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Abstract—In this paper, a recently developed fiber
tracking algorithm to be used with diffusion tensor
(DT) fields acquired via magnetic resonance imaging
(MRI) is improved and applied to real brain DT-MR
images. The method performs satisfactorily in re-
gions where branching and crossing fibers exist and
offers the capability of reporting a probability value
for the computed tracts. This certainty figure takes
into account both the anisotropy and the informa-
tion provided by all the eigenvectors and eigenvalues
of the diffusion matrix at each voxel. In previous
papers of the authors, a simpler algorithm was ap-
plied only to elementary synthetic DT-MR images.
As now presented, this algorithm is now adequately
used with more intricate synthetic images and is ap-
plied to real white matter DT-MR images with suc-
cessful results. Besides, the parer presents a novel
neural network that is used to estimate the crucial
parameters of the algorithm. Numerical experiments
show a performance gain over previous approaches,
specially with respect to convergence and computa-
tional load. The tracking of white matter fibers in the
human brain will improve the diagnosis and treatment
of many neuronal diseases.
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1 Introduction

The technique of Diffusion Tensor Magnetic Resonance
Imaging (DT-MRI) measures the diffusion of hydrogen
atoms within water molecules in 3D space. Since in
cerebral white matter most random motion of water
molecules are restricted by axonal membranes and myelin
sheets, diffusion anisotropy allows depiction of directional
anisotropy within neural fiber structures [1, 5].

The DT-MRI technique has raised great interest in the
neuro-science community for a better understanding of
the fiber tract anatomy of the human brain and several
methods have already been reported to use DT-MRI data
for tracking nerve fibers and derive connectivity between
different parts of the brain. Though this field of search
is still in its early stages, its development is growing very
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fast during the last decade.

There exist many important applications for white matter
tractography and more will appear in the next future as
DT-MRI and fiber tracking are becoming standard clin-
ical procedures. Among their most important applica-
tions we can find: brain surgery (knowing the extension
of the fiber bundles could minimize the functional dam-
age to the patient), white matter visualization using fiber
traces (for a better understanding of brain anatomy) and
inference of connectivity between different parts of the
brain (useful for functional and morphological research
of the brain).

Apart from a very few approaches for direct volume ren-
dering [9], the great majority of DT-MRI visualization
techniques focuses on the integration of sample points
along fiber trajectories and their three-dimensional rep-
resentation [11]. These streamline-based approaches usu-
ally make only use the principal eigenvector of the diffu-
sion ellipsoid as an estimate of the predominant direction
of water diffusion in a voxel [5].

However, due to both some deficiencies in these tracking
methods and several shortcomings inherent in datasets
(such as noise, artifacts or partial voluming), these al-
gorithms may depict fiber tracts which do not exist in
reality or miss to visualize important connectivity fea-
tures, e.g. branching structures. In order to avoid mis-
interpretations, the viewer must be provided with some
information on the uncertainty of every depicted fiber and
of its presence in a certain location. In [15, 16] we pro-
posed an estimation algorithm that takes into account the
whole information provided by the diffusion matrix, i.e.,
it does not only consider the principal eigenvector direc-
tion but the complete 3D information about the certainty
of continuing the path through every possible future di-
rection. Since in [15, 16] we presented an initial version
of our work, numerical simulations were only performed
on simple DT-MR synthetic images.

The proposed algorithm also includes a procedure that
on-line adapts the number of offspring paths emerging
from the actual voxel, to the degree of anisotropy ob-
served in its proximity. This strategy has been proved to
enhance the estimation robustness in areas where multi-
ple fibers cross while it keeps complexity to a moderate
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level. However, the main drawback of this approach is
that the parameters of the algorithm must be heuris-
tically adjusted every time that: (i) a new patient is
scanned, (ii) a different volume is processed, or (iii) the
scanning conditions vary. For this reason, a neural Net-
work (NN) is here proposed to adjust the parameters of
the algorithm in a user-directed training stage. This issue
has been traditionally undertaken under an heuristically
approach and, to the best of our knowledge, no previous
work has dealt with the initial tuning of any kind of DT-
MRI tracking algorithm. On the other hand, the detailed
study of convergence depending on the strategy used to
create the pool of “future seeds” is new in this paper, as
well.

