

Abstract—This paper presents the author's experience in

programming Field Programmable Gate Arrays (FPGAs) in
the context of high performance digital signal and data
processing. In particular, the paper presents the concept of
hardware skeletons as a mean to bridge the gap between high
level applications and low level hardware, and satisfy the dual
requirement of high level abstract design and hardware
efficiency. The concept will be illustrated in the context of
image/video processing applications among other applications.
In using and developing a variety of hardware design tools, the
author will finally suggest a multi-language approach to
hardware development.

Index Terms— FPGAs, reconfigurable hardware, optimizing

compilers, hardware skeletons, image and video processing.

I. INTRODUCTION
Today’s system programming is characterized by a widening
gap between applications on the one hand and hardware
technology on the other. Indeed, applications are getting
more and more complex as a result of growing customer
demands for services such as video communication and
internet applications. Hardware integration levels are also
increasing at an exponential rate thanks to a continuous
observation of Moore’s law. If we add to this widening gap
between applications and hardware constant market pressure
to keep costs low and reduce products time-to-market, it soon
becomes clear that the job of system developers is getting
harder and not easier.
 Overall, computer platforms can be classified into four
primary groups: 1) General purpose processors (GPPs), 2)
Application-Specific Instruction-set Processors (ASIPs), 3)
Field Programmable Gate Arrays (FPGAs), and 4)
Application-Specific Integrated Circuits (ASICs). The first
two groups are software reprogrammable based on the
Von-Neumann architecture with the first used for general
purpose computing (e.g. Pentium Processors), whereas the
instruction set and corresponding hardware of the second are
specifically tailored to a particular application area (e.g. DSP
processors). FPGAs on the other hand have a user-defined
architecture as the hardware is configured, and often
reconfigured, on the field by customers. At the other end of
the spectrum, ASICs present a fully customized hardware

Manuscript received October 9, 2007. This work was supported in part by

the U.K. Engineering and Physical Sciences Research Council (EPSRC)
under Grant GR/R72846/01.

Dr. Khaled Benkrid is with the Institute of Micro and Nano Systems,
School of Engineering and Electronics, University of Edinburgh, Scotland,
Edinburgh, EH9 3JL (phone: 0131-650-5666; fax: 0131-650-5446; e-mail:
k.benkrid@ed.ac.uk).

implementation to the algorithm in hand with the best
performance and power consumption figures possible. They
are usually non-reprogrammable however which limits their
application to high volume, relatively low cost, and low
power applications.
 Figure 1 compares the above four platforms in terms of
performance/cost ratio, time to market, time to change code
functionality, and power consumption.

S
p
e
e
d

P
e
r
f
o
r
m
a
n
c
e

Very Short

Medium

Long

Impossible

Time to
change code
functionality

High

Medium-High

Low-Medium

Low

Power
Consumption

Long

Medium-
High

FPGA

Very
Short

Low-Medium GPPs

Medium

Medium ASIP

Very Long Very High ASIC

Time to
market

Performance
/

Cost

Technology

F
l
e
x
i
b
i
l
i
t
y

 Figure 1. Comparison summary between various computer platforms

It is clear from the above that FPGAs provide a middle
solution between ASICs and GPPs/ASIPs. Indeed, unlike
ASIPs/GPPs, FPGAs are not constrained by the Von
Neumann architecture as illustrated in Figure 2 where a
256-tap FIR filter implementation is shown both in
GPPs/ASIPs and FPGAs. In this, FPGAs can instantiate as
many Multiply-Accumulate (MAC) units as possible,
whereas GPPs/ASIPs are constrained by the sequential
nature of their processing. This allows FPGA to achieve
much higher performance figure than GPPs/ASIPs (typically
100x). Besides, FPGAs have ASIC-like performance and
power consumption, with the additional reprogrammability
feature. FPGAs have also a shorter development cycle and
lower Non-Recurring Engineering (NRE) costs compared to
ASICs.

