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Abstract—Obstructive Sleep Apnea is increasingly seen as a 

common and important condition, contributing to sleep 
disturbance and consequential daytime sleepiness. According to 
recent research findings, the best predictors of morbidity in 
individual patients, as assessed by improvements with CPAP 
(continuous positive airway pressure therapy), are nocturnal 
oxygen saturation and movements during sleep. Video monitoring 
and interpretation is less well developed both from a processing 
and analysis viewpoint due to the relative computational 
complexity of video processing analysis, as well as 
application-related technical challenges, involving night vision, 
obscured human body, variation on human size and behavior and 
massive video and audio data. In this paper, we propose a novel 
approach to detect and track upper body parts of the covered 
human body for real time processing. The locations of the upper 
body parts allow further analysis of covered body postures and 
human activity recognition in sleep. The experimental results 
show that the proposed model is promising to estimate the head 
and torso locations of the covered human body with various 
postures, body activities and filming environmental settings. 
 

Index Terms—biomedical pattern analysis, covered human 
body, image analysis, obstructive sleep apnea.  
 

1. INTRODUCTION 
Obstructive Sleep Apnea is increasingly seen as a common and 
important condition, contributing to sleep disturbance and 
consequential daytime sleepiness.  This has potentially serious 
consequences for the individual, employers and society as a 
whole. A wide range of parameters including EEG 
(electroencephalogram) sleep staging, snoring, change in 
airway resistance, airflow and respiratory effort as well as 
oxygen saturation and body movement  during “normal sleep” 
in a Sleep Lab lead to an understanding of the pathophysiology 
of sleep apnea [1]. According to recent research findings 
[2]—[4], the best predictors of morbidity in individual patients, 
as assessed by improvements with CPAP (continuous positive 

airway pressure therapy), are nocturnal oxygen saturation and 
movements during sleep. In addition, these parameters have the 
advantage of being relatively non-intrusive. 
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Video Monitoring has been adopted to assist diagnosis on 
obstructive sleep apnea. Sivan et al [6] indicate that results 
from traditional Polysomnography, which requires intrusive 
measurements and costly measurement equipment, are highly 
correlated with video test results. Although pulse oximetry is a 
well-established technique to analyze oxygen saturation, video 
monitoring and interpretation is less well developed both from 
a processing and analysis viewpoint. This is due to the relative 
computational complexity of video analysis, as well as 
application-related technical challenges, involving night vision 
/ low illumination, body obscured by cover, variation on human 
size and behavior and massive video and audio data.  

Recognition of covered human body activity appears to be a 
challenging task. Existing monitoring techniques in the sleep 
lab [5] utilize motion sensors, patterned sheets and infrared 
light to compute gross degrees of motion from video recorded 
throughout the night. However, gross motion suggests only 
periods of time with movements rather than identifying what 
the activities are, which still require clinicians to look into 
substantial amounts of video data for analyzing detailed human 
sleep activities. This is thus a time-consuming and expensive 
process.  

Laser rangefinders are commonly used in 3D object geometry 
capture. A major barrier to adoption of this technology is the 
safety for patients’ eyes as lasers can be dangerous. Although 
some laser rangefinders claim to be eye-safe, a technique must 
be thoroughly tested before it is applied to patients. The 
pressure sensitive mattress is an alternative non-intrusive 
approach to identify occurrence of movements, and the 
technique was proposed for monitoring patients’ respiratory 
activities [22]. However, it is rarely used for activity 
recognition. To the authors’ best knowledge, the pressure 
sensitive mattress approach does not seem to have been utilized 
to analyze human activities. In this project, we did not adopt it 
because of the high development cost, which also requires 
additional hardware instead of utilizing existing measurement 
equipment, such as a video monitoring system. We have 
evaluated a thermal imaging system [20] for obtaining the 
covered body posture. However, due to heat retention 
properties, the thermal imaging system often fails to locate a 
true human posture because the heat tends to remain on the 
sheet or over the bed after the body posture has changed. Figure 
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1 illustrates the issue, showing an image shortly alter a leg 
movement. The image of the leg on the right indicates the 
current position; the ghost on the left indicates its previous 
location. 