The rest of the paper is organized as follows: first, Section
2 briefly summarizes the review of related work. Next,
Section 3 describes the tracking algorithm including the
main equations as well as the physical interpretation of
the parameters and the strategy proposed to deal with
regions where multiple fiber bundles cross or divide them-
selves (by making use of the local anisotropy). Section
4 is devoted to describe the NN scheme proposed for es-
timating the principal parameters of the tracking algo-
rithm, including a detailed graphical description of this
neural system. The paper finishes with the numerical re-
sults, the conclusions and the outline of the future lines
of research.

2 Review of previous related approaches

DT-MRI fiber-tracking algorithms commonly use the
principal eigenvectors as estimates of the fiber orientation
and the linear diffusion anisotropy values at each voxel in
order to guide the tracking process. Several seed points
are selected within a region of interest at voxels where a
predetermined anisotropy threshold is reached. For each
seed point a fiber is tracked in both directions by follow-
ing the local vector orientation. If we step from voxel to
voxel using the discrete vector at each voxel, the tracked
line will increasingly differ from the ideal line with each
further step. Therefore, a more continuous approach is
required [5]. The general solution for the vector field in-
tegration is the Runge-Kutta approach [17], which allows
estimation of the next sample on the line by computing a
weighted average of vector orientations. In [10], Mori et
al. proposed a method which traces the line on a subvoxel
level, linearly interpolating the principal eigenvectors as
well as the anisotropy values from the neighboring vox-
els. In order to avoid non-realistic connections, the angle
between the vector orientation of the sample and a pre-
defined angle are compared. However, even the selection
of high thresholds cannot ensure the production of abso-
lutely correct results [13]. Coulon et al. [3, 4] proposed
a field regularization technique for principal eigenvector
diffusion fields.
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Figure 1: Cubic structure and reference criteria for the
axes indexes (x, y, z). Central point is Vc (No. 14).

On the other hand, Poupon et al. [14] base their reg-
ularization technique on a low curvature hypothesis for
fascicles. More recently, Pasternak et al. [12] proposed
to use a multiple diffusion tensor approach, where the
regularization algorithm results in multiple orientation
describing each voxel. Other approaches include the ten-
sorline approach [19] and the exhaustive search approach
[2, 18]. The former uses the incoming vector from the
last tracking step as an estimate and reflects it according
to the tensor shape in the current voxel. The exhaustive
search approach by Conturo et al. [2], initiates tracking
using all brain voxels as seed candidates, thus generat-
ing a great number of fiber lines. Afterwards, only those
fibers which penetrate the branching region of interest
are kept. In 2004, a similar approach with seeds that
are evenly distributed over the volume was proposed by
Vilanova et al. [18].

3 Tracking Algorithm Description

3.1 Problem description and basic concepts

The basic version of the algorithm used in this paper was
first described in [15]. Thus, this section just presents
a summary of the method, with special emphasis on the
new aspects. The algorithm uses probabilistic criteria
and iterates over several points in the analyzed volume
(the points given by the highest probabilities in the previ-
ous iteration). The process starts in a user-selected seed
voxel, V0, and, at every iteration, it evaluates a set of pa-
rameters related to the central voxel of a cubic structure
consisting of 3× 3× 3 = 27 voxels, similar to that shown
in Figure 1.

The central point, Vc, (No. 14 in the figure) represents
the last point of the tract being analyzed. In the first
iteration, Vc = V0. Obviously, there exist 26 possible di-
rections to take for the next iteration in order to select
the next point of the tract. Once Vc is selected, the pre-
vious point and all those points exceeding the limits of
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1º) 111 (---)

2º) 112 (--0)

3º) 113 (--+)

4º) 121 (-0-)

5º) 122 (-00)

6º) 123 (-0+)

7º) 131 (-+-)

8º) 132 (-+0)

9º) 133 (-++)

10º) 211 (0--)

11º) 212 (0-0)

12º) 213 (0-+)