High Performance Reconfigurable Computing:
From Applications to Hardware

Khaled Benkrid, Senior Member, IEEE

IAENG International Journal of Computer Science, 35:1, IJCS_35_1_04
__

(Advance online publication: 19 February 2008)

Figure 2. GPP/ASIP vs. FPGA implementation of a 256-tap FIR filter
(Source: www.xilinx.com)
However, while the above clearly favors FPGAs over other
competing technologies, FPGA programming remains
hardware–oriented which makes FPGA programmer
productivity far inferior to that of GPP/ASIP programmers.
Even with improving hardware description and synthesis
environments [1][2][3][4][5], FPGA programming is still
reserved to specialists. This represents a major hurdle to the
dissemination of FPGA technology into a wider pool of
users. This paper presents the author’s own experiences in
surmounting this obstacle and presents his view as to how the
FPGA programming community should proceed.

The remainder of the paper is organized as follows. First,
the overall FPGA programming model adopted by the author
is presented. Central to this is the concept of hardware
skeletons which will be illustrated in the context of image and
video processing applications, as well as a two-stage
compilation strategy with an intermediate hardware notation.
The paper will then present achievements using this
approach, and discuss future developments in light of
increased complexity both in hardware and implementation.
Finally, a conclusion is drawn up.

II. FPGA HIGH LEVEL PROGRAMMING MODEL
With ever increasing complexity of FPGA hardware on the
one hand and increased complexity of applications on the
other hand comes the need for sophisticated design tools to
bridge the resulting gap. Two conflicting constraints
however act on tool developers: first, the need for higher
level application abstraction and, second, the need to retain
hardware efficiency. The key to achieve an acceptable
compromise between these two conflicting requirements are
optimizing compilers.
 The author preferred approach to bridge this gap is a direct
“application to hardware” development process whereby
application developers design and program FPGAs from a
model-based application-oriented description. The key to
retain hardware efficiency is the concept of “hardware
skeletons” which the author has developed in Year 2000 [3].
Hardware skeletons are reusable frameworks which take not
only variables, but also functions or other skeletons as
parameters. Until fully parameterized, a hardware skeleton
does not perform any functionality. Functionality, rather than
data, is sent as a parameter, something that makes this
approach the opposite of traditional hardware design
approaches where functionality defines blocks and data,
rather than functionality, is passed as a parameter. Hardware
skeletons also contain built-in rules that apply optimizations
inherent to the skeleton, and customized to the supplied
parameters which include target hardware. By composing
skeletons hierarchically and by performing optimizations at
each stage of the hierarchy, the aforementioned dual
requirement of hardware efficiency and abstract design can
be achieved.

A. Examples of Hardware Skeletons
Figure 3 presents three examples of hardware skeletons.

The first, the pipeline skeleton, is ubiquitous in hardware as it

is one of two main ways of achieving parallelism [6]. The
pipeline skeleton presented in Figure 3.a consists of a
cascade of generic stages where the output of each stage is
the input of the subsequent one. A user can define the
functionality of a pipeline stage which can range from a
simple addition or multiplication to a skeleton of any other
type, as well as the type and range of input. One optimization
that the skeleton rules can apply is to interface between
subsequent stages by automatically inserting the necessary
hardware for format conversion (e.g. bit serial to bit parallel,
sign extension etc.) depending on the parameters of the
pipeline stages.

Op-1 Op-2 Op-N

Could be an instance of any other
skeleton Automatic format

conversion

(a)

Op
Op

Op

Automatic data
synchronisation, minimum
wordlength calculations, tree
balancing, and pipelining

Op

Op
(b)

Automatic data
synchronisation

Operation-2 Operation-N

Reduction
operation

Operation-1

(c)

Figure 3. Hardware skeleton examples

The second example presented in Figure 1.b is the reduction
skeleton which reduces an array of inputs into a single output.
Here too, the user can specify the particular reduction
function e.g. addition, multiplication, maximum, and
minimum, as well as the type and range of data inputs. The
skeleton has built-in optimizations, which automatically
synchronizes data across stages; infer the minimum
necessary word length(s); and balance and pipeline the tree to
a user-desired level.
 The third example presented in Figure 3.c is the parallel
operations skeleton and consists of N parallel operations,

IAENG International Journal of Computer Science, 35:1, IJCS_35_1_04
__

(Advance online publication: 19 February 2008)

which could be instances of other skeletons, all operating on
the same input. The outputs of these operations are then
reduced to one single output. Here, the user can specify any
skeleton in the parallel branches (e.g. a pipeline skeleton) and
any reduction operation. He/she can also specify any type and
range of input data. The skeleton built-in rules will
automatically infer the proper processing word lengths,
synchronize and adapt data at the interfaces.

