
 
 

  
Abstract—This paper presents the author's experience in 

programming Field Programmable Gate Arrays (FPGAs) in 
the context of high performance digital signal and data 
processing. In particular, the paper presents the concept of 
hardware skeletons as a mean to bridge the gap between high 
level applications and low level hardware, and satisfy the dual 
requirement of high level abstract design and hardware 
efficiency. The concept will be illustrated in the context of 
image/video processing applications among other applications. 
In using and developing a variety of hardware design tools, the 
author will finally suggest a multi-language approach to 
hardware development. 

 
Index Terms— FPGAs, reconfigurable hardware, optimizing 

compilers, hardware skeletons, image and video processing.  
 

I. INTRODUCTION 
Today’s system programming is characterized by a widening 
gap between applications on the one hand and hardware 
technology on the other. Indeed, applications are getting 
more and more complex as a result of growing customer 
demands for services such as video communication and 
internet applications. Hardware integration levels are also 
increasing at an exponential rate thanks to a continuous 
observation of Moore’s law. If we add to this widening gap 
between applications and hardware constant market pressure 
to keep costs low and reduce products time-to-market, it soon 
becomes clear that the job of system developers is getting 
harder and not easier. 
 Overall, computer platforms can be classified into four 
primary groups: 1) General purpose processors (GPPs), 2) 
Application-Specific Instruction-set Processors (ASIPs), 3) 
Field Programmable Gate Arrays (FPGAs), and 4) 
Application-Specific Integrated Circuits (ASICs). The first 
two groups are software reprogrammable based on the 
Von-Neumann architecture with the first used for general 
purpose computing (e.g. Pentium Processors), whereas the 
instruction set and corresponding hardware of the second are 
specifically tailored to a particular application area (e.g. DSP 
processors). FPGAs on the other hand have a user-defined 
architecture as the hardware is configured, and often 
reconfigured, on the field by customers. At the other end of 
the spectrum, ASICs present a fully customized hardware 
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implementation to the algorithm in hand with the best 
performance and power consumption figures possible. They 
are usually non-reprogrammable however which limits their 
application to high volume, relatively low cost, and low 
power applications. 
 Figure 1 compares the above four platforms in terms of 
performance/cost ratio, time to market, time to change code 
functionality, and power consumption. 
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 Figure 1. Comparison summary between various computer platforms  
 

It is clear from the above that FPGAs provide a middle 
solution between ASICs and GPPs/ASIPs. Indeed, unlike 
ASIPs/GPPs, FPGAs are not constrained by the Von 
Neumann architecture as illustrated in Figure 2 where a 
256-tap FIR filter implementation is shown both in 
GPPs/ASIPs and FPGAs. In this, FPGAs can instantiate as 
many Multiply-Accumulate (MAC) units as possible, 
whereas GPPs/ASIPs are constrained by the sequential 
nature of their processing. This allows FPGA to achieve 
much higher performance figure than GPPs/ASIPs (typically 
100x). Besides, FPGAs have ASIC-like performance and 
power consumption, with the additional reprogrammability 
feature. FPGAs have also a shorter development cycle and 
lower Non-Recurring Engineering (NRE) costs compared to 
ASICs.  
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Figure 2. GPP/ASIP vs. FPGA implementation of a 256-tap FIR filter 
(Source: www.xilinx.com) 
However, while the above clearly favors FPGAs over other 
competing technologies, FPGA programming remains 
hardware–oriented which makes FPGA programmer 
productivity far inferior to that of GPP/ASIP programmers. 
Even with improving hardware description and synthesis 
environments [1][2][3][4][5], FPGA programming is still 
reserved to specialists. This represents a major hurdle to the 
dissemination of FPGA technology into a wider pool of 
users. This paper presents the author’s own experiences in 
surmounting this obstacle and presents his view as to how the 
FPGA programming community should proceed. 

The remainder of the paper is organized as follows. First, 
the overall FPGA programming model adopted by the author 
is presented. Central to this is the concept of hardware 
skeletons which will be illustrated in the context of image and 
video processing applications, as well as a two-stage 
compilation strategy with an intermediate hardware notation. 
The paper will then present achievements using this 
approach, and discuss future developments in light of 
increased complexity both in hardware and implementation. 
Finally, a conclusion is drawn up. 