13º) 221 (00-)

14º) 222 (000)

15º) 223 (00+)

16º) 231 (0+-)

17º) 232 (0+0)

18º) 233 (0++)

19º) 311 (+--)

20º) 312 (+-0)

21º) 313 (+-+)

22º) 321 (+0-)

23º) 322 (+00)

24º) 323 (+0+)

25º) 331 (++-)

26º) 332 (++0)

27º) 333 (+++)
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Figure 2: Modifications of indices (m,n, p) when moving from Vc to the neighboring voxel Vi, 1 ≤ i ≤ 27, i 6= 14.

the MR volume are also removed from the list of possible
destination points (valid points).

The algorithm works as follows. First, a measure Pi, i ∈
{valid points}, is evaluated based on the probability of
going from voxel Vc to voxel Vi. This probability takes
into account the eigenvalues and eigenvectors available
at point Vc from the DT-MR image diffusion matrix. In
order to calculate this probability, the information shown
in Fig. 2 is used.

The table in Fig. 2 shows, for every voxel shown in
Fig. 1, the changes that must occur in indices (m,n, p),
when a tract experiments a transition from voxel Vc

to voxel Vi. For instance: when going from point No.
14 to point No. 6, coordinate m reduces by 1, n re-
mains the same, and p increases by 1. This is repre-
sented in the table with “πmπnπp = (−0+)”. With
this information, the probability of each possible desti-
nation Vi can be calculated taking into account the pro-
jection of each of the eigenvectors to each of the direc-
tions defined in the triplet πmπnπp. Besides, each pro-
jection is weighted by the corresponding eigenvalue λ.
Thus, in the previous example, Pi should be calculated
as Pi = V1yλ1 + V2yλ2 + V3yλ3 + V1zλ1 + V2zλ2 + V3zλ3,
where Vj,α represents the α-component of eigenvector1 j,
1 ≤ j ≤ 3, α ∈ {x, y, z}.

In the general case we have,

Pi =
∑

α∈{x,y,z}

χα

3
∑

j=1

Vj,αλj (1)

with χx, χy, χz being zero if πm, πn, πp are zero, respec-
tively, and equal to 1 otherwise.

The axes reference criterion for the (x, y, z) vector com-
ponents is also shown in Fig. 1. Note that, for this
calculus, the sign “−” in triplets πmπnπp is equivalent to
sign “+”. Finally, in order to properly calculate Pi, it
must be weighed by 0.33 if there are no zeros in triplet i,

1Assuming that λ1 ≥ λ2 ≥ λ3.

and by 0.5 if there is one zero.

3.2 Anisotropy and local probability

The following anisotropy index is used in the algorithm:

fa =

√

(λ1 − λ2)2 + (λ2 − λ3)2 + (λ1 − λ3)2

2(λ2

1
+ λ2

2
+ λ2

3
)

, (2)

where λ1 ≥ λ2 ≥ λ3. When both fa(Vc) and fa(Vi) do
not exceed a certain threshold, point Vi is eliminated as
a possible destination point.

Taking into account both Pi and the anisotropy given by
Eq. (2), the local probability of voxel i is defined as

P ′
i = a · µ1 · fa(Vi) + (1 − a) · µ2 · Pi, 0 < a < 1 (3)

where parameter a allows the user to give a higher relative
weight to either the anisotropy or the local probability,
and µ1 and µ2 are scaling factors (normally, 1 and 1000,
respectively). The set of values P ′

i is properly normalized
so that they can be interpreted as probabilities.