B. FPGA High Level Programming Model
Equipped with a hardware skeleton library, an application
developer’s task is simply to choose skeletons from the
library, parameterize these skeletons according to the
application needs, and combine skeletons in the appropriate
manner. Preferably, this would be done through a graphical
interface. A hardware compiler would then take the resulting
application description in terms of hardware skeletons and
generate optimized hardware automatically from it (see
Figure 4).

Hardware
Compiler

Hardware Skeleton Library

High Level application
description

Optimized Hardware
Configuration

(EDIF/VHDL netlist)

Figure 4. Proposed skeleton-based FPGA hardware development

In the author’s approach, this compilation process is done in
two stages. First, the application description is compiled into
a hardware-independent description (much like object code
in software) before a netlist generator produces the
corresponding optimized hardware for a particular
implementation platform. This is done for the sake of
modularity and portability as it is the custom is software
engineering. With this in mind, Figure 5 presents the two
stage hardware development model.

High Level
Generator

Hardware Skeleton
Library

High Level application
description

Optimized Hardware
Configuration

(EDIF/VHDL netlist)

Netlist
Generator

Intermediate
Notation

Basic Building Blocks
Hardware Library

+
x

<
<
>
>

Figure 5. A two-stage hardware development model

C. The intermediate notation: HIDE
The intermediate notation adopted by the author is called
HIDE (Hardware Intelligent Description Environment) [7].
HIDE describes scaleable and parameterized hardware

architectures in a structural way. Its main features can be
summarized by the following four aspects:
1- Layered Hardware Block Library: In HIDE, hardware
is assembled using a range of components with different
levels of abstractions as illustrated in Figure 6.

Fixed Basic
Component

Library

Compound components

Parameterised Basic
Components Library

e.g. 1 or 2
bit adders

e.g. N-bit
adder, NxM
multiplier

e.g. parameterised
FIR filter

Figure 6. Layered architecture of HIDE’s hardware library

At the bottom level, fixed basic components are found. These
include, for instance, bit adders, bit multipliers, and bit
delays. This layer is the closest to the underlying hardware.
Different versions exist for different FPGA architectures.
The second layer of the library contains parameterized basic
components such as generic N-bit adders and generic NxM
multipliers. At the top level, the library contains compound
components such as fully parameterized FIR filters. Overall,
each layer depends on the lower level layers and builds its
components from these layers. It is this hierarchy of blocks
which applies relevant optimizations at each stage that helps
bridge the gap between high level applications and low level
hardware while keeping the high performance.

2- Architecture Description: In HIDE, a hardware block is
rectangular with input/port ports and control signals at the
four sides (north, south, east and west). Such blocks are
assembled in a structural way using a small set of 2D and 3D
constructors, including horizontal and vertical constructors
(see Figure 7) in the case of 2D, and the above operator in the
case of 3D (see Figure 8). Note that connectivity need not be
explicitly specified in HIDE as it automatically figures out
which ports connects to which using a simple heuristic
which connects input ports on one side to output ports on the
other side and vice versa following a default order.

C = vertical([B1,B2])

C = horizontal([B1,B2])

B1

B2

6

B1 6

B2

Figure 7. Horizontal and vertical constructors in HIDE

IAENG International Journal of Computer Science, 35:1, IJCS_35_1_04
__

(Advance online publication: 19 February 2008)

C=above([B1,B2, B3])

B2

B1

B3

Figure 8. Above constructor in HIDE

An architecture builder in HIDE can specify particular
connectivity between blocks, if he/she does not want to rely
on the automatic routing heuristic, using the network
connector (nc) construct (see Figure 9).

B2 B1
2
1

4
3

6
5

8
7

nc

C= horizontal([B1, nc([p_seq(i, 4, [(i, i+4),(i+4, i)])]), B2])

Figure 9. Butterfly network connection in HIDE

HIDE can also describe systolic array architectures very
concisely using parameterized constructors such as the
horizontal and vertical sequence constructors (see Figure 10).

C = v_seq(i, 3, h_seq(j, 4-i, B1))

C = h_seq(i, 3, v_seq(j, i, B1))

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

B1

Figure 10. Parameterized horizontal and vertical constructors in HIDE

In HIDE, the two concepts of block interconnection and
block placement can be separated. Different topologies can
thus be built, while retaining the same block connectivity,
through the use of layout managers which can over-ride the
default placement information to implement a particular
topology. Figure 11 illustrates this concept with the example
of the triangle layout manager.

