

Abstract— This work provides the specification of a PHY and

MAC layers simulator that allows to evaluate the IEEE 802.11e
service quality. A detailed state transition diagram is presented
along with a description of the related attributes and methods, an
identification of the associated events and input variables, and a
description of functions for events. For validation purposes,
results of the goodput as a function of the signal to interference
noise ratio were obtained with an error margin lower than 10%.
Higher values are found for the goodput for background and
video services, mainly because the frames transmitted in these
services are longer than the voice application ones. However, the
number of supported users is higher for voice. This simulator will
allow for tuning-up several parameters like the ones related to
how to use BlockACK, normal ACK, and NO ACK policies.

Index Terms— QoS, simulation, IEEE 802.11e, optimization.

I. INTRODUCTION
In recent years, an amazingly rapid evolution in wireless

local area networks (WLANs) as occurred. Due to the low cost,
and easiness of deployment, IEEE 802.11 WLANs have been
used so widely that they become the dominating WLAN
technology. This is mainly because the technology is reaching
an unprecedented maturity in regard to providing higher bit
rates as the time goes by; however, it could not fulfil the
increasing demand for quality-of-service (QoS) support from
the increasingly popular multimedia applications yet.

To overcome this limitation, the IEEE 802.11e standard [1]
is specified aiming to support QoS by providing differentiated
classes of service in the medium access control (MAC) layer
and to enhance the ability of the physical layer so that they can
deliver time-critical multimedia traffic, in addition to
traditional data packets.

This work addresses the service quality in IEEE 802.11
WLANs. We produced a simulator that enables simulations
that analyse the performance and allows the improvement of
IEEE 802.11e mechanisms, such as arbitrary inter frame
spacing, differentiated backoff procedure, and the transmission
opportunities for each service class, as well as experiments on
acknowledgment policies. Besides these features, it was build
accounting for inter-working with Worldwide Interoperability
for Microwave Access (WiMAX) and High Speed Downlink

Manuscript received October 30, 2007. Orlando Cabral, Alberto Segarra,

and Fernando Velez are with the Instituto de Telecomunicações, University of
Beira Interior, Covilhã, Portugal (phone: +351 275329953; fax: +351
275329972; e-mail: orlandoc@ubi.pt, vyniard@gmail.com, fjv@ubi.pt).

Packet Access (HSDPA) simulators by means of improved
scheduling algorithms and CRRM techniques. Scenarios that
focus the interoperability among several wireless networks like
Wireless-Fidelity (Wi-Fi), WiMAX, HSDPA, and Digital
Video Broadcasting Handheld (DVB-H) are a final goal.

The structure of this paper is as follows. In Section II, an
overview of the IEEE 802.11e standard is addressed. In Section
III, the hybrid coordination function is presented and details are
given on the enhanced distributed channel access. Section IV
includes the presentation of the state transition diagram, its
variables, entities, events, and functions. In Section V, details
are given on the physical layer of the IEEE 802.11a standard,
the one considered in this work. Section VI presents the
validation of our simulator after joining together PHY plus
MAC functionalities in the same tool. This validation is
performed based on extensive simulation results obtained.
Section VII includes the hypothesis for system and scenarios,
including details on traffic parameters. Section VIII presents
simulation results for packet delay, goodput, and channel
utilization. Conclusions are presented in Section IX as well as
suggestion for future work.

II. IEEE 802.11E
The IEEE 802.11 architecture consists of several

components that interact to provide a WLAN that supports
station mobility transparently to upper layers. The basic service
set (BSS) is the basic building block of an IEEE 802.11 LAN.
Figure 1 presents two BSSs, each of which has two wireless
stations that are members of the BSS. Instead of existing
independently, a BSS may also form a component of an
extended form of network that is built with multiple BSSs. The
architectural component used to interconnect BSSs is the
distribution system (DS). IEEE 802.11 logically separates the
wireless medium (WM) from the distribution system medium
(DSM). Each logical medium is used for different purposes, by
a different component of the architecture. An access point (AP)
is a station (STA) that provides access to the DS by providing
DS services in addition to acting as a STA Data move between
a BSS and the DS via an AP, Figure 1.

The IEEE 802.11 quality of service (QoS) facility provides
medium access control (MAC) enhancements to support local
area network (LAN) applications with QoS requirements. The
QoS enhancements are available to QoS stations (QSTAs)
associated with a QoS access point (QAP) in a QBSS.

Event-Driven Simulation for IEEE 802.11e
Optimization

Orlando Cabral, Alberto Segarra and Fernando J. Velez, Member, IAENG

IAENG International Journal of Computer Science, 35:1, IJCS_35_1_22
__

(Advance online publication: 19 February 2008)

 BSS2 BSS1

DS

Fig. 1 - Non-roaming reference model.

