTION 

Fuzzy logic has rapidly become one of the most successful 

of today's technologies for developing sophisticated control 

systems. Fuzzy controllers are more robust than PID 

controllers because they can cover a much wider range of 

operating conditions than PID can, and can operate with 

noise and disturbances of different nature. Given the 

dominance of conventional PID control in industrial 

applications, it is significant both in theory and in practice if 

a controller can be found that is capable of outperforming 

the PID controller with comparable ease of use. Some of 

PID fuzzy controllers are quite close to this dream [1]. The 

simplest and most usual way to implement a fuzzy controller 

is to realize it as a computer program on a general purpose 

computer. However, a large number of fuzzy control 

applications require a real-time operation to interface high-

speed constraints. Software implementation of fuzzy logic 

on general purpose computers 

 

 

can not be considered as a suitable design solution for this 

type of application, in such cases, design specifications can 

be matched by specialized fuzzy processors. 

Higher density programmable logic devices such as FPGAs 

can be used to integrate large amounts of logic in a single 

IC. Semi-custom and full-custom application specific 

integrated circuit (ASIC) devices are also used for this 

purpose but FPGAs provide additional flexibility: they can 

be used with tighter time-to-market schedules. The Field-

Programmable Gate Array (FPGA) places fixed logic cells 

on the wafer, and the FPGA designer constructs more 

complex functions from these cells. The term field 

programmable highlights the customizing of the IC by the 

user, rather than by the foundry manufacturing the FPGA.  

Several researchers discussed the design of hardware fuzzy 

logic controller. Number of these works were specialized in 

control application [2,]-[3], and were aim to get better 

control responses. Others were concerned in developing 

general fuzzy logic processors [4]-[5]-[6]-[7]. Their searches 

were concern using new techniques in fuzzy algorithm, to 

get higher processing speed versus low utilization of chip 

resource. As a result, the proposed design in this paper is 

aim to employ the new techniques of fuzzy algorithm in 

controlling industrial application with the aid of 

conventional PID control to serve these applications 

efficiently. 

 

II. THE PROPOSED PID-LIKE CONTROLLER 

The general layout of the controller chip in a unity 

feedback control system is shown in Fig. 1. Generally, the 

proposed controller accept the output of the plant (yp) and 

the desired output (yd), both as digital signals, and deliver 

digital control action signal as an output. The design accepts 

also four 8-bit digital signals that represent the gain 

coefficients needed by the controller (proportional gain Kp, 

derivative gain Kd, integral gain Ki, and output gain Ko), and 

two one-bit signals to select the type of the controller 

(PDFLC, PIFLC, or PIDFLC).  

 

III. STRUCTURE OF THE PROPOSED PIDFLC 

In order to build a PIDFLC, it is required to design a 

fuzzy inference system with three inputs that represent the 

proportional, derivative, and integral components. 
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 Fig. 1:  Layout of the proposed controller in a unity feedback control system 

 

A fuzzy controller with three inputs may not be 

preferred, because it needs large number of rules, instead, 

the PID fuzzy controller can be constructed as a parallel 

structure of a PD fuzzy controller and a PI fuzzy controller 

and the output of the PIDFLC is formed by algebraically 

adding the outputs of the two fuzzy control blocks. 

However, it is difficult to formulate control rules with the 

input variable sum of error (∑e), as its steady-state value is 

unknown for most control problems. To overcome this 

problem, a PD controller may be employed to serve as PI 

controller in incremental form. Equation (1) shows a PD 

controller obtained in position form, while (2) shows a PI 

controller in incremental form:  

 

u(n)=Kpe(n)+Kdr(n)                                                                            (1) 

 

∆u(n)=Kpr(n)+Kie(n)    (2) 

 

where e(n) is sampled error signal, r(n) rate of change of 

sampled error signal, and a(n) is accelerated rate of change 

of sampled error signal. 

Now by comparing (1) and (2), one sees that the PD 

controller in position form becomes the PI controller in 

incremental form if : 1) e(n) and r(n) exchange positions, 2) 

Kd is replaced by Ki, and 3) u(n) is replaced by ∆u(n) [1,8]. 

This modification is shown in Fig. 2, where a PDFLC, with 

summation at its output, is used instead of the PIFLC. 

 
Fig. 2: Main structure of proposed controller. 

