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Abstract—The subject of extracting high-resolution data 

from low-resolution images is one of the most important digital 
processing applications in recent years, attracting much 
research. In this work the authors show how to improve the 
resolution of an image when a small part of the image is given in 
high-resolution. To obtain this result the authors use an 
iterative procedure imposing the low frequencies complete data 
of the original low-resolution image and the high-resolution 
data present only in a fraction of the image. The procedure is 
based on the Gerchberg-Papoulis algorithm and contains 
dynamic properties, not present in the original scheme. The 
result is a clearer image, with higher correlation to the required 
high-resolution image. The authors show the use of such a 
procedure on a rosette image and on a facial image to 
demonstrate the higher frequencies obtained and on a text 
sample to show improvement in textual understanding. 
 

Index Terms—Image Processing, Signal reconstruction, 
Super- resolution.  

I. INTRODUCTION 
 In recent years the subject of super resolution (SR) has 

become very popular. SR refers to recovering high resolution 
data from images that due to mis-focus, compression or other 
forms of distortion have lost the data that were originally 
embedded in the higher frequencies of the image, and hence 
are now given as low resolution images. The methods to 
overcome this problem of data loss, and generate SR, are 
quite versatile. In some cases the method is to obtain data 
concerning the blurring function and use an inverse filter to 
reconstruct the high-resolution image [1,2]. Unfortunately, 
two main problems limit this approach. The first, usually it is 
impossible to identify the exact blurring function since it is a 
result of stochastic noise and thus only its statistical 
properties are known. 

The second problem is that, even if the blurring function is 
known making an inverse filter might not be practical (e.g. if 
the original blurring filter has zeros the inverse filter must 
have singular values to obtain exact restoration). Other 
methods use large databases; they are divided into two 
groups. In the first group [3,4] one takes a large amount of 
different test-images present both in a low resolution version 
and a high resolution version, and attempt to find the blurring 
procedure that will yield the best results with respect to all 

images. There are two problems with this approach, no two 
pictures are identical and therefore we cannot be sure that the 
inverse blurring procedure found will be applicable for the 
required new image, and, usually the blurring procedure 
varies from one test-image to another and thus the 
“anti-blurring” filter will be an average of many filters, and 
not an exact filter. 
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The second group of SR using large databases assumes one 
has many low-resolution pictures of the required subject 
[5,6]. Since in every picture a different portion of the 
high-resolution data is missing it is possible to extract some 
high-resolution data from these images to obtain a single 
high-resolution image. The main drawback of these methods 
is the large database required in order to increase the 
resolution of a single image. 

In our work we suggest a novel approach assuming only 
one image is given – the required image. Suppose one has to 
scan an image with high resolution, it is time and memory 
consuming. However, if only a small portion of the image 
will be scanned at peak resolution and most of the data 
scanned with lower accuracy the process itself will become 
much faster and the storage capacity required to store the 
images will become much smaller (e.g. with CT scanning if 
the patient has to spend less time on the scanning device 
his/her inconvenience is reduced). This is the exact principle 
used in this work. We assume only a small portion of the 
required image is given in high-resolution and use this data 
(assuming it has similar statistical properties to the 
neighboring low-resolution portion of the image) to increase 
the resolution of the entire image. To do this we use an 
iterative procedure relying on two initial assumptions: in one 
small portion of the image we have all the high-resolution 
data, and the entire image contains all the low frequencies of 
the original high-resolution image. In the following sections 
we explain the procedure and show some test cases 
supporting this approach. 

II. ITERATIVE SINGLE IMAGE SUPER-RESOLUTION 

A. Concept 
When using a single image we need to know the limits of our 
data. In our case we know for certain that the low frequencies 
exist in the low-resolution image as they would exist in the 
high-resolution image (we assume the blurring function has a 
relatively sharp frequency response, and thus the lower 
frequencies are not distorted). Thus we can impose a 
frequency-domain restriction on the image. We also know 
that a certain portion of the image is presented in 
high-resolution so we can impose an object-domain 
restriction on the image. These two restrictions allow us to 
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bounce back and forth from the object-domain to the 
frequency-domain, with a procedure similar to the one used 
for phase retrieval, as shown in the following subsection.  