 
Fig. 1. Test on a Thermal Imaging System, which fails to locate a true body 
posture since the heat remains on the bed after movements. The right leg in the 
image is the real leg and the left one is the heat left on the bed.  
 

There is clearly a need for more automated non-invasive 
methods to recognize human activities during sleep. Thus, our 
research is focused on developing an intelligent video 
monitoring system, which will be capable of identifying body 
postures for covered humans and recognizing human activities 
during sleep, such as leg movement, body rotation, arm 
movement, and head movement. To minimize sleep 
disturbance, monitoring is done using invisible IR lights and 
cameras.  

This research addresses the problem of detecting and 
segmenting the covered human body. In our case, difficulties 
arising from night vision, the shifts of the cover surface with 
movements, obscure body borders under cover, and wrinkle 
noises are compounded by human articulated deformation. 
Traditional computer vision methods such as correlation, 
template matching, background subtraction, contour models 
and related techniques for object tracking become ineffective 
[7], [8] because of the large degree of occlusion for long 
periods. Current research in machine vision [9]—[14] for 
monitoring or tracking occluded objects focuses on temporary 
occlusion rather than constant obscuration. The main technical 
difficulty here is to observe objects constantly under fully or 
partially cover. Jaeggli et al. [15] developed a learned statistical 
model to predict unobserved features based on partial 
measurements. However, the method requires data without 
occlusion to train first and initialize the model, which is not 
applicable in our case, as each patient comes for one night only. 
Huang and Jiang [7] presented an iterative method of weighted 
region consolidation to track a camouflaged object in an 
outdoor environment. As obscured or camouflaged objects 
become visible only (or mainly) while in motion, the method 
locates the object based on pixels with high motion 
probabilities. However, movements of covered objects lead to 
motion of the surface around rather than the exact area of the 
objects, leading to difficulties in segmentation in comparison to 
camouflaged objects. 

In this paper, we propose a novel approach to detect and track 
the upper body parts of a covered human body in real time. The 
location of the upper body parts allow further analysis on 
covered body postures and human activity recognition in sleep. 
The method includes noise proof preprocessing approaches for 
extracting obscured object features effectively, a directed 
head-torso measurement model, which consists of a 
hierarchical-boosting head detector, a novel head tracker, an 
interacting mechanism between head detector and head tracker, 
and a novel torso finder (See Figure 2). The experimental 

results show that the proposed model is promising to estimate 
the head and torso locations of the covered human body 
precisely with various postures, body activities and smoothness 
of the cover. 

Head Detector Head Tracker

Combined Image Processing

Original Images

Prewitt Edge Filter

Output: Head Location

Torso Detector

Edge Images Prewitt Edge Images

Detected Head Tracked HeadAdjust

Edge Box Filter

Edge Box Maps

Output: Torso Location
 

Fig. 2. System Framework 
 

The structure of this paper is as follows. In section 2 we 
describe preprocessing methods used for feature extraction. 
Section 3 presents a robust head detector, and section 4 
provides the details of a novel head tracker. The novel torso 
finder is introduced in section 5. The experimental results are 
shown in section 6. Finally, some failing examples and issues 
are discussed in section 7, and the conclusion is given in section 
8. 

2. FEATURE EXTRACTION 
As the surface of the cover has uniform texture and color, 
segmentation methods utilizing texture or color information are 
not applicable. Hence, the edge information is employed here 
for extracting object features. Nonetheless, due to the nature of 
the sheet, large amounts of wrinkle noise are produced. Thus, 
the first step is to explore a solution that obtains important 
edges and removes redundant ones at the same time. A 
combined image processing technique is proposed in section 
2.A, producing edge images, which then are used for detecting 
the head in section 3. 