 

The fuzzy inference system used in the each PDFLC is a 

two-inputs, one-output fuzzy system of Mamdani type that 

uses singleton membership functions for the output variable 

(it could also be considered as a Sugeno type with constant 

rule consequents). The first input is the error signal e(n), and 

the second input is the rate of change of error signal. Before 

entering the fuzzy inference block, each one of these two 

inputs is multiplied by a gain coefficient inside the PDFLC, 

(Kp and Kd or Kp and Ki). In similar manner, the output of the 

fuzzy inference block is multiplied by the output gain 

coefficient inside the PDFLC, (Ko). The outputs of the 

PDFLC and PIFLC, (uPDFLC and uPIFLC) are summed together 

to form the PIDFLC output (uPIDFLC). Since each PDFLC has 

its own gains and rules, the final design could act as a 

PDFLC, a PIFLC, or a PIDFLC depending on the two 

selection lines m1 and m0, as shown in Table I. 

 

Table I:  Selection lines setting 

m1 m0 controller type 

0 0 PDFLC 

0 1 PIFLC 

1 × PIDFLC 

 

As seen from Fig. 2 the basic block in the proposed 

controller is the PDFLC. The main components in the 

proposed PDFLC are: Gain block, Fuzzifier block, inference 

engine block, and Defuzzifier block, which will be discussed 

in the sections below. 

A. Gain Block 

The gain block resides at each of the two inputs and also 

at the output of each of the two PDFLC blocks. It receives 

two inputs: the variable to be scaled (input or output) and its 

related gain coefficient, and then multiply them. Each gain 

block contains an eight-bit latch to store the gain coefficient 

value received from one of the gain ports, depending on 

selection line values. Each gain latch is divided into two 

parts: 4 bits fraction and 4 bits integer. This limits the 

maximum scaling of a variable by 15 times (either 

expanding or compressing). Scaling the variables (or fuzzy 

sets) by large scale factors may cause fuzzy sets to get too 

far from its original meaning. If larger scaling factor is 

required, it would be better to assign new fuzzy sets. Details 

of Gain block are shown in Fig. 3. The gain blocks involve 

another process which is called shifting. Shifting process 

converts the range of the input variables from 

[ 127128 →−  ] to [ 2550 → ]. This conversion is 

necessary because the error signal and rate of change of 

error signal signals can have positive and negative values, 

while the used fuzzy inference block in each PDFLC can 

handle positive values only. The shift process implies 

adding the number (
72 ) to the input variable. This addition 

can be easily implemented by inverting the last bit (MSB) of 

input variable. Notice that, at the input, the gain process took 

place before the shift process, while at the output this 
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Fig. 3: Structure of Gain block: (a) input gain block, (b) output gain block. 

 

sequence is reversed. Also, the shift process at the output 

implies subtraction, instead of addition, to convert the range 

of the output variable from [ 2550 → ] to [ 127128 →− ].  

B. The Fuzzifier Block   

Fuzzification process is performed using two fuzzifier 

blocks, one for each input variable. Each fuzzifier block 

takes the input variable and produces four output values 

represent the sequence numbers of the two active fuzzy sets, 

(i and i+1), and the membership degrees of the variable in 

each one of them, (µi and µi+1). Fuzzifier block consists of 

three elements: memory module (called Input fuzzy sets’ 

memory), inverter, and incrementer, connected as shown 

in Fig. 4. The memory module is used as a lookup table that 

stores membership values and active fuzzy set number for 

each entry value of input. Membership functions of any 

shape could be implemented in this memory by choosing the 

right memory words that represent the desired membership 

functions accurately. The memory module was implemented 

using core utility provided by Xilinx core generator system 

as a read-only memory (ROM).  

 

 

 

 

Fig. 4: Structure of Fuzzifier block  

 

Each word in the input fuzzy sets’ memory is divided 

into two parts. The first part is 3 bits data word represents 

the sequence number of the first active fuzzy set. The 

sequence number of the second active fuzzy set is obtained 

by adding one to the sequence number of the first active 

fuzzy set using the incrementer. Assigning 3 bits for the 

sequence number of the fuzzy set will restrict the maximum 

number of fuzzy sets for each input variable to 8 fuzzy sets.  