B. Review: Iterative Phase Retrieval 
A well-known problem is to determine the phase of a 

phase only object plane filter that will produce a required 
intensity distribution in the Fourier domain. In their paper 
[7], Gerchberg and Saxton suggested an iterative procedure 
to do just that. It has been proven [8] that this procedure 
converges, in the sense that the MSE monotonically 
decreases as the number of iterations increases. 

The concept is quite simple: We begin with an arbitrary 
phase-only filter in the object domain multiplying the input 
object (the original image), after a Fourier transform we 
obtain a Fourier domain image and we impose the require 
Fourier intensity (actually the magnitude), leaving the phase 
unharmed. An inverse Fourier transform brings us back to the 
object domain. Since we restrict ourselves to a phase-only 
filter, we impose the intensity of the input object in this plane. 
Next, we calculate the Fourier transform and return to the 
Fourier domain, and so on. This procedure is required since 
using only the phase of the complex filter that converts the 
input image exactly to the Fourier image gives poor results. 
As can be seen, if we impose half of the information 
(intensity or phase) in both the input and the output domains 
the procedure converges monotonically. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The Gerchberg-Saxton algorithm is shown in Fig. 1. In 

later work Gerchberg [9] and Papoulis [10] suggested the use 
of this method for super-resolution, as shown in Fig. 2. 
However, both presented relatively simple test cases and 
assumed the properties of all iterations to be identical (accept 
when noise reduction was addressed). It is this work of 
Gerchberg and Papoulis that inspired the authors of this 
paper. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
There are of course other methods for obtaining the phase 

filter, such as Simulated Annealing [11], which ensures that 
the MSE has indeed a global minimum, but it is time and 
resources consuming.  

C. Super-Resolution by factor of 2 
Now we present the dynamic approach used to obtain a 

factor-2 Super-resolution (i.e. the original image had 2N by 
2N pixels but we obtain only an N by N pixels image). 

Let us indicate the required image by ( )n,mg  
where Nn,m 21 ≤≤ , and the low-resolution image as 

( )n,mgLR  where Nn,m ≤≤1 . Since the size of the images is 
not the same we begin by planting zeros between each row 
and column element of ( )n,mgLR , thus generating: 
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The new image has the same number of pixels as the 

required high-resolution image. 
 
We assume that a certain portion of the image is known 

completely, so we may impose it on the new image: 
 

( ) ( ) 21211 nnn,mmmn,mgn,mg ≤≤≤≤=     (2) 
 
In the Fourier plane we obtain for the high-resolution image: 
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( ) ( )[ ]xjxA inin Φ⋅exp

( ) ( )[ ]xjxA outout Φ⋅exp
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Fig. 1. Block diagram of Gerchberg-Saxton 
original phase retrieval algorithm. 

( ) ( )xfxf outin +( )xfin

( )xFin

FFT

IFFT

( )xfrandom out

( )xfout

( ) ( )xFxF outin +

( ) ( )xfxf outin +( )xfin

( )xFin

FFT

IFFT

( )xfrandom out

( )f xout

( ) ( )xFxF outin +

Fig. 2. Block diagram of Gerchberg-Papoulis algorithm. 
inf and outf  are the known and unknown regions in the 

inF and outF  are the known and 
unknown regions in the Fourier image, respectively. 

object plane, respectively, 
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whereas for the low-resolution image, the DFT is 
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Since the low-resolution image contains all the low 

frequencies of the high-resolution image we may deduce that 
we can use the following restriction: 

 
( ) ( ) Nl,Mkl,kGl,kG LR ≤≤×= 41        (5) 

 
 Where  is the DFT of , and the factor of 4 

is required since the size of  and  is not the 
same.  