As the remaining edges in the edge images tend to be 
discontinuous and scattered, an edge box map is created for 
shape abstraction, which proves to generate a robust and clear 
outline of the human body. The method is demonstrated in 
section 2.B. The edge box map is utilized in searching for the 
torso part in section 5. 

A. Edge Image 
We attempt to extract important edges from the outline of the 

human body while discounting the wrinkles in the sheet. 
General edge detectors such as Sobel Kernels, Prewitt Kernels, 
Kirsch Compass Kernels and Laplacian [18] inevitably produce 
noisy information from wrinkles. Due to the horizontal layout 
of the bed, we propose an oriented horizontal edge detector to 
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effectively generate object edges aligned with the body, and to 
remove noise. The oriented horizontal edge detector can be 
formulated in Equation 1. 
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In addition, in order to preserve stability of the edge quality 
and avoid influences from environment factors, a Gaussian blur 
filter [19] is applied before the edge detector. Moreover, the 
image dimension is reduced initially. There are two advantages 
using down-scale images: scene abstraction; and an increase in 
computational speed. Figure 3 displays the sequence of the 
combined image processing techniques for generating edge 
images, and Figure 4 compares different edge detectors over a 
sample image, showing that the proposed approach 
outperforms others in both producing the outline of the human 
body and removing noisy edge information. 

Original 
Image

Gaussian 
Blur Filter

Horizontal 
Edge Detector

Edge 
Image

Reduce  
dimension  

Fig. 3. Image Processing for Edge Image 

 
Original Sobel Kernels Prewitt Kernels 

 
Laplacian Kirsch Kernels Proposed Method 

Fig. 4. Resulting images by general edge detectors and the proposed method. 

B. Edge Box Map 
As the targeted human body is covered, a portion of the edge 
information is lost. Hence, we develop an edge box map 
approach for further shape abstraction, to deal with the issue of 
discontinuous and scattered edges. Figure 5 displays two edge 
box maps calculated from edge images, which extract edge 
information from the original images in the left column. The 
resulting edge box maps are then utilized by the torso detector 
to find the covered torso part. The torso detector is introduced 
in section 5. 

Given an (m × n) edge image and an (s × s) edge box, we 
generate an edge box map B(i, j), which can be formulated as 
follows. 
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where I(x, y) is the intensity value of the edge image at location (x, y). In this 
work, the following values are used based on our experiments. (s = 3, τ = 50, υ = 
30). 
 

 
Original Image Edge Box Map Original Image Edge Box Map 

Fig. 5. Original Images and Edge Box Maps. 

3. HEAD DETECTOR: HIERARCHICAL ENSEMBLES 
There has been considerable work on face detection in 

computer vision research over the past ten years. However, 
most of the face detection systems require at least portions of 
the face to be shown, such as both eyes. Patients may sleep on 
their side, presenting only half or less of the face. Here, a head 
detector invariant to facial direction is built, utilizing an 
ensemble machine learning algorithm [17], which is presented 
below.  
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If < )(aP )(bϖ , add instance b into output dataset and then compare 

and )1( +aP )(bϖ . Otherwise, compare and )(aP )1( +bϖ . 

 
Importantly, we employ edge information instead of original 
pixels as the input source, avoiding influences from different 
facial appearance, expression and direction. This helps to learn 
more robust patterns and rules. The entire machine learning 
model for head detection is constituted of 3-layer hierarchical 
ensembles. Each ensemble consists of 10 decision tree base 
classifiers. The training procedure is decomposed as follows, 
and the overview of the training scheme is presented in Figure 
6(b). 
 
Step 1: Prepare Training Data (See Figure 6(a)) 

Step 1.1: Select 15 different frontal head images 
Step 1.2: Select 15 different head images on sides 
Step 1.3: Randomly select 10 different non-head images 
Step 1.4: Set the head images as class T and non-head images as class F. 

Step 2: Train 1st layer ensemble machine learning head model using 
the data collected in Step 1. 
Step 3: Test 1st layer machine learning model and generate a number 
of false positive instances 
Step 4: Prepare Training Data for 2nd layer model 

Step 4.1: Randomly select 10 different false positive instances from Step 3 
Step 4.2: Set the instances from step 4.1 as class F. 