B

H
eight

Widthtriangle(B, Width, Height)

Figure 11. The triangle layout manager in HIDE

In addition to the above structured constructors, HIDE offers
logical constructors which perform certain connectivity
without implying any geometrical placement. These are the
serie/s_seq, par/p_seq, and loop constrictors as illustrated in
Figure 12.

Serie Composition

C= serie([B1, B2,…., Bn])

=B2 BNB1

C= s_seq([N, B])

Parallel Composition

C= p_seq([N,B])

C= par([B1, B2,…., Bn])

Loop Composition

C= loop([B, nc([(1,2])])

B

C

=B BB C

C
=

= C

B1

B2

B3

BN

= C

B

B

B

B

Figure 12. Logical constructors in HIDE

3- Architecture Control: Control signals (e.g. clock, clock
enable, and clear signals) are treated differently from normal
ports as they are usually broadcast to a large number of
components on chip. They are represented and manipulated
using different structures.

4- Architecture Constraints: In addition to architecture
description, HIDE offers architecture builders the possibility
to attach placement, routing, timing constraints, and possibly
power constraints to hardware blocks. These are taken into
consideration whenever possible by the rule-based skeleton
assembly mechanism, and/or passed to back-end synthesis
tools.

The above four aspects sub- ensure a separation of concerns
which results in a highly modular development environment.
Figure 13 below illustrates the HIDE hardware development
process.

IAENG International Journal of Computer Science, 35:1, IJCS_35_1_04
__

(Advance online publication: 19 February 2008)

Composition

Process
EDIF

Generator

HIDE Composition
Data Structure

Objects
Description

Library

EDIF
Placement

and Routing
Tool

Architecture
Builder

Basic
Components

Library

VHDL

VHDL
Generator

Figure 13. HIDE hardware development process.

Figure 14 illustrates an example of a fully parameterized
parallel matrix multiplier description in HIDE alongside the
resulting implementation. The EDIF netlist generated for a
3x3 by 3x3 matrix multiplier contains all the placement
information and was generated in few seconds. The resulting
FPGA configuration matches hand-crafted vendor
implementations with the added benefit of being
programmatically generated and invoked. The result of the
HIDE function call (or predicate call since HIDE was written
in Prolog) could indeed be used a parameter for a subsequent
function call which assembles a much complex block or
skeleton.

Generic full matrix multiplier

FPGA

 configuration

Figure 14. Parallel Matrix Multiplier description and implementation in
HIDE

Table 1 gives implementation results of the matrix multiplier
core on Virtex XCV2000E-6 for different matrix sizes (for
8-bit processing word length).

TABLE 1. IMPLEMENTATION RESULTS OF THE MATRIX MULTIPLIER ON
VIRTEX XCV2000E-6 FPGAS

Matrix Speed (MHz) Area (slices)

2x2 (8 bits) 186 352
3x3 (8 bits) 145 1305
4x4 (8 bits) 131 2960

III. APPLICATION- ORIENTED ABSTRACTIONS: IMAGE AND
VIDEO PROCESSING

Figure 15 below illustrates the direct application to hardware
design approach. In it, application developers describe the
algorithm in hand using application-oriented skeletons. The
application developer chooses and parameterizes skeletons,
and combines them according to his/her algorithm needs.
Skeleton-specific optimization rules are then automatically
applied by the high level generator which then produces
hardware descriptions in HIDE. The HIDE system then

generates optimized hardware netlist for a specific hardware
platform in the form of EDIF or VHDL.

Build the algorithm in terms of
parameterised skeletons

Built-in optimisation rules
are applied

Generate configuration
(in EDIF)

HIDE

[Place and] Route

FPGA

Application Developer

Figure 15.Overview of our direct application to hardware design flow

In the context of image and video processing, this approach
was used successfully by the author and his group to
implement high level environments for FPGA-based image
and video coprocessor [8][9][10]. Figure 16 illustrates an
instance of a pipeline skeleton which performs an absolute
Laplace edge detection with binary thresholding [11]. Here,
all the application developer has to do is to instantiate a
pipeline skeleton with three stages with each stage
parameterized with a particular function (convolution for the
first, absolute operation for the second, and threshold for the
third).