The second part of memory word is 6 bits data word that 

represents the membership value of input in the first active 

fuzzy set. The membership value of input in the second 

active fuzzy set can be obtained by subtracting the 

membership value of the input in first active fuzzy set from 

one [4]. This dictates that the summation of membership 

values of two consecutive fuzzy set is always equal to one, 

as in the following equation:  

 

11ii =µ+µ +                                                                                      (3) 

 

This limits the changing of the shapes of fuzzy sets. 

However, this restriction is widespread in many fuzzy 

control systems. 

C. Inference Engine Block 

The Inference Engine Block used in the proposed design 

is based on active rule selector mechanism.  Active rules 

selector block uses the information delivered from fuzzifier 

about active fuzzy sets, (have nonzero membership values), 

to launch only active rules. In this way, using an active rule 

selector, the number of rules to be processed will be reduced 

according to this equation: 

 

Number of active rules = 
m

V                                             (4) 

 

where m is the number of inputs, and V is the maximum 

number of overlapped fuzzy set. In the proposed design, it 

assumes that m = 2 and V = 2. Hence, the number of active 

rules at each time is:  42V 2m ==  rules. 

In addition to active rules selector block, inference 

engine involve two other block: rule memory (contains rule 

consequent) and minimum circuit (circuit to calculate the 

applicability degree for each active rule). The memory was 

designed using core utility. These three blocks are shown in 

Fig. 5. 
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Fig. 5: Structure of Inference Engine block. 

 

 

D. Defuzzifier Block 

The defuzzification process is performed in the 

Defuzzifier block using the Centroid method defined by 

Equation below: 
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1k
kk

z
                          

  (5) 

 

where N represents the number of the rules, µk is the degree 

of the applicability of the kth rule, βk  is the defuzzified value 

of the output membership function of the kth rule [9]. The 

Defuzzifier involves two accumulators, one multiplier, and 

one divider. The defuzzifier block accepts four rules 

consequent and their membership degrees from the inference 

engine, (sequentially, in four clock cycles), and produces a 

crisp output to the output gain block, as shown in Fig.  6. 

 

 

Figure (6) Structure of Defuzzifier block 

 

The membership degrees and rules consequents are 

delivered from the inference engine in a sequential manner 

in four consecutive clock cycles, instead of being produced 

in parallel in one clock cycle. This will enhance (reduce) the  

used area of the target FPGA, at the expense of increasing 

time interval between input latching and output producing.  

IV. FPGA DESIGN CONSIDERATIONS AND 

SPECIFICATIONS 

The chosen target device family in the proposed design 

is Virtex FPGAs family from Xilinx Company. Virtex 

FPGAs family offers a useful criterion to the proposed 

design, which is the internal RAM block. Virtex FPGAs 

incorporate several large block memories. This criterion is 

very useful because fuzzy system almost needs large storage 

element to store fuzzy sets information and rules table. The 

implementation of the design on FPGA chip is out of the 

work scope; hence the programming phase in Xilinx 

implementation tools was not carried out. In order to 

implement the proposed design, the selected Target Device 

is xv150 (Xilinx Virtex device of 150 kilo gates), the Target 

Package is bg256, and the Target Speed grade is (-6). 

According to simulation reports, the design utilizes one 

clock net, 61 I/O blocks, and 1394 slices of the target 

device, with maximum frequency of 40.295 MHz. 

 

V. SIMULATION ENVIRONMENTS AND RESULTS 

The proposed controller is designed using ISE4.1 

software tool, in addition to ModelSim5.5 software tool, 

which was used for simulation purposes. The same fuzzy 

controller is designed and simulated using MATLAB 

software tool. This Software-Based Controller (SBC) will be 

used to make a comparison with the proposed design. This 

comparison is important because it tells us to which extent 

our FPGA-Based Controller (FBC) is close to similar 

controller designed as a computer program. For the purpose 

of simulation symmetric triangular fuzzy sets and singleton 

fuzzy sets are used for input and output variable 

respectively, in addition to rule table of 64 fuzzy rules, 

(shown in Fig. 7).  
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Fig. 7: Fuzzy sets and rule table: (a) fuzzy sets for e(t) or r(t), (b) fuzzy set for  u(t) , (c) fuzzy rule table 

 