Step 5: Train 2nd layer ensemble machine learning head model using 
the data collected in Step 1 and Step 4. 
Step 6: Test 2 layers hierarchical machine learning models and 
generate a number of false positive instances 
Step 7: Prepare Training Data for 3rd layer model 

Step 7.1: Randomly select 10 different false positive instances from Step 6 
Step 7.2: Set the instances from step 7.1 as class F. 

Step 8: Train 3rd layer ensemble machine learning head model using 
the data collected in Step 1, Step 4 and Step 7. 
Step 9: Terminate with 3 layers ensemble machine learning models. 

Category: Head

Category: Non-head

Selected Edge Image Set:

…

10 images ...

15 Frontal 

15 Sides
...

 
Fig. 6 (a). Collect Training Data Procedure: The format of the training data is 
intensity values of a 14 × 14 edge image. I [x, y], where x is valid from 1 to 14 
and y is valid from 1 to 14.  

...
Head data Non-head data

...

Layer 1: 
Ensemble1

10 selected false 
positive instances 

(non-heads)

Train

10 selected false 
positive instances 

(non-heads)

Train

Layer 2: 
Ensemble2

Layer 3: 
Ensemble3

Train
Testing Data

Testing Data

Training Data

 
Fig. 6 (b). Training Scheme. Hierarchical structure allows continuously refining 
patterns and rules by focusing on the false positive instances from previous 
learning experiences. 

 
The hierarchical structure allows patterns and rules to be 

continuously refined by focusing on the false positive instances 
from the previous learning experience. The proposed method 
utilizes a relatively small number of instances (60 images) to 
build the machine learning models, and moreover all training 
data is selected from one single video clip. In evaluation, the 
experimental results show that the head detector works robustly 
for locating the head in testing all 17 video data, which are 
recorded with 4 different filming angles and in 2 different 
environments. Figure 7 presents the head searching scheme. 

Search head over the Region with starting 
point (x, y), width (w) and  height (h).

Test Data: Vi,j [a, b] ,where 
i = x to x+w-14, j = y to y+h-14

a = 1 to 14, b = 1 to 14

Layer 1: 
Ensemble1

False Non-head

True

Layer 2: 
Ensemble2

Head
Layer 3: 
Ensemble3

Proceed

False

True Proceed

Non-head

False Non-head

True
 

Fig. 7. Search Scheme of the Head Detector. 

4. NOVEL HEAD TRACKER 
The purpose of the head tracker is to find an optimal head 

region in a local searching area, which is derived from the 
location previously identified either by the head detector or the 
head tracker. Figure 8(a) illustrates the procedure of the head 
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tracker first starting searching the head in the local area, and 
Figure 8(b) illustrates the definition of the local search area, 
which is an expanded area in association with the estimated 
head location calculated from the head detector. Firstly, the 
image is processed by a Prewitt Edge Detector, and secondly a 
constrained area is computed from the detected position. 
Thirdly, we create a statistic model for searching an optimal 
location in the constrained area. Fourthly, a final adjustment 
mechanism is proposed to ensure a good final estimated 
position by interacting results between the head detector and 
the head tracker. In addition, a motion detection mechanism is 
proposed to speed up system computation by avoiding 
unnecessary actions. 

 
1)  Image Pre-processing: As the aim of local search is to 

find an optimal target’s region, simulating human brain 
operation, the local search conducts search in a more detailed 
aspect, and thus requires more detailed information than 
detection. Therefore, instead of using the horizontal edge 
detector, which largely abstracts the image, the Prewitt edge 
detector is employed to pre-process image for the head tracker. 
Figure 9 compares three edge detectors, including horizontal 
edge detector, the Kirsh Kernels and the Prewitt Kernels. For a 
clear illustration, the head locations are superimposed on the 
images in Figure 9 in order to help readers to identify the head 
around area. The images show that the Prewitt Kernels perform 
best to preserve edges over the head while maintaining lowest 
level of other edges around the head, allowing targeting a 
precise head position more easily. In the next section, we create 
a statistic model to calculate a region with the most likelihood 
as a head. 