3.3 Eigenvectors and direction considera-
tions

Besides these considerations, the final probability of voxel
i makes also use of the so-called smoothness parameters

(described in [8]) which judge the coherence of fiber di-
rections among the trajectories passing through voxel Vc.
The mathematical expressions of these four parameters
are:

sp1 = v̂(Vc(k)) · v̂(Vc(k − 1)) (4)

sp2 = |v̂(Vc(k)) · vmax(Vc(k))| (5)

sp3 = |v̂(Vc(k)) · vmax(Vi)| (6)

sp4 = |vmax(Vc(k)) · vmax(Vi)| (7)

where v̂(Vc(k)) and v̂(Vc(k − 1)) are normalized vec-
tors, v̂(Vc(k)) = v(Vc(k))/‖v(Vc(k))‖, v̂(Vc(k − 1)) =
v(Vc(k − 1))/‖v(Vc(k − 1))‖. Besides, Vc(k − 1) denotes
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Figure 3: Voxels and vectors involved in the calculus of
the smoothness parameters.

the preceding voxel of Vc, and v(Vc(k − 1)) is the vector
pointing from Vc(k − 1) towards Vc (see Figure 3).

vmax(Vc(k)) and vmax(Vi) are the principal eigenvectors
(corresponding to the largest eigenvalue of the diffusion
tensor) at the voxels Vc and Vi, respectively. Note that
parameters sp1, . . . , sp4 measure the angles between the
orientations of these vectors. As shown in Figure 3,
Equations (4)-(7) imply that sp1 ∈ [−1, 1], and sp2, sp3,
sp4 ∈ [0, 1]. The thresholds for sp2, sp3 and sp4 are
chosen to be the same value. These three parameters are
used to maintain the local directional coherence of the es-
timated tract and avoid the trajectory to follow unlikely
pathways [8]. The threshold for sp1 is set to a value be-
tween 0.6 and 0.9 such that the tracking direction could
be moved forward consistently and smoothly, preventing
the computed path from sharp transitions.

Next, the following parameter is calculated for every valid
point whose smoothness parameters satisfy the four cor-
responding threshold conditions,

P
′′

i = b
4

∑

i=1

(ξi · spi) + (1 − b)P ′
i (8)

where, ξi, i = 1, 2, 3, 4 are the corresponding weights of
the smoothness parameters (normally, 0.25), and b stands
for a weighting factor.

3.4 Path probabilities

Probabilities P ′′
i can be recursively accumulated, yielding

the probability of the path generated by the successive
values of Vc,

Pp(k) = P
′′′

i · Pp(k − 1) (9)

with k being the iteration number, and P
′′′

i =

P
′′

i /
∑

i P
′′

i .

At the end of the visualization stage, every estimated
path is plotted with a color that depends on its probabil-
ity Pp.

3.5 Final criterion and pool of “future
seeds”

A pool of voxels is formed by selecting, at the end of
each iteration, the s best voxels according to Eq. (8).
The first voxel of the pool becomes the central voxel Vc

at next iteration (afterwards, it is removed from the pool)
expanding, this way, the current pathway.

As proposed in [16], the value of s is adjusted depending
on the degree of anisotropy found in current voxel Vc

and its surroundings. When this anisotropy is high, it
means that a high directivity exists in that zone, and the
probability that Vc belongs to a region where fibers cross
is really low. Consequently, s takes a small value (1, 2
or 3). On the other hand, if Vc is found to be situated
in a region of low anisotropy, the probabilities of having
fibers crossing or branching is higher. In this case, it is
interesting to explore various paths starting in Vc. This
can be easily achieved by setting parameter s to a higher
value.

V0

Fiber bundles

V0‘

Figure 4: Selection of seeds around Vc for different
anisotropies.

This idea is illustrated in Fig. 4, where point V0 belongs
to a very anisotropous region. In this case, v(Vc(k −
1)) and v(Vc(k)) are nearly parallel, and parameter sp1

is close to 1. The pool of surviving voxels should be
augmented with those points marked with a white filled
triangle. On the other hand, points like V ′

0
, which are

situated in a region where two orthogonal fiber bundles
cross, have a small anisotropy. In this case, all the points
marked with black triangles could be added to the pool
in order to be considered as seeds in future iterations.
Numerical results show that the two main consequences
of the on-line adjustment of s are: (i) a better use of
computational resources, and (ii) a performance gain in
regions where crossing or branching fibers exist.

Notice that parameters (a, b, µ1, µ2, ξ1, ξ2, ξ3, ξ4) must be
adjusted in order to get satisfactory results when estimat-
ing the tracts of the volume being analyzed. This is a te-
dious task that has always been heuristically approached.
In this paper, we propose a neural network-based scheme
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Figure 5: Representation of the proposed NN-based scheme for the estimation of the np tracking algorithm’s param-
eters.

to estimate these parameters.