II. FPGA HIGH LEVEL PROGRAMMING MODEL 
With ever increasing complexity of FPGA hardware on the 
one hand and increased complexity of applications on the 
other hand comes the need for sophisticated design tools to 
bridge the resulting gap. Two conflicting constraints 
however act on tool developers: first, the need for higher 
level application abstraction and, second, the need to retain 
hardware efficiency. The key to achieve an acceptable 
compromise between these two conflicting requirements are 
optimizing compilers.  
 The author preferred approach to bridge this gap is a direct 
“application to hardware” development process whereby 
application developers design and program FPGAs from a 
model-based application-oriented description. The key to 
retain hardware efficiency is the concept of “hardware 
skeletons” which the author has developed in Year 2000 [3]. 
Hardware skeletons are reusable frameworks which take not 
only variables, but also functions or other skeletons as 
parameters. Until fully parameterized, a hardware skeleton 
does not perform any functionality. Functionality, rather than 
data, is sent as a parameter, something that makes this 
approach the opposite of traditional hardware design 
approaches where functionality defines blocks and data, 
rather than functionality, is passed as a parameter. Hardware 
skeletons also contain built-in rules that apply optimizations 
inherent to the skeleton, and customized to the supplied 
parameters which include target hardware. By composing 
skeletons hierarchically and by performing optimizations at 
each stage of the hierarchy, the aforementioned dual 
requirement of hardware efficiency and abstract design can 
be achieved.  

 

A. Examples of Hardware Skeletons 
Figure 3 presents three examples of hardware skeletons. 

The first, the pipeline skeleton, is ubiquitous in hardware as it 

is one of two main ways of achieving parallelism [6]. The 
pipeline skeleton presented in Figure 3.a consists of a 
cascade of generic stages where the output of each stage is 
the input of the subsequent one. A user can define the 
functionality of a pipeline stage which can range from a 
simple addition or multiplication to a skeleton of any other 
type, as well as the type and range of input. One optimization 
that the skeleton rules can apply is to interface between 
subsequent stages by automatically inserting the necessary 
hardware for format conversion (e.g. bit serial to bit parallel, 
sign extension etc.) depending on the parameters of the 
pipeline stages.  

 

Op-1 Op-2 Op-N 

Could be an instance of any other 
skeleton Automatic format 

conversion
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Figure 3. Hardware skeleton examples 
 
The second example presented in Figure 1.b is the reduction 
skeleton which reduces an array of inputs into a single output. 
Here too, the user can specify the particular reduction 
function e.g. addition, multiplication, maximum, and 
minimum, as well as the type and range of data inputs. The 
skeleton has built-in optimizations, which automatically 
synchronizes data across stages; infer the minimum 
necessary word length(s); and balance and pipeline the tree to 
a user-desired level.   
 The third example presented in Figure 3.c is the parallel 
operations skeleton and consists of N parallel operations, 

IAENG International Journal of Computer Science, 35:1, IJCS_35_1_04
______________________________________________________________________________________

(Advance online publication: 19 February 2008)



 
 

which could be instances of other skeletons, all operating on 
the same input. The outputs of these operations are then 
reduced to one single output. Here, the user can specify any 
skeleton in the parallel branches (e.g. a pipeline skeleton) and 
any reduction operation. He/she can also specify any type and 
range of input data. The skeleton built-in rules will 
automatically infer the proper processing word lengths, 
synchronize and adapt data at the interfaces.  
 

B. FPGA High Level Programming Model 
Equipped with a hardware skeleton library, an application 
developer’s task is simply to choose skeletons from the 
library, parameterize these skeletons according to the 
application needs, and combine skeletons in the appropriate 
manner. Preferably, this would be done through a graphical 
interface. A hardware compiler would then take the resulting 
application description in terms of hardware skeletons and 
generate optimized hardware automatically from it (see 
Figure 4).  
 

Hardware 
Compiler 

Hardware Skeleton Library 

High Level application 
description 

Optimized Hardware 
Configuration  

(EDIF/VHDL netlist) 

 
Figure 4. Proposed skeleton-based FPGA hardware development 
 
In the author’s approach, this compilation process is done in 
two stages. First, the application description is compiled into 
a hardware-independent description (much like object code 
in software) before a netlist generator produces the 
corresponding optimized hardware for a particular 
implementation platform. This is done for the sake of 
modularity and portability as it is the custom is software 
engineering. With this in mind, Figure 5 presents the two 
stage hardware development model. 
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Figure 5. A two-stage hardware development model 
 