 

Original Horizontal Edge Kirsch Kernels Prewitt Kernels 

Fig. 9. Comparison on various edge detectors around the head region. 

 
2) Head Tracker Algorithm: The aim of the local search 

algorithm is to target a region in the constrained area with the 
most likelihood as a head. The algorithm is explained as 
follows. The local area is firstly processed with a binary filter 
and being converted into a 2-dimensional binary map. Given a 
(m × n) area, we generate a binary map B(i, j), which can be 
formulated as follows. 

Original 
Image

Prewitt Edge 
Detector

Local Search Region:
find an optimal head area

Estimated Head Location

Full Prewitt Edge Image

Head 
Detector

 
Fig. 8 (a).  Overview of the head tracking. 
 

Local Search Area

Estimated Head Location

w

h

h/4 w/4

w/4
h/4

 
Fig. 8 (b).  Define Local Search Area. 
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(x, y) is the location of the search area and I is the intensity of individual pixel. 
 

Secondly, a scoring mechanism is applied to summarize the 
valid points in each potential range. Given the binary map B(i, j) 
and an (w × h) estimated head region from head detector, we 
generate a list of scores S(v, r), which can be formulated in 
Equation 5. 
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(x, y) is the location of the local search area with size (m× n) 

Thirdly, the method votes for a location (k, g) with maximum 
score. The location is selected due to its most likelihood to be a 
head region.  

},...,{},...,{,

),(maxarg),(

hnyyrwmxxvwhere

rvSgk

−+∈−+∈

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

(6) 

3) Checking & Adjusting Mechanism – Interaction between 
Head Detector & Head Tracker: The head detector is 
composed of a hierarchical ensemble machine learning models 
and capable of locating the head, and the head tracker targets a 
more precise head region within the area previously identified 
either by the head detector or by the head tracker. The concept 
of the head tracker is to find an optimal area, which contains 
edges all over the head, and tracks the head while it moves. 
Most of time, the tracker tracks the head and moves toward 
where the head goes. However, occasionally the tracker goes 
toward the torso part. This situation happens in one of our 
experimental environments, in which the images are less 
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contrasted and the edges are more blur. Hence, in order to 
prevent the tracker from moving toward a wrong direction, we 
create a checking and adjusting mechanism to keep the tracker 
function well by amending the tracker’s behavior based on the 
estimation of the head detector. Figure 10 illustrates the 
adjusting mechanism and the interaction between the head 
detector and the head tracker.  

The mechanism first computes the distance between the 
estimated location from the head detector and the estimated 

location from the head tracker, and then adjusts the tracker if 
the distance is too big. Given the estimated location from the 
head detector (x1, y1), the estimated location from the head 
tracker (x2, y2) and the size of the estimated head region (w × h), 
Equation 7 computes the distance between the estimated 
location from the head detector and the estimated location from 
the head tracker, and the checking and adjusting mechanism is 
formulated in Equation 8. (x3, y3) is the resulting location after 
adjustment. 
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4) Incorporate with Motion Detection: As the proposed head 

detector and tracker are able to target the head fast and 
precisely, the method is stable enough to include the motion 
detection for exempting searching when there is no motion over 
the head, saving the computing power, and stabilizing the 
resulting estimated location. The entire algorithm for detecting 
and tracking the head and the torso of covered human body is 
decomposed in the following steps. 
 
Step 1: Check if there is estimated head location existing. 
Step 2: If there is head found, process motion detection over the 

estimated head region. Otherwise, go to Step 4. 
Step 3: Check if there is motion over the estimated head region.  

Step 3.1: If there is no movement, then remain the estimated head 
location and then process next frame. Otherwise, go to Step 
3.2. 

Step 3.2: Process local search for the head based on existing 
estimated head location. 