Pipeline skeleton

Op-1 Op-2 Op-N

-1
-1 -1

-1 ~ ~
4

~ ~

Convolution
Absolute

(point operation)
Threshold
 (>Thresh)

Absolute Laplace with threshold

instance

Figure 16. Pipeline skeleton

The second example, presented in Figure 17 presents two
instance of the reduction skeleton, namely adder reduction
and maximum reduction. Again, the application developer
has, only, to instantiate the reduction skeleton with 16 inputs
and an adder/maximum reduction operation respectively. The
type and range of inputs is also a parameter, as it is in the
pipeline skeleton example of Figure 16.

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

(a) 16-input Adder Tree

IAENG International Journal of Computer Science, 35:1, IJCS_35_1_04
__

(Advance online publication: 19 February 2008)

 Max

Max

Max

Max

Max

Max

Max

Max

Max

Max

Max

Max

Max

Max

Max

(b) 16-input Maximum reduction tree

Figure 17. Reduction skeleton

The third example presented in Figure 18 illustrates the
parallel operations skeleton through two instances, namely
the Sobel and Prewitt operators. Here, the application
developer instantiates the parallel skeleton with two
branches, each branch consisting of a two-stage pipeline
skeleton. The reduction operation is an image to image
addition. The underlying generator will automatically
generate optimized hardware netlist from such high level
description with an intermediate notation in HIDE notation.

Operation-2

Operation-N

Reduction
operation

Operation-1

(a) Parallel operations skeleton

Image-Image
addition

2
1

1
-2
-1

-1
Convolution

-2 -1 -1

2 1 1
Convolution

Absolute Absolute

(b) Sobel operator

Image-Image
addition

1
1

1
-1
-1

-1
Convolution

-1 -1 -1

1 1 1
Convolution

Absolute Absolute

(c) Prewitt operator

Figure 18. Parallel operations skeleton

The fourth example presented in Figure 19 illustrates the
“Process and Reduce” skeleton through an instance which
implements a perimeter detector. The skeleton instance is an
additive-maximum neighborhood operation which performs
an erode operation. The perimeter is then deduced by
subtracting the eroded image from the original image [12].

0
0 0

0~ ~
0

~ ~

Add-Minimum

Image-Image
Subtraction

 “Process and Reduce” skeleton

Reduction Skeleton

Perimeter detector
Figure 19. Parallel operations skeleton
Another example of hardware skeletons for image and video
processing is presented in Figure 20 and performs a 2D
multivariate filtering with generic L and H FIR filters [13].
An instance of this skeleton presented in Figure 21.b
implements a generic 3-stage 2D wavelet transform
parameterisable in terms of low (L) and high (H) filter
coefficients, image word length. Built-in optimizations
include: dynamic word length across stages according to the
dynamic range required, novel error cancellation techniques,
and efficient border signal handling [14][15]. This
implementation was the fastest 2D wavelet FPGA
implementation at the time of its publication and
outperformed an equivalent software implementation by over
200:1.

÷2

÷2

÷2

÷2

H

L

÷2

÷2

H

L

H

L

N/2

N/2 Δ N/2 Δ N/2 Δ N/2 Δ

NxN

N/2

Transpose

IAENG International Journal of Computer Science, 35:1, IJCS_35_1_04
__

(Advance online publication: 19 February 2008)

(a) A generic multi-variate 2D filter

 ÷2

÷2

÷2

H

L

÷2

÷2

H

L

H

L

N/2 ÷2

÷2

÷2

H

L

÷2

÷2

H

L

H

L

 ÷2

÷2

÷2

÷2

H

L

÷2

÷2

H

L

H

L

N/16N/8

NxN

(b) A 3-stage 2D wavelet transform

Figure 20. Parallel operations skeleton

Using this approach, FPGA-based image and video
co-processors based on the abstraction of Image Algebra
have been implemented and tested on real FPGA hardware
e.g. VigraVision’s FPGA-based video board and Celoxica
RC1000 FPGA-based PCI board. In these environments,
applications developers program FPGA hardware using an
application-oriented interface. The concept of hardware
skeleton allows for the generation of optimized hardware
from abstract application descriptions with real time
performance for video applications achieved with a
considerable margin [7][8][9].