C. The intermediate notation: HIDE 
The intermediate notation adopted by the author is called 
HIDE (Hardware Intelligent Description Environment) [7]. 
HIDE describes scaleable and parameterized hardware 

architectures in a structural way. Its main features can be 
summarized by the following four aspects: 
1- Layered Hardware Block Library: In HIDE, hardware 
is assembled using a range of components with different 
levels of abstractions as illustrated in Figure 6. 
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Parameterised Basic 
Components Library 

e.g. 1 or 2 
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e.g. N-bit 
adder, NxM 
multiplier 

e.g. parameterised 
FIR filter  

Figure 6. Layered architecture of HIDE’s hardware library 
 
At the bottom level, fixed basic components are found. These 
include, for instance, bit adders, bit multipliers, and bit 
delays. This layer is the closest to the underlying hardware. 
Different versions exist for different FPGA architectures. 
The second layer of the library contains parameterized basic 
components such as generic N-bit adders and generic NxM 
multipliers. At the top level, the library contains compound 
components such as fully parameterized FIR filters. Overall, 
each layer depends on the lower level layers and builds its 
components from these layers. It is this hierarchy of blocks 
which applies relevant optimizations at each stage that helps 
bridge the gap between high level applications and low level 
hardware while keeping the high performance. 
 
2- Architecture Description: In HIDE, a hardware block is 
rectangular with input/port ports and control signals at the 
four sides (north, south, east and west). Such blocks are 
assembled in a structural way using a small set of 2D and 3D 
constructors, including horizontal and vertical constructors 
(see Figure 7) in the case of 2D, and the above operator in the 
case of 3D (see Figure 8). Note that connectivity need not be 
explicitly specified in HIDE as it automatically figures out 
which ports connects to which using a simple heuristic  
which connects input ports on one side to output ports on the 
other side and vice versa following a default order.  
 

C = vertical([B1,B2]) 

C = horizontal([B1,B2]) 

 

B1
  

  

B2

6

B1 6 
 

B2 

 
Figure 7. Horizontal and vertical constructors in HIDE 
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C=above([B1,B2, B3]) 
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Figure 8. Above constructor in HIDE 
 
An architecture builder in HIDE can specify particular 
connectivity between blocks, if he/she does not want to rely 
on the automatic routing heuristic, using the network 
connector (nc) construct (see Figure 9). 
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7  

nc 

C=  horizontal([ B1, nc([ p_seq(i, 4, [(i, i+4),(i+4, i)])]), B2 ])

 
Figure 9. Butterfly network connection in HIDE 
 
HIDE can also describe systolic array architectures very 
concisely using parameterized constructors such as the 
horizontal and vertical sequence constructors (see Figure 10). 
 

C = v_seq(i, 3, h_seq(j, 4-i, B1)) 

C = h_seq(i, 3, v_seq(j, i, B1)) 
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Figure 10. Parameterized horizontal and vertical constructors in HIDE 

 
In HIDE, the two concepts of block interconnection and 
block placement can be separated. Different topologies can 
thus be built, while retaining the same block connectivity, 
through the use of layout managers which can over-ride the 
default placement information to implement a particular 
topology. Figure 11 illustrates this concept with the example 
of the triangle layout manager.  

B 

H
eight 

Widthtriangle(B, Width, Height) 
 

Figure 11. The triangle layout manager in HIDE 
 

In addition to the above structured constructors, HIDE offers 
logical constructors which perform certain connectivity 
without implying any geometrical placement. These are the 
serie/s_seq, par/p_seq, and loop constrictors as illustrated in 
Figure 12. 
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C= loop([B, nc([(1,2])]) 
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=
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Figure 12. Logical constructors in HIDE 
 
3- Architecture Control: Control signals (e.g. clock, clock 
enable, and clear signals) are treated differently from normal 
ports as they are usually broadcast to a large number of 
components on chip. They are represented and manipulated 
using different structures.  
 
4- Architecture Constraints: In addition to architecture 
description, HIDE offers architecture builders the possibility 
to attach placement, routing, timing constraints, and possibly 
power constraints to hardware blocks. These are taken into 
consideration whenever possible by the rule-based skeleton 
assembly mechanism, and/or passed to back-end synthesis 
tools. 
 
The above four aspects sub- ensure a separation of concerns 
which results in a highly modular development environment. 
Figure 13 below illustrates the HIDE hardware development 
process. 
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Figure 13. HIDE hardware development process. 
 

Figure 14 illustrates an example of a fully parameterized 
parallel matrix multiplier description in HIDE alongside the 
resulting implementation. The EDIF netlist generated for a 
3x3 by 3x3 matrix multiplier contains all the placement 
information and was generated in few seconds. The resulting 
FPGA configuration matches hand-crafted vendor 
implementations with the added benefit of being 
programmatically generated and invoked. The result of the 
HIDE function call (or predicate call since HIDE was written 
in Prolog) could indeed be used a parameter for a subsequent 
function call which assembles a much complex block or 
skeleton.  
 