Step 3.3: Track the torso. 
Step 3.4: Process next frame. 

Step 4: Detect the head. 
Step 5: Check if a head is found by Step 4. 
Step 6: If a head is found, process local search for the head 

based on the detected head location. Otherwise, go to 
Step 7. 

 Step 6.1: Detect the torso. 
Step 7: Process next frame. 

5. DIRECTED TORSO FINDER  

Head 
Detector

Head 
Found

Head Tracker
Track based on previous 
tracked location

Check 
& 

Amend

Time

Start

 
Fig. 10.  Checking and Adjusting mechanism between the Head 
Tracker and Head Detector. 

Humans are articulated objects composed of connecting parts. 
Hence, the coordinates of the head position are used as the 
starting point to locate the torso. The core idea to find the torso 
is to search for a relatively smooth region with reasonable 
distance and angle from the head, i.e. an area near to the head 
with a low interior edge box count. Hence, a constrained search 
range is used to keep limited distance and angle between the 
head and the torso. The directed torso detector searches over 
the edge box maps, which largely abstract the output images 
from edge images and hence reduce the data complexity. Figure 
5 presents several edge box maps with the head region found, 
illustrating more clean views for segmentation of the torso part. 

Moreover, the location of the search range is adjusted by the 
relative level of the head position on margins of the bed 
considering general body posture (See Figure 11). Also, the 
size of the region is proportional to the size of the head. Hence, 
the width of the search range is equal to 1½ × width of the head 
and the height of the range is 3 × height of the head. 

w

head h

Bed Border

(Xh , Yh)
1/3 H

2/3 H

Define Search Range Location (Xr, Yr)

1. Yh < YB + 1/3 H

(XB,YB)

3. Yh > YB + 1/3 H + h/2

2. Yh >= YB + 1/3 H
Yh <= YB + 1/3 H + h/2

Yr = Yh

Yr = Yh – h/2

Bed Border

H

Xr = Xh – (w * 1.5)
 

Fig. 11.  The location of the torso search region (Xr, Yr) is derived from the head 
location (Xh, Yh). Xr = Xh - ∆ g and Yr = Yh - k. Given the head size (w, h) 
and the bed size (W, H), 

∆
∆ g = 1½ × w and k (Yh) = (1) 0, where Yh < H/3 

(2) h/2, otherwise. 
∆

 
A voting mechanism is created to select a region inside the 

search area as the torso location. The voting mechanism votes 
for a region with the least number of edge boxes as the most flat 
region inside the search area.  

r’ = Argmin ( Σ n (r) + Σ n (r + 1) )

,where r =  {1, 2, 3} and n is (1: edge box, 0: blank box)

Terminate with  row r’ + row (r’+1) 

r1
r2

r3
r4  

Fig. 12. Voting mechanism to select the smoothest area. Σ n(r) is the 
accumulation of valid edge boxes within row r. 
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Given a (Wr × Hr) torso search range (Xr , Yr), the edge box 
size (s × s) and the estimated head size (w × h), we first 
generate a list of edge box scores EU by dividing the range into 
four sub-zones and calculating the number of edges box insides 
(See Equation 9).  
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) with size 
(Wt × Ht), which can be formulated i

 
We then select two connecting zones with the lowest edge 

box count as the estimated torso area, which can be formulated 
in Equation 10. The resulting torso location is (Xt, Yt

n Equation 11. 

( )1minarg ++= UU EEϕ         (10) 

22
3,3

,
4

3

hHwW

XXhYY

tt

rtrt

==

=×+= ϕ    (11) 

,where the estimated head size is (w × h). 
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es in the high precision category (P ≥ 
.7), i.e. 0.96 and 0.97. 