IV. DEALING WITH INCREASED COMPLEXITY
Reconfigurable hardware is getting more and more complex
with increased complexity and heterogeneity. Indeed, the
latest FPGAs have a variety of embedded ASIC DSP blocks
(e.g. MACs, Block RAMs) as well as embedded processors
and various input/output capabilities. Faced with this, FPGA
hardware designers are turning into higher level design
environments such as System-C, Handel-C and other
C-based high level languages. Handel-C, for instance, allows
application developers to program FPGAs in a C-like syntax
with higher level software-like abstractions which makes it
easier to port existing legacy software code into hardware.
Nonetheless, being a high level hardware language,
Handel-C lacks the hardware efficiency provided by HIDE,
for instance. Table 2, for instance, shows comparative
implementation results of a 3x3 Gaussian smooth filter (see
Figure 21) on FPGAs using HIDE, Handel-C and RTL
VHDL [9].

Figure 21. A Gaussian smooth filter kernel (the operation is a convolution)

TABLE 2. COMPARATIVE IMPLEMENTATION RESULTS OF A 3X3 GAUSSIAN
FILTER ON XILINX VIRTEX-E2000-6 FPGAS

 Speed
(MHz)

Area
(Slices)

Block
RAMs

Development
times

HIDE
implementation

132 284 2 3 person-weeks

RTL VHDL
implementation

88 360 2 7 person-days

Handel-C based
implementation

71 404 2 5 person-days

The HIDE implementation development time includes the
time it took to develop the basic building blocks in the
library.

As can be seen, HIDE implementations largely outperform
Handel-C implementations (often 30-50% more in speed and
area) but take considerably more to develop. The RTL VHDL
implementation sits between the two. The traditional way
designers have dealt with this problem has been to adopt the
closest language to their cost, functionality and performance
requirements. The author, however, posits the following:
Why should designers choose between languages? Why
could not they harness the combined strengths of
complementary design languages/environments? The reason
why this has not been largely possible is partly because of a
marketing element. Indeed, electronic design automation tool
vendors are not enthusiastic about making their tools
interoperable with competitors’ tools. However, the return
for users can be greatly enhanced if that was possible. As an
experiment, the author has successfully combined the
Handel-C and HIDE environments by using Handel-C as the
top level design language with calls to high performance
HIDE cores using a standard interface construct (see Figure
22). This harnesses the high performance of HIDE for
datapath units with Handel-C’s ease of use for control paths
[9]. This combination can be extended to any other
environment given the following:
• Use of a standard interchange notation (e.g. EDIF in the

HIDE/Handel-C combination)
• Source level Co-simulation, which needs common

simulation syntax. This was done at the EDIF level in our
case study as it was very difficult to produce or find a
common source level simulator (due mainly to lack of
vendor support and instability of existing simulation
tools)

• Dynamic calls from one environment to another should
be supported. This was not supported in the Handel-C DK
environment, so a wrap-around layer on the top of the
Handel-C language had to be custom-designed by the
author’s team

Figure 22. Combined Handel-C/HIDE design flow

V. CONCLUSION
This paper presented the author’s experience in programming
Field Programmable Gate Arrays (FPGAs) for high
performance reconfigurable computing. One the main
achievements of the author in this regard is the concept of
hardware skeletons as a way to satisfy the dual requirement
of high level design and hardware efficiency. The paper

IAENG International Journal of Computer Science, 35:1, IJCS_35_1_04
__

(Advance online publication: 19 February 2008)

illustrated this concept particularly in the context of high
performance FPGA-based image and video processing.
 In developing and using a wide range of electronic design
automation tools, the author proposes the following: instead
of striving towards the most encompassing super hardware
design language that will meet user demands in term of
performance, ease of use and cost, the community has to
learn from similar failed experiences in the software
engineering realm, and strive towards developing standards
for easy (dynamic) inter-operability of existing
complementary tools. In the author’s opinion, a
multi-language hardware design approach will become more
of a necessity in the future as both hardware and applications
continue to grow in complexity.

ACKNOWLEDGMENT
The author would like to thank the UK Engineering and

Physical Sciences Research Council for supporting part of
the research presented in this paper under Grant
GR/R72846/01. He would also like to thank his PhD students
and colleagues at the Queen’s University of Belfast and the
University of Edinburgh for their support.

REFERENCES
[1] B. Hutchings et al., “A CAD suite for high-performance FPGA

design”, in Proceedings of IEEE Symposium on Field-Programmable
Custom Computing Machines, FCCM’99, 1999, pp. 12–4.