4 Neural network for parameter estima-

tion

The fiber tracking algorithm outlined in section 3 was first
developed in [15] and later improved in [16]. Numerical
simulations showed that it makes an efficient use of com-
putational resources while it attains a good performance
in regions with crossing or branching fibers. However,
as described in [15, 16], the algorithm’s parameters and
thresholds had to be heuristically determined.

In this section we propose a neural network with
a variable number of hidden layers and the back-
propagation algorithm for learning that can be used
to adjust the np main parameters of the algorithm
(a, b, µ1, µ2, ξ1, ξ2, ξ3, ξ4).

When this strategy is used, the user is requested to man-
ually draw a sample fiber path as well as to assign a
certainty value to the paths automatically generated in
an initial training user-directed stage. This parameter
adjustment is useful when the algorithm is applied to a
different part of the brain (fiber bundles) or even to the
same portion but having been scanned under different
conditions. In these cases, the volume of interest will
have a different smoothness and anisotropy characteriza-
tion. To our knowledge, no previous work has proposed
any mechanism to estimate the parameters of any exist-
ing tracking algorithm, and these parameters are always
heuristically adjusted in a very time-consuming task.

The proposed scheme works as follows (see Fig. 5): a set
of N different paths ri automatically estimated with the

algorithm is used as the input of the NN. A processing
block consisting of α layers –with its last one consisting
of as many units as parameters need to be estimated, np–
is next placed. Processing unit n of layer α evaluates a
function φα,n = φ(wα,lri−ru), where ru denotes the user-
drawn tract, i.e. the reference tract. Since every path in
ri can have a different length, and ru may have a different
number of samples, as well, a length-normalization pro-
cedure is initially required. In order to have a tolerable
complexity, this length is normally reduced to 25 samples
(this number can be increased in case of complex tracts).

Once the α hidden processing layers have completed their
evaluation, the np outputs are weighed with {λi}

np

i=1
and a

path probability PNN
p is calculated using the np available

NN outputs. Finally, PNN
p is compared to the user-given

certainty value for current training path ri. This measure
is proportional to the error associated to consider path ri

with the current set of np parameters. This information is
then used to adjust the weights of the net using a learning
algorithm.

In section 5.3, the performance of this neural system will
be evaluated as a function of different parameters such as
the number of hidden layers, the kernel function φ, the
number of parameters to be estimated, the kind of image
being processed (synthetic or real) and the quality of the
original DT-MR image.

5 Numerical Results

In order to evaluate the tracking properties of the pro-
posed algorithm, we have used both synthetic and real
DT-MR images.
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5.1 Synthetic images

First, four different synthetic DT-MRI data in a 50 ×
50 × 50 grid have been generated (see Fig. 6). The first
three images (“cross”, “earth” and “log”) were used for
testing in [15, 16], while the most complex one –Fig. 6,
bottom-right– is new. In the earth volume fibers look like
geographical parallels of different spheres with the same
center and different radius situated on plane x − y, and
with a totally isotropic cylindrical volume in the center,
parallel to the z axis. On the other hand, the log test-
ing volume consists of logarithmic curves symmetrically
distributed around the y axis.

Figure 6: Synthetic DT-MR images used for testing the
proposed algorithm: “cross” (left), “earth”, “log” and
“star” (right).

To make the simulated field more realistic, Rician noise
[7] was added in the diffusion weighted images which were
calculated from the Stejskal-Tanner equation using the
gradient sequence in [20] and a b-value of 1000.

The desired noisy synthetic diffusion tensor data was ob-
tained using an analytic solution to the Stejskal-Tanner
equation. The eigenvectors in the isotropic areas were
λ1 = λ2 = λ3, while in the remaining voxels of the vol-
ume: λ1 = 7, λ2 = 2 and λ3 = 1. In the section devoted
to study the robustness, the SNR varies from 0 to 30 dB.
As an example, Fig. 7 shows the cross test volume with
SNR= 10 dB (top), and with SNR= 30 dB (bottom).