During test, the controllers (FBC and SBC) are used in 

unity feedback control systems, as shown in Figure (1) and 

subjected to 0.5 step input. Mathematical models of two 

linear plants were used for this test. These two models were 

chosen in way that represents range of plants used in 

industrial applications. Many industrial processes, such as 

temperature, pressure, pH, and fluid-level controls, can be 

approximated by a first order models. The time delay occurs 

when a sensor (e.g., a thermocouple) and an actuator (e.g., a 

heater) are installed with a physical separation. Second 

order model may represent process such as position control 

of an ac motor [10]. Discrete transfer functions of the 

models were obtained using ZOH method, and the selected 

sampling period (T) is 0.1 second for the first model and 

0.25 second for the second model. The discrete transfer 

functions (in z-plane) of models are listed below: 

 

1. First order plant:   

        ( )
1

1

1
z9048.01

z1903.0
zG

−

−

−
=                   , T = 0.1                       (6)       

 

2. Second order plant with delay: 

 

( )
21

21
2

2
z5028.0z48.11

z01997.0z02511.0
zzG

−−

−−
−

+−

+
=  

                                                                     ,  T = 0.25   

    

(7)  

 

Each one of these plants was designed in MATLAB (for 

simulation in MATLAB), and also in non-synthesizable 

VHDL code (for simulation in ModelSim). Since each 

controller could serve as PDFLC, PIFLC, or PIDFLC, 

therefore, a test is made for each one of these types using 

different plants. Fig. 8 shows step responses of the first 

order plant when controlled using the PDFLC, PIFLC and 

PIDFLC, while Fig. 9 shows step responses of the delayed 

second order plant when controlled using the PDFLC, 

PIFLC and PIDFLC. The values of Kp, Kd, Ki, and Ko used 

in this test were selected using trial and error. 

 

 

 

VII SIMULATION RESULT DISCUSSION 

 

As seen in Fig. 8 and Fig. 9, the responses of the systems 

that use FBC are smooth and much similar to the SBC 

responses. The mean difference between the SBC results 

(step response) and the FBC results, shown in Fig. 8 and 

Fig. 9, is calculated, for each case, and listed in Table II. 

The table shows that the absolute mean of differences in the 

plant response, (for 0.5 step input), between the SBC and 

FBC is less than 0.01 for all test cases (less than 0.5% of the 

output range). The table also shows the mean of differences 

between the control action (u(n)) of the SBC and FBC for 

all test cases.  

 

Table II:  Mean differences between SBC and FBC results 

 

 

It is noticeable that some responses in figures (8) and 

(9), have large steady state error (ess) and/or slow response 

(long rise time (tr)). Here we should emphasize that the aim 

of this test is to find to which extent the FBC responses 

are close to SBC responses, and not to find how to 

tune a PIDFLC to get better response. 
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Mean differences between SBC and 

FBC  

Controller 

type 

Plant 

type 

Step response Control action 

G1 0.0016 0.0039 
PDFLC 

G2 0.0001 0.0040 

G1 0.0072 0.0072 
PIFLC 

G2 0.0067 0.0081 

G1 -0.0076 -0.0010 
PIDFLC 

G2 0.0076 0.0086 
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Fig. 8: First order plant controlled by  

(a) PDFLC (b) PIFLC (c) PIDFLC 

Fig. 9: Delayed second order plant controlled by (a) 

PDFLC (b) PIFLC (c) PIDFLC 
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VIII. CONCLUSION 

The design of a PID-like fuzzy logic controller based on 

fuzzy system with active rule selection mechanism and four 

tunable gains factor on FPGA chip is presented in this 

paper. Simulation results of applying the design on the 

target chip state that the design utilizes 1394 slices of the 

target device and needs 17 clock cycles per action. With the 

maximum clock frequency 40.295MHz, the controller was 

able to produce an output in less than 0.421 µs. Therefore, 

the proposed controller will be able to control many 

industrial applications with sampling time ranging from 

milliseconds, e.g. in pressure control, up to higher sampling 

time in the case of temperature control of larger installations 

(industrial furnaces). This small-size high-speed chip is able 

to offer adequate accuracy. The result of simulation shown 

that the step responses of first and second order linear 

models controlled by the proposed controller were very 

close to responses of the same models controlled by  a 

software-based controller. The absolute mean of differences 

between the responses, was less than 0.5% of the output 

range. 
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