[2] S. Singh, “System level specification in lava”, in Proceedings of the
Conference on Design Automation and Test in Europe, DATE (2003)
10370.

[3] K. Benkrid, D. Crookes, “From application descriptions to hardware in
seconds: a logic-based approach to bridging the gap”, IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, TVLSI
12, vol. 4, 2004, pp. 420–436.

[4] Celoxica Limited, Handel C information sheets. Available from:
<http://www.celoxica.com>.

[5] System C Home page. <http://www.systemc.org>.
[6] S.Y. Kung, “VLSI Array Processors”, Prentice Hall, 1988.
[7] K. Benkrid, S.Belkacemi, A. Benkrid, “HIDE: A Hardware Intelligent

Description Environment”, In Elsevier's Journal of Microprocessors
and Microsystems, Special Issue on FPGA-based Reconfigurable
Computing, 30, Vol. 6, pp. 283-300, September 2006.

[8] K. Benkrid, D. Crookes, J. Smith, A. Benkrid, “High Level
Programming for Real Time FPGA Based Video Programming”, In
Proceedings of the IEEE International Conference on Acoustic, Speech
and Signal Processing, ICASSP'2000, Istanbul, June 2000. Volume
VI, pp. 3227-3231.

[9] K. Benkrid, S.Belkacemi and S. Sukhsawas, “An Integrated
Framework for the High Level Design of High Performance Signal
Processing Circuits on FPGAs”, In Proceedings of SPIE Opto-Ireland,
Vol. 5823, No. 29, pg. 12, 2005.

[10] K. Benkrid, S. Sukhsawas and S. Belkacemi, “Fast Prototyping of an
FPGA-Based High Level Image Coprocessor Using Handel-C”, In
Proceedings of SPIE Opto-Ireland, Vol. 5823, No. 15, pg. 12, 2005

[11] K.R. Castleman, Digital Image processing, Prentice-Hall, 1995, ISBN
0132114674.

[12] K. Benkrid, D. Crookes and A. Benkrid, “Design and FPGA
Implementation of a Perimeter Estimator”, In Proceedings of the Irish
Machine Vision and Image Processing Conference, IMVIP'2000,
Belfast, September 2000, pp.51-57.

[13] A. Benkrid, D. Crookes, K. Benkrid , “Design and implementation of a
generic 2D orthogonal discrete wavelet transform on FPGA”, In
Proceedings of the 11th Annual IEEE Symposium on
Field-Programmable Custom Computing Machines, FCCM 2003, pp.
162 -172, 9-11 April 2003

[14] A. Benkrid and K. Benkrid, “Handling finite length signals borders in
two-channel filter banks for perfect reconstruction”, Elsevier's Journal
of Signal Processing, Vol. 86. pp 375-387, February 2006

[15] A. Benkrid, K. Benkrid, D. Crookes, “The Optimal Wordlength
Calculation for Forward and Inverse Discrete Wavelet Transform

Architectures”, SPIE Journal of Optical Engineering, OE, Vol. 43,
Issue 2, pp. 455-463, February, 2004.

Dr. Khaled Benkrid was born in
Algiers on 12 November 1975.
He holds an Ingenieur d’Etat in
Electronics Engineering from
Ecole Nationale Polytechnique
d’Alger, a PhD in Computer
Science and an Executive MBA
from Queen’s University Belfast,
UK.
 He is now a Lecturer in the
School of Engineering and
Electronics at the University of

Edinburgh, Scotland, UK, after having spent six years as a Lecturer in
Computer Science at Queen’s University Belfast. With over ten years
experience in FPGA hardware design, he has authored over 50 publications
in major international journals and conference papers in the areas of high
performance reconfigurable computing and electronic design automation. He
continues to be active in these areas with applications in digital signal
processing, bioinformatics and computational biology, and scientific
computing.
 Dr. Khaled Benkrid is a Senior Member of IEEE and a Chartered UK
Engineer. He has served as program committee member and session chair at
many international conferences including the IEEE 2004 ISVLSI conference
and the 2007 NASA/JPL Adaptive Hardware Systems conference. He is the
holder of various research grants from the UK government, the EU, and
Industry.

IAENG International Journal of Computer Science, 35:1, IJCS_35_1_04
__

(Advance online publication: 19 February 2008)