5.1.1 Tracking capability

Satisfactory tracing results for the first three cases can
be found in [15, 16], where a much simpler algorithm

Figure 7: Representation of the cross synthetic image
with SNR= 10 dB (top), and SNR= 30 dB (bottom).

was used. For the sake of brevity, in this paper we have
just included the new and most complex case, the star.
This image consists of six orthogonal sine half-waves, each
of them with an arbitrary radius2. Under this scenario
the diffusion field experiments variations with the three
coordinate axes and there exists a crossing region. Three
different tracking results are shown in Fig. 8 each of them
for a different seed V0

It can be seen how the algorithm can be designed in or-
der to pass through isotropic zones where different fiber
bundles cross. It is also appreciated how the algorithm
differentiates between the totally isotropic zones extrinsic
to the tracts and the fiber bundles.

The differentiation between voxels belonging to a fiber or
to a very isotropic area, respectively, is attained by map-
ping the path probabilities given by Eq. (9) into a color
scale and classifying them according to some fixed thresh-
olds. Three different seeds (S1, S2 and S3) are shown. S1

and S2 belong to the intrinsic volume (voxels with a very
high anisotropy) and the algorithm moves through the
most probable direction following the main direction of
the cross in each situation. On the other hand, when an
extrinsic point such as S3 is selected as seed, the algo-

2For the sake of clarity, Fig. has been depicted with the six sine
waves having the same radius.
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Figure 8: Tracking results for the “star” synthetic DT-
MR image. Green: seed points. Blue: fiber path voxels.
Red: extrinsic voxels. Initial seeds V0 = {S1, S2, S3}.

rithm explores in the neighboring voxels until it finds a
voxel with a high anisotropy value (point P1). Once P1

is found, the tracking algorithm proceeds as in the case
of S1 and S2. Fig. 8 shows how the algorithm finds the
proper fiber path whatever (extrinsic or intrinsic) seed
voxel is chosen.

Notice that, the extrinsic seeds S3 are located far away
from the fiber bundles region, thus making the algorithm
explore a wider range of points before reaching the points
P1 that belong to an existing fiber path.

5.1.2 Robustness

Next, the robustness of the tracking algorithm is now
studied for: (i) parameter s is fixed during the whole es-
timation of the path, and (ii) parameter s is dynamically
changed depending on the anisotropy.

• Parameter s fixed. These simulations were carried
out with s = 2. The plots depicted in Fig. 9 corre-
spond to this situation. Notice that, in the case of
the cross-like image the algorithm starts in S1, S2 or
S3 (in this later case it first reaches point P1) and it
follows a path which passes straight ahead through
the crossing volume (20 ≤ x, y ≤ 30) without con-
sidering a branching situation. The results would be
almost the same considering s = 1.

The convergence performance for different SNRs is
shown in Table 1. It can be seen how the algorithm
converges properly within a wide range of SNRs. The
percentages obtained for the “cross” and the “earth”
test images are very close, while for the “log” case
the algorithm exhibits a slightly lower convergence.
Notice that this table also shows the results for a

Figure 10: Effect of varying the value of parameter s.

third method used for comparison3 [6]. Comparing
both methods, we see that the proposed algorithm
performs slightly better when the SNR is low, while
both methods tend to similar results with high SNRs.

• Parameter s depends on the anisotropy. We
illustrate this subsection with two examples. First,
Fig. 10, left, shows the results for the “cross” image
when s = 6 for high anisotropy and s = 2, otherwise.
The bundle is estimated and branching is properly
managed. Setting the smoothness parameters more
restrictively, a single fiber bundle can be estimated,
as shown in Fig. 10, right.

On the other hand, Fig. 8 shows the results for
the “star” image when: (i) s = 1 and (ii) s =
f(anisotropy), as explained in section 3.5.