 

6. EXPERIMENTS 
In evaluation, the experiments are conducted on a number of 
video clips in two different environments with various body 
postures, human activities and camera shooting angles. The 
human activities include head movements, limb movements 
and body rotation. For a quantitative evaluation of the proposed 
method, we firstly systematically sample 2090 frames from
video clips, secondly generate 200 non-repeating random 
numbers between 1 and 2090, and then select 200 frames 
according to those random numbers. The randomly selected 
frames are manually marked to produce a reference standard b
an independent individual. The output of the system is then 
compared to the reference standard. Given the overlapped are
ζ of the manually marked area and the estimated area by the 
proposed algorithm ω, the precision P of each frame is equal to 
ζ / ω. Furthermore, a recognition rate is defined as R(P) = n(P) / 
N, where n(P) is the sum of frames with precision P and N is t
total number of frames sampled from individual video clip. 
Table 1 presents the recognition rates on the head and the torso 
with three levels of precision, i.e. P ≥ 0.7, P ≥ 0.5 and P < 0.5. 
The results show that the tracking and adjustment mechanisms 
obtain high recognition rat
0

Table I.  Recognition Rates.  

R(P) P ≥ 0.7 P ≥ 0.5 P < 0.5 
Head 0.96 0.99 0.01 
Torso 0.97 0.99 0.01 

R(P) = n(P) / N, where n(P) is the sum of frames with precision rate P and N is 
the total number of frames sampled.  
 

Although the proposed model is trained and built by using a 
small number of frames from one single video clip, the 
experimental results on 200 randomly selected frames from 17 
video clips show that the proposed approach works robustly 
despite different environmental set-up, camera shooting angles, 
and variations of body postures and movements. Table 2 
illustrates some image outputs from our system, presenting that 
the approach is invariant to different body postures, human 
activities and environmental set-up. 

Regarding the computing efficiency, the system is 
implemented in C# and able to process 25 fps on a P4 2.4GHz 
CPU power. The video was acquired with a resolution of 
320*240, using a SONY infrared camcorder (DCR-HC-30E). 

 
Table II.  System Outputs.  

(A) 4 Camera Filming Angles in 2 Different Environments  

  

 

  

 
(B) Various Human Activities and Body Postures 
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7. DISCUSSIONS 
Although the experimental results demonstrate success of our 
algorithm in estimating upper body parts from the obscured 
human body, there are a few research issues to be explored. As 
the aim of this research focuses on building a head-torso 
measurement model, the proposed model utilizes a simple first 
come first out strategy and gives higher priority to the middle 
area in the search order to find a head. Hence, the head position 
will be more accurately estimated with more complicated 
search algorithms. Furthermore, the estimation will be more 
reliable with a more complicated bidirectional head-torso 
measurement model.  In addition, an efficient model is required 
in validating the estimation for quick responses to rapid 
movements. Figure 12 demonstrates the failing examples. 
  

Fig. 12.  Failing Examples. 
 

8. CONCLUSION 
Analysis of the covered human body is a challenging task. We 
have presented a novel technique for detecting and tracking the 
upper body parts on the covered human in real time. The 
proposed method allows further analysis of the activities of the 
covered human body. The locations of the upper body parts and 
the proposed edge box map can be utilized to identify the limb 
posture, allowing recovering / estimating a full human body 
posture and advanced recognition on covered human body 
activities, such as leg movements, arm movements, body 
rotation, getting up, head movements, going to bed, etc. Apart 
from assisting diagnosis of obstructive sleep apnea, the 
monitoring technique can be applied to other sleeping disorders 
or syndromes. 

We will continuously develop and enhance methods to 
locate the rest of the body parts and to recognize human 
activities during sleep. Currently, we are investigating methods 
for tracking the covered human body parts. As the detection is 
applied to every frame in the initial stage, tracking will be 
added to associate temporal relationships among frames, to 
stabilize locations of detected body parts and to further improve 
the computational speed. 

Amounts of experiments will be conducted using patients 
and volunteers in the Sleep Lab at the Lincoln County Hospital 
to determine performance on a large scale and to generalize 
across the variations in human sizes, shapes, and behavior. 
Furthermore, we will develop a system to diagnose movements 
characteristic of sleep disturbances. 
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