 

Generic full matrix multiplier 

FPGA 
 
 

 configuration 

 
Figure 14. Parallel Matrix Multiplier description and implementation in 
HIDE 
 
Table 1 gives implementation results of the matrix multiplier 
core on Virtex XCV2000E-6 for different matrix sizes (for 
8-bit processing word length). 
 

TABLE 1. IMPLEMENTATION RESULTS OF THE MATRIX MULTIPLIER ON 
VIRTEX XCV2000E-6 FPGAS 

Matrix Speed (MHz) Area (slices) 

2x2 (8 bits) 186 352 
3x3 (8 bits) 145 1305 
4x4 (8 bits) 131 2960 

 

III. APPLICATION- ORIENTED ABSTRACTIONS: IMAGE AND 
VIDEO PROCESSING 

Figure 15 below illustrates the direct application to hardware 
design approach. In it, application developers describe the 
algorithm in hand using application-oriented skeletons. The 
application developer chooses and parameterizes skeletons, 
and combines them according to his/her algorithm needs. 
Skeleton-specific optimization rules are then automatically 
applied by the high level generator which then produces 
hardware descriptions in HIDE. The HIDE system then 

generates optimized hardware netlist for a specific hardware 
platform in the form of EDIF or VHDL.  
 

Build the algorithm in terms of 
parameterised skeletons 

Built-in optimisation rules 
are applied 

Generate configuration
(in EDIF) 

HIDE 

[ Place and ] Route 

FPGA

Application Developer

 
Figure 15.Overview of our direct application to hardware design flow 
 
In the context of image and video processing, this approach 
was used successfully by the author and his group to 
implement high level environments for FPGA-based image 
and video coprocessor [8][9][10]. Figure 16 illustrates an 
instance of a pipeline skeleton which performs an absolute 
Laplace edge detection with binary thresholding [11]. Here, 
all the application developer has to do is to instantiate a 
pipeline skeleton with three stages with each stage 
parameterized with a particular function (convolution for the 
first, absolute operation for the second, and threshold for the 
third).  

Pipeline skeleton 
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-1 
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(point operation) 
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Figure 16. Pipeline skeleton 
 
The second example, presented in Figure 17 presents two 
instance of the reduction skeleton, namely adder reduction 
and maximum reduction. Again, the application developer 
has, only, to instantiate the reduction skeleton with 16 inputs 
and an adder/maximum reduction operation respectively. The 
type and range of inputs is also a parameter, as it is in the 
pipeline skeleton example of Figure 16. 
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(a) 16-input Adder Tree 
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(b) 16-input Maximum reduction tree 

 
Figure 17. Reduction skeleton 
 
The third example presented in Figure 18 illustrates the 
parallel operations skeleton through two instances, namely 
the Sobel and Prewitt operators. Here, the application 
developer instantiates the parallel skeleton with two 
branches, each branch consisting of a two-stage pipeline 
skeleton. The reduction operation is an image to image 
addition. The underlying generator will automatically 
generate optimized hardware netlist from such high level 
description with an intermediate notation in HIDE notation.  
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(b) Sobel operator 
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(c) Prewitt operator 

 
Figure 18. Parallel operations skeleton 
 
The fourth example presented in Figure 19 illustrates the 
“Process and Reduce” skeleton through an instance which 
implements a perimeter detector. The skeleton instance is an 
additive-maximum neighborhood operation which performs 
an erode operation. The perimeter is then deduced by 
subtracting the eroded image from the original image [12].  
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Figure 19. Parallel operations skeleton 
Another example of hardware skeletons for image and video 
processing is presented in Figure 20 and performs a 2D 
multivariate filtering with generic L and H FIR filters [13]. 
An instance of this skeleton presented in Figure 21.b 
implements a generic 3-stage 2D wavelet transform 
parameterisable in terms of low (L) and high (H) filter 
coefficients, image word length. Built-in optimizations 
include: dynamic word length across stages according to the 
dynamic range required, novel error cancellation techniques, 
and efficient border signal handling [14][15]. This 
implementation was the fastest 2D wavelet FPGA 
implementation at the time of its publication and 
outperformed an equivalent software implementation by over 
200:1. 
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(a) A generic multi-variate 2D filter 
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(b) A 3-stage 2D wavelet transform 

 
Figure 20. Parallel operations skeleton 
 
Using this approach, FPGA-based image and video 
co-processors based on the abstraction of Image Algebra 
have been implemented and tested on real FPGA hardware 
e.g. VigraVision’s FPGA-based video board and Celoxica 
RC1000 FPGA-based PCI board. In these environments, 
applications developers program FPGA hardware using an 
application-oriented interface. The concept of hardware 
skeleton allows for the generation of optimized hardware 
from abstract application descriptions with real time 
performance for video applications achieved with a 
considerable margin [7][8][9]. 
 