The so-called enhanced distributed channel access (EDCA)

mechanism delivers traffic based on differentiating user
priorities (UPs), Figure 2. This differentiation is achieved by
varying the following different UP values:

• Amount of time a STA senses the channel to be idle
before backoff or transmission, or

• The length of the contention window to be used for the
backoff, or

• The duration a STA may transmit after it acquires the
channel.

The so-called hybrid coordination function (HCF) controlled
channel access (HCCA) mechanism allows for the reservation
of transmission opportunities (TXOPs) with the hybrid
coordinator (HC), Figure 2.

Distributed Coordination Function (DCF)

 Point
Coordination
 Function
 (PCF)

 HCF
Contention
 Access
 (EDCA)

 HCF
Controlled
 Access
 (HCCA)

Hybrid Coordination Function (HCF)

 MAC
Extent

 Required for
Contention Free

 Services for non-
QoS STA; optional

othewise

 Required for
Prioritized

 QoS Services
Required for
Parametrized
QoS Services

Used for
Contention
Services: basis for
PCF and HCF

Fig. 2 - MAC architecture.

Details on the CSMA/CA protocol, and inter-frame spaces

(IFS) are presented in [1]. The backoff time and the backoff
procedure are addressed in [1] and [2], as well as the
description of the details on the network allocation vector
(NAV), and the use of RTS/CTS with fragmentation. The
fragmentation is the process of partitioning a MAC service data
unit (MSDU) or a MAC management protocol data unit
(MMPDU) into smaller MAC level frames, MAC protocol data
units (MPDUs).

III. HYBRID COORDINATION FUNCTION (HCF)
ENHANCED DISTRIBUTED CHANNEL ACCESS (EDCA)

The QoS facility includes an additional coordination
function called HCF that is only usable in QoS network
(QBSS) configurations. The HCF shall be implemented in all
QSTAs.

The EDCA mechanism provides differentiated, distributed
access to the WM for QSTAs using eight different UPs. The
EDCA mechanism defines four access categories (ACs) that
provide support for the delivery of traffic with UPs at the

QSTAs, Figure 3. The AC is derived from the UPs, as
presented in Table I. For each AC, an enhanced variant of the
DCF, called an enhanced distributed channel access function
(EDCAF), contends for TXOPs using a set of EDCA
parameters from the EDCA Parameter Set element or from the
default values for the parameters when no EDCA Parameter Set
element is received from the QAP of the QBSS with which the
QSTA is associated.

Table I - UP mapping between user priorities and ACs.

Priority
UP (Same as
802.1D user

priority)

802.1D
Designation AC Designation

1 BK AC_BK Background
2 — AC_BK Background
0 BE AC_BE Best Effort
3 EE AC_BE Best Effort
4 CL AC_VI Video
5 VI AC_VI Video
6 VO AC_VO Voice

 Lowest

 Highest 7 NC AC_VO Voice

Fig. 3 – Access categories in EDCA [3].

The TXOP limit duration values are advertised by the QAP

in the EDCA Parameter Set information element in Beacon and
Probe Response frames transmitted by the QAP. Non-AP
QSTAs shall ensure that the duration of TXOPs obtained by
using the EDCA rules do not exceed the TXOP limit. The
duration of a TXOP is the duration during which the TXOP
holder maintains uninterrupted control of the medium, and it
includes the time required to transmit frames sent as an
immediate response to the TXOP holder’s transmissions.

1) Obtaining an EDCA TXOP
Each channel access timer shall maintain a backoff function

(timer), which has a value measured in backoff slots. The
duration AIFS[AC] is a duration derived from the value
AIFSN[AC] by the relation

 AIFS[AC] = AIFSN[AC] × aSlotTime + aSIFSTime
The value of AIFSN[AC] shall be greater than or equal to 2

for non-AP QSTAs and is advertised by the QAP in the EDCA
Parameter Set information element in Beacon and Probe
Response frames transmitted by the QAP. The value of

IAENG International Journal of Computer Science, 35:1, IJCS_35_1_22
__

(Advance online publication: 19 February 2008)

AIFSN[AC] shall be greater than or equal to 1 for QAPs. An
EDCA TXOP is granted to an EDCAF when the EDCAF
determines that it shall initiate the transmission of a frame
exchange sequence. Transmission initiation shall be
determined according to the following rules:
― On specific slot boundaries, each EDCAF shall make a

determination to perform one and only one of the following
functions [1]:

• Start the transmission of a frame exchange sequence for
that access function;

• Decrement the backoff timer for that access function;
• Invoke the backoff procedure due to an internal collision;
• Do nothing for that access function.
― At each of the above-mentioned specific slot boundaries

[1], each EDCAF shall start a transmission sequence if
• There is a frame available for transmission at that

EDCAF;
• The backoff timer for that EDCAF has a value of zero;
• Initiation of a transmission sequence is not allowed to

commence at this time for an EDCAF of higher UP.