( )l,kG1 ( n,mg1 )
) )( n,mg1 ( n,mgLR

If  and Mmm =+− 112 Nnn =+− 112  then we have 
only 25% of the data in the object plane and 25% of the data 
in the Fourier plane. This is less than the required amount 
stated by the phase retrieval algorithm shown before and 
therefore the convergence to a minimal MSE is not assured.  

In fact, when using the Gerchberg-Papoulis iterative 
procedure for this case we obtain the following: at first, the 
MSE decreases monotonically, but after several iterations the 
requirements are not strict enough to keep the results on the 
right track and the MSE begins to rise. For this reason we add 
a new condition to the iterative procedure: halt when MSE 
reaches local minima. 

In addition we noticed that a smaller (better) MSE 
minimum could be obtained by gradually increasing the 
frequency domain requirements, i.e., imposing only very low 
frequencies at the beginning and gradually increasing the 
frequencies imposed, up to the maximum value given in (5). 
This is due to the fact that primarily is quite different 
from  (yielding a large MSE) and thus imposing a 
large portion of the Fourier domain at an early stage sets the 
results way out of track. By doing this we introduce a revised, 
dynamic version of the Gerchberg-Papoulis algorithm.  

( n,mg1 )
)

High-Res.

Low-Freq.

( n,mg

 
The following summarizes the procedure steps: 

1. Obtain low-resolution image and set initial low 
frequencies range to be imposed. 

2. Implant zeros between data points to increase image 
size to . NM 22 ×

3. Impose high-resolution portion on image. 
4. Perform DFT. 
5. Impose low frequencies on DFT. 
6. Perform IDFT. 
7. Impose high-resolution portion on image. 
8. Calculate MSE. If local minimum is obtained then 

increase the range of low frequencies to impose. 
9. If the range of low frequencies has reached the 

complete range available in the original 
low-resolution image then stop, else return to step 4. 

 
The block diagram describing the dynamic algorithm is 

given in Fig. 3 below. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
When using this method we can obtain a sharp image at 

relatively short processing times. To demonstrate this lets 
assume that each M by N image requires 1 time unit to 
process. Thus the original high-resolution image would 
require 4 time units (because its size is 2M by 2N), however, 
an image containing only one quarter of the data in 
high-resolution will require 1.75 time units: 1 time unit for 
the N by M high resolution and 0.25 time units per each 
remaining M/2 by N/2 quarters (the zero padding is not 
relevant in this case). Thus, the processing time is less then 
half of the original one required if all data were given at high 
resolution. 

(( ))LL

III. SIMULATION RESULTS 
The new method was tested on three typical examples. The 

first, a test rosette containing a variety of frequencies, thus 
making it easy to view how resolution is improved. The 
second, a text example showing how barely readable text can 
be sharpened. 

In Fig. 4 we can see the required high-resolution rosette 
image, whereas Fig. 5 shows the low-resolution rosette. Fig. 
6 collaborates the low-resolution data, after padding with 
zeros to obtain same image size as the high-resolution image, 
with a portion of the high-resolution image in the first quarter 
of the image. The first quarter was used since in most cases 
the higher frequencies lie in the center of the image and we 
wanted to avoid a biased result.  

 
 
 
 
 
 
 
 
 
 
 
 

( ) ( )xfxf RK +( )xfK

( )xFK

.Res

FFT

IFFT

xfow R−

( )xfR

( ) ( )xFxF RK +

K=known portion, 
R=reconstructed portion

If MSE reaches minima

Then

Increase Low-Freq. Portion of
( )xFK

High-Res.

Low-Freq.

( ) ( )xfxf RK +( )xfK

( )xFK

.Res fow R x−

FFT

IFFT ( )xfR

( ) ( )xFxF RK +

If MSE reaches minima

Then

Increase Low-Freq. Portion of
( )F xK

K=known portion, 
R=reconstructed portion

Fig. 3. Block diagram of revised 
Gerchberg-Papoulis Algorithm. 