Analyzing the simulations of the four synthetic images
considered, it is seen that convergence results improve
whenever the MR image contains branching or crossing
areas –as it is the case in real DT-MR images. This is
the case of our “cross” image. For this image, the con-
vergence results are improved ∼ 5% when parameter s is
modified according to the anisotropy. Besides, for these
studied cases, we see that the influence of the procedure
that adapts s is higher for low SNRs. In case the SNR
of the image is large, this procedure scarcely affects the
results.

Consequently, the algorithm converges properly within a
very wide range of SNRs. The percentages obtained for
the “cross” and the “earth” test images are very close,
while for the “log” case the algorithm exhibits a slightly
lower convergence. Besides, when parameter s is on-line
tuned-up the robustness of the algorithm in branching
and crossing situations becomes more flexibly controlled
and the computational load can be maintained to its low-
est value for the kind of desired estimation.

3The Bayesian algorithm implemented for comparison is a
slightly modified version of the method proposed in [6]. This stands
for the results given in Tables 1 and 2.
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Figure 9: Tracing results for: (a) the cross-like image, (b) the earth-like test images (curves are in the x − y plane),
and (c) for the logarithmic test image. Green: seed points. Blue: fiber path points. Red: extrinsic voxels.

SNR (dB)
5 10 15 20 25 30

Cross 78.3/82.8 89.7/93.6 92.1/94.3 98.3/98.7 99.0/99.0 100/100

76.8 89.0 90.7 97.0 100 100
Image Earth 77.7/76.2 88.6/87.5 89.9/89.0 98.2/98.2 99.0/99.0 100/100

74.4 83.2 85.0 97.3 99.2 100
Log 71.0/69.7 82.1/81.0 86.1/85.5 96.0/95.8 98.0/97.8 100/100

68.8 78.3 85.2 96.0 98.0 100

Table 1: Convergence performance for different SNRs values. Cell values represent percentage of right convergence
for two configurations of the algorithm: s = 1/s = 4, as well as the results obtained with [6].

Proposed algorithm
Adaptive s Method

s = 1 s = 6 s = 9 1 ≤ s ≤ 12 [6]
Cross 1 2.1 3.2 4.9 18.9
Earth 1 2.1 3.2 4.9 20.1
Log 1.1 2.1 3.3 5.0 19.9
Star 1.1 2.2 3.3 5.1 20.0

Table 2: Comparison of computational load. Execution
times required to estimate 20 fibers of 200 points. Values
normalized to the first case shown (the proposed method
with s = 1 and “cross” image.

5.1.3 Computational load

Table 2 shows a computational load comparison with re-
spect to [6]. Values are normalized to the time required
by our method with s = 1 considering the “cross” image.

The Bayesian approach of [6] requires much more compu-
tational time and resources, while it does not get better
convergence results (see Table 1) than the proposed al-
gorithm with fixed or adaptive s. Furthermore, it can be
seen that the computational load of the proposed proce-
dure does not increase linearly with the size of the sur-
viving seeds’ pool, s.

5.2 Real images

Next, we have applied the proposed tracking algorithm
to real DT-MR images. Specifically, we have selected
the corpus callosum of the brain (Fig. 11) and the fiber
pathways in the optic radiations (Fig. 12).

Simulation results are shown on the right side of both
images. It can be appreciated how the algorithm is able to
follow the main fiber bundle direction without getting out
of the area of interest. These figures show some bundles
of properly estimated tracts. Red/green color indicates
high/low certainty.

5.3 Neural Network properties

5.3.1 Complexity of the NN vs BER

In this first simulation, the complexity (assessed as the
number of hidden layers of the net) required to attain
good fiber tract estimation for different images (synthetic
and real) under different conditions (SNRs) is evaluated.
Fig. 13 shows the results. The number of hidden layers
varies between 1 and 7, and the the quality of the DT-MR
image is 0 ≤ SNR ≤ 30 dB.

It can be seen how the number of required hidden layers
decreases as the quality of the image improves (higher
SNR). When both the SNR and the number of hidden
layers are low, the number of samples required for train-
ing increases considerably. On the other hand, with a
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Figure 11: Tracking results for the corpus callosum area
of the human brain.

Figure 12: Tracking results for the optic radiation. Seeds
are selected lateral to each of the lateral geniculate nuclei.