2) Multiple frame transmission in an EDCA TXOP
Multiple frames may be transmitted in an acquired EDCA

TXOP if there are more than one frame pending in the AC for
which the channel has been acquired. However, those frames
that are pending in other ACs shall not be transmitted in this
EDCA TXOP. If a QSTA has in its transmit queue an
additional frame of the same AC (as the one just transmitted)
and the duration of transmission of that frame plus any
expected acknowledgment for that frame is less than the
remaining medium occupancy timer value, then the QSTA may
start transmission of that frame after the completion of the
immediately preceding frame exchange sequence plus a SIFS.

All other ACs at the QSTA shall treat the medium as busy
until the expiration of the NAV set by the frame that resulted in
a transmission failure, just as they would if they had received
that transmission from another QSTA.

3) EDCA backoff procedure
Each EDCAF shall maintain a state variable CW[AC], which

shall be initialized to the value of the parameter CWmin[AC].
The backoff procedure shall be invoked for an EDCAF when

any of the following events occurs:
• A frame with that AC is requested to be transmitted, the

medium is busy as indicated by either physical or virtual
CS, and the backoff is zero for that AC;

• The final transmission by the TXOP holder initiated
during the TXOP for that AC was successful;

• The transmission of a frame of that AC fails, indicated by
a failure to receive a CTS, to receive an ACK, or to
receive a BlockAck;

• The transmission attempt collides internally with another
EDCAF of an AC that has higher priority, i.e., if two or
more EDCAFs in the same QSTA are granted a TXOP
simultaneously.

The backoff timer is set to an integer value chosen randomly
with a uniform distribution taking values in the range
[0,CW[AC]] inclusive. All backoff slots occur following an

AIFS[AC] period during which the medium is determined to be
idle.

IV. STATE TRANSITION DIAGRAM
The state transition diagram used to build the simulator is

presented in Figure 4. Table II presents the actions related with
each event.

Table II - UP Event actions.

ACTIONS
1 State = LISTEN_DIFS.

Save:
Time creation packet.
Length packet.
Fragmentation (if it is required).
Know destination.
Know type of packet.
Buffer [AC] !=NULL.

Schedule:
STOP_LTN_DIFS (clock + AIFS).

2 Schedule:
STOP_TX (clock + packet_length).

See the TXOPLimit to send if there is any packet more.
Backoff_condition=1 for STA in LISTEN_DIFS.
State = TX.

3 Schedule:
STOP_RX_ACK (clock + ACK).

State = LISTEN_SIFS.
4 State = WAIT_ACK.
5 Erase the packet.

State = IDLE.
Save:

Increment number of packets transmitted.
Delay of the transmission.

6 State = WAIT.
Increase the number of collisions.
Backoff_condition = 1;

7 Schedule:
STOP_LTN_DIFS (clock + AIFS).

State = LISTEN_DIFS.
8 Refresh NAV.

State = WAIT.
Deschedule:

STOP_LTN_D.
Schedule:

STOP_RX (clock + NAV).
9 State = BACKOFF_TIMER.

If (backoff_condition == 1)
Generate backoff.
Decrement backoff_value each time slot.

Else
Decrement backoff_value each time slot.

10 Suspend backoff procedure.
Refresh NAV.
State = WAIT.
Schedule:

STOP_RX (clock + NAV).
11 Schedule:

STOP_RX (clock + RX).
State = RX.

12 Schedule:
START_TX (clock + SIFS).

State = LISTEN_SIFS.

IAENG International Journal of Computer Science, 35:1, IJCS_35_1_22
__

(Advance online publication: 19 February 2008)

13 Save:
Time creation packet.
Length packet.
Fragmentation (if it is required).
Know destination.
Know type of packet.

Buffer [AC] !=NULL
Backoff_condition = 1.
State = WAIT.

14 Schedule:
STOP_TX (clock + packet_length).

See the TXOPLimit to send if there is any packet more.
Backoff_condition=1 for STA in LISTEN_DIFS.
State = TX.

15 State = IDLE.
16 Schedule:

STOP_LTN_DIFS (clock + AIFS).
State = LISTEN_DIFS.