IV. DEALING WITH INCREASED COMPLEXITY 
Reconfigurable hardware is getting more and more complex 
with increased complexity and heterogeneity. Indeed, the 
latest FPGAs have a variety of embedded ASIC DSP blocks 
(e.g. MACs, Block RAMs) as well as embedded processors 
and various input/output capabilities. Faced with this, FPGA 
hardware designers are turning into higher level design 
environments such as System-C, Handel-C and other 
C-based high level languages. Handel-C, for instance, allows 
application developers to program FPGAs in a C-like syntax 
with higher level software-like abstractions which makes it 
easier to port existing legacy software code into hardware. 
Nonetheless, being a high level hardware language, 
Handel-C lacks the hardware efficiency provided by HIDE, 
for instance. Table 2, for instance, shows comparative 
implementation results of a 3x3 Gaussian smooth filter (see 
Figure 21) on FPGAs using HIDE, Handel-C and RTL 
VHDL [9].  
 

 
Figure 21. A Gaussian smooth filter kernel (the operation is a convolution) 
 

TABLE 2. COMPARATIVE IMPLEMENTATION RESULTS OF A 3X3 GAUSSIAN 
FILTER ON XILINX VIRTEX-E2000-6 FPGAS 

 Speed 
(MHz) 

Area 
(Slices) 

Block 
RAMs 

Development 
times 

HIDE 
implementation 

132 284 2 3 person-weeks

RTL VHDL 
implementation 

88  360  2  7 person-days 

Handel-C based 
implementation 

71  404  2  5 person-days 

 
The HIDE implementation development time includes the 
time it took to develop the basic building blocks in the 
library.  
 

As can be seen, HIDE implementations largely outperform 
Handel-C implementations (often 30-50% more in speed and 
area) but take considerably more to develop. The RTL VHDL 
implementation sits between the two. The traditional way 
designers have dealt with this problem has been to adopt the 
closest language to their cost, functionality and performance 
requirements. The author, however, posits the following: 
Why should designers choose between languages? Why 
could not they harness the combined strengths of 
complementary design languages/environments? The reason 
why this has not been largely possible is partly because of a 
marketing element. Indeed, electronic design automation tool 
vendors are not enthusiastic about making their tools 
interoperable with competitors’ tools. However, the return 
for users can be greatly enhanced if that was possible. As an 
experiment, the author has successfully combined the 
Handel-C and HIDE environments by using Handel-C as the 
top level design language with calls to high performance 
HIDE cores using a standard interface construct (see Figure 
22). This harnesses the high performance of HIDE for 
datapath units with Handel-C’s ease of use for control paths 
[9]. This combination can be extended to any other 
environment given the following: 
• Use of a standard interchange notation (e.g. EDIF in the 

HIDE/Handel-C combination) 
• Source level Co-simulation, which needs common 

simulation syntax. This was done at the EDIF level in our 
case study as it was very difficult to produce or find a 
common source level simulator (due mainly to lack of 
vendor support and instability of existing simulation 
tools) 

• Dynamic calls from one environment to another should 
be supported. This was not supported in the Handel-C DK 
environment, so a wrap-around layer on the top of the 
Handel-C language had to be custom-designed by the 
author’s team 

 

 
Figure 22. Combined Handel-C/HIDE design flow 

 

V. CONCLUSION 
This paper presented the author’s experience in programming 
Field Programmable Gate Arrays (FPGAs) for high 
performance reconfigurable computing. One the main 
achievements of the author in this regard is the concept of 
hardware skeletons as a way to satisfy the dual requirement 
of high level design and hardware efficiency. The paper 
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illustrated this concept particularly in the context of high 
performance FPGA-based image and video processing.  
 In developing and using a wide range of electronic design 
automation tools, the author proposes the following: instead 
of striving towards the most encompassing super hardware 
design language that will meet user demands in term of 
performance, ease of use and cost, the community has to 
learn from similar failed experiences in the software 
engineering realm, and strive towards developing standards 
for easy (dynamic) inter-operability of existing 
complementary tools. In the author’s opinion, a 
multi-language hardware design approach will become more 
of a necessity in the future as both hardware and applications 
continue to grow in complexity.  
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