Figure 13: Number of training samples required to attain
good estimation for different NN configurations.

sufficiently complex net, the number of samples required
scarcely increases when the image quality worsens.

The figure also shows that the real image requires twice
or three times the number of layers required in the equiv-
alent (in terms of SNR and number of layers) synthetic
image. More complex DT-MR images, with very complex
tracts, would require much more samples.

5.3.2 Estimation of the smoothness parameters

When the algorithm outlined in section 3 is used, the
four weights {ξ1, ξ2, ξ3, ξ4} of the smoothness parameters
shown in Eq. (8) must be estimated, as well. Normally,
these parameters are not difficult to adjust heuristically
since they remain nearly unchanged in different images.
For this reason, they are almost never considered in the
estimation process. However, in this section the addi-
tional complexity required for their estimation is stud-
ied. Table 3 shows the training samples required for their
proper estimation, as a function of the image SNR and
the number of NN layers.

No. of layers No. of layers
1 3 5 1 3 5

30 10 20 40 25 47 80
SNR 20 16 25 44 41 58 83
(star) 10 28 35 55 - 84 103

0 48 55 66 - - 131

30 18 47 77 57 126 191
SNR 20 36 57 101 113 155 240

(corpus 10 72 95 139 - - 320
callosum) 0 151 160 195 - - -

w/o With
{spi} estimation {spi} estimation

Table 3: Number of training samples required to attain good
estimation for different NN configurations. Left: without es-
timating the smoothness parameters’ weights, right: with es-
timation.

It is evident that the number of training samples required
for a successful estimation of the algorithm’s parameters
greatly increases when the smoothness’ thresholds are
considered as unknown parameters. The table also shows
that certain complex situations with the corpus callosum

can not be effectively solved.

Considering the results in Fig. 13 it could be concluded
that the simplest configuration is always valid and the
others should never be used. However, this is not a gen-
eral correct conclusion since when a larger set of test im-
ages is used, it can be seen that more complex images can
not be successfully processed with simple configurations.
This is shown in the unresolved cases shown in Table 3.
These situations would require different both NN archi-
tecture and estimation process, and they will be matter
of study in future work.
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5.3.3 RBF basis function effect

The algorithm proposed in section 3 has been tested us-
ing different kernel functions in the NN configuration. It
is interesting to note that, the choice of the Mahalanobis
distance in the RBF basis function allows some advan-
tages over the Euclidean one due to the non-spherical
shape of the multidimensional clusters (highly non-linear
problem). Though, for the sake of brevity, no table is
included here, simulations showed that simple functions
were not able to properly estimate the parameters. A
good trade-off between complexity of the kernel functions
and efficiency was found with the Mahalanobis function.

6 Conclusions and Future Work

In this paper, a recently developed fiber tracking algo-
rithm has been improved and tested with several syn-
thetic and real DT-MRI data. This algorithm combines
both the probability of advancing in a specific direc-
tion based on the projection of all the eigenvectors com-
ponents into the corresponding directions (making use
of more information than merely the principal eigen-
vector) and four smoothness criteria based on the re-
lation between the potential future path directions and
the eigenvectors’ orientations. The number of possible
paths emerging from the actual point is on-line adjusted
based on the local anisotropy. Numerical simulations
show that the two main consequences of this are: (i) a
better use of computational resources, and (ii) a better
performance in regions with crossing or branching fibers.
The method was tested with synthetic and real DT-MR
images with notably satisfactory results, showing better
computational and convergence properties than already
existing traditional and Bayesian methods. Finally, a
brand new NN-based scheme has been proposed for the
estimation of the parameters of the algorithm. To our
knowledge, no pevious attempts exist to automate this
task. The performance of this NN has been studied for
different network configurations (number of hidden lay-
ers, kernel function) and image qualities for both real and
synthetic images.

Future work will focus on: semiautomatic selection of
seeds, improvement of visualization characteristics, de-
velopment of a user-friendly interface, and study of dif-
ferent techniques and criteria to create and maintain the
pool of “future seeds” (directly related to the behavior in
crossing and branching regions).
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