Fig. 4. Original high resolution rosette image 
containing 128 by 128 pixels. 
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As can be seen, the high-resolution portion of the image 

contains both high and low frequencies. The MSE between 
the first two images is calculated to be (this value 
will be normalized to 1).  

6103374 ×.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In Fig. 7 one can see the result of the super resolution 

iterative procedure. MSE is reduced to  
(normalized 0.0388) and the correlation coefficient between 
the high-resolution image and the one obtained is 97.4%. 

5106851 ×.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Applying the same algorithms on a text image containing a 
single word yields the results shown in Fig. 8. 

 
 
 
 
 
 
 
 
 
 
 
 
As can be seen, in the original high-resolution image 

(top-left corner) the text is relatively sharp, whereas in the 
original low-resolution image the text is quite smeared 
(top-right corner). The original MSE in this case is 

and the correlation coefficient is 78.2%. When 
applying the novel iterative approach one obtains the image 
shown at the bottom of Fig. 8. The MSE in this case is 

(an improvement by a scale of over 4) and the 
correlation coefficient is 90.8%, which is much higher than 
the one obtained by simple reconstruction. 

5102143 ×.

41000888 ×.

All of the results above assume that the procedure initially 
uses half of the pixels available in the Fourier domain (e.g., 
32) and gradually increases the number of pixels used to the 
maximum available in the low-resolution image (e.g., 64). It 
is now time to address the issue of initial number of pixels 
used, which can be named the initial seed side of the 
procedure. We use the last test case, reconstructing a text, and 
sketch both criteria shown above to evaluate the quality of 
the reconstruction, as a function of the initial seed size. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
As seen in Fig. 9 the final correlation coefficient is almost 

independent on the initial seed size (less then 0.2% change 
due to increasing initial seed size from 10 to 60). However, 
the MSE, shown in Fig. 10, increases as a function of the 
initial seed size, from 10 pixels to 60 pixels by over 10.1% 
giving a clear advantage to a smaller seed size. 

Fig. 5. Original low resolution rosette image 
containing 64 by 64 pixels. 

Fig. 8. High resolution word in top-left corner, 
low resolution word in top-right corner, 

reconstructed word in bottom line. 

Fig. 6. Low-resolution rosette image after padding 
with zeros and embedding the high-resolution data in 

top left corner. 0.90950.9095

Fig. 7. Reconstructed rosette image 
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Fig. 9. Correlation coefficient versus initial seed size 
for a simple text reconstruction example. 
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Finally, the notorious ‘Lena’ image was put to the test. In 
Fig. 11 one can see the original low-resolution picture plus 
zooming on an area not in the top-left quarter (the region in 
which the high-resolution picture is imposed). In Fig. 12 we 
can see the reconstructed image. Zooming again on the same 
area as before it is clear that the original low-resolution 
pixilation is gone, the tradeoff is a low frequency ripple. This 
example is important as the MSE improvement by decreasing 
initial seed size from 60 to 10 pixels is over 43.3%, making 
the algorithm especially attractive for gray-scale picture 
reconstruction. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

IV. CONCLUSION 
In this paper the authors suggested a novel iterative 

method for achieving super resolution using a low-resolution 
image accompanied by a small portion of the high-resolution 
image, and a dynamic restriction. The new method allows 
obtaining only a small part of the data with high accuracy and 
thus saving time while obtaining the images and memory 
while saving the data before processing. This method may be 
applicable either as a simple and fast algorithm for slightly 
improving image content or as a preliminary process before 
applying advanced digital techniques (e.g., text oriented 
recognition methods). The suggested procedure is especially 
useful for reconstructing gray-scale pictures in which only a 
small portion of the picture is given in high-resolution. 
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Fig. 10. MSE versus initial seed size for a simple 
text reconstruction example. 
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