17 Schedule:
STOP_LTN_DIFS (clock + AIFS).

State = LISTEN_DIFS.
18 State = IDLE
19 Schedule:

STOP_LTN_DIFS (clock + AIFS).
State = LISTEN DIFS

20 Schedule:
STOP_RX (clock + packet_length).

State = RX
21 Schedule:

STOP_RX (clock + packet_length).
State = RX

22 State = LISTEN_SIFS.
Schedule:

START_TX (clock + SIFS)
23 State = TX

Schedule:
STOP_TX (clock + packet_length).

24 State = RX
Schedule:

STOP_RX (clock + packet_length).
25 Decrement backoff_value

If (backoff_value == 0)
Schedule:

START_TX (clock).
Else

Schedule:
TIME (clock + SIFS).

26 Decrement backoff_value

Fig. 4 - State transition diagram (the incoming arrow for the Backoff_Timer state means a transition from and to the same state).

IAENG International Journal of Computer Science, 35:1, IJCS_35_1_22
__

(Advance online publication: 19 February 2008)

The following events cause transition/change of the machine

state:
NEW_PCK_BK a new packet of BK is generated;
NEW_PCK_BE a new packet of BE is generated;
NEW_PCK_VI a new packet of VI is generated;
NEW_PCK_VO a new packet of VO is generated;
STOP_LTN_D end of the AIFS period for sensing the

medium;
STOP_LTN_S end of the SIFS period for sensing the

medium;
TIME_SLOT the STA decrements the backoff_value;
START_TX the station starts to transmit;
STOP_TX stop of the transmission;
START_RX start of the reception;
STOP_RX stop of the reception;

 START_TX_ACK start the transmission of an
acknowledgement;

STOP_TX_ACK stop the transmission of an
acknowledgement;

ACK_OK the acknowledgement was received;
ACK_NOK the acknowledgement was not received.

A detailed description of the characterisation of possible
states for the “machines” nodes, the simulation entities, the
simulation variables, and the functions for events is given in
[4]. The characterization of possible states for the “machines”
nodes is the following [4]:
Machine

States
Idle: buffer is empty;
Wait: backoff counter is frozen;
Listen DIFS: waiting AIFS;
Backoff Timer: decreasing the backoff timer;
TX: transmitting packet;
Listen SIFS: waiting SIFS;
RX: receiving a packet;
Wait ACK: waiting an acknowledgement;
TX ACK: transmitting an acknowledgement.

Queues
Empty: buffer is empty;
Not empty: can have p packets waiting to be transmitted.

Medium states
Free: medium is free, no one is transmitting;
Not free: medium not free, there is someone transmitting
and someone receiving.

States for the packet
Payload;
time of generation;
backoff condition: can be either 0, 1 or 2;
origin;
destination;
backoff value;
Ncollision: number of collisions the packet has suffered;
packet_type: type of packet, can be of BK, BE, VI and

VO;
frag: it is a list that takes several fragments;
rts_first: serves to know if it is the first fragment to be sent

or not.

There are the following entities in the simulations[4]:
Entities:

Machine: the objects of these class are the AP and the nodes
o attributes

 buffer[4]: contains the packets for each access
category;

 colisions[4]: contains the collisions of each
access category;

 location: contains the 2D position;
 tx_power: indicates the power when the machine is

transmitting;
 tx_node: indicates if the machine is transmitting or

not;
 stae[4]: contains the state of each access category;
 delay[4]: contains the delays for each access

category;
 num_packets[4]: contains the number of packets

transmitted of each access category:
 TXOP_limit: the time that the machine shall not

pass before listen an AIFS;
 SBlock_ACK: if the machine has the Block Ack

policy with another machin;e
 VBlock_ACK: the value of the Block ACK’s buffer;
 RBlock _ACK: the receiver Block ACK’s buffer;
 packet_loss[4];
 retransmissions[4].

o methods
 AddFragment(Possible_packets p,
fragment f): adds a fragment to a packet in one of
the queues;

 AddPacket(PacketWiFi p): adds a packet to one
of the queues;

 AddPacketADDBAReq(PacketWiFi p): adds a
ADDBA Request packet to one of the queues;

 AddPacketADDBARes(PacketWiFi p): adds a
ADDBA Response packet to one of the queues;

 AddPacketRES(PacketWiFi p): adds a Response
packet to one of the queues;

 ChangeSBlock(Possible_packets p, int d,
StateBlock s): changes the state of SBlock_ACK
buffer with a destination;

 ChangeVBlock(Possible_packets p, int d,
double v): changes the value of VBlock_ACK
buffer with a destination;

 DecVBlock(Possible_packets p, int d):
decrements the value of VBlock_ACK buffer with a
destination;

 Del_Frags(Possible_packets p, int d, int
o, vector<Machine> *m): erases all the
fragments sent by Block ACL policy to a
destination;

 RemoveFirstPacketLost(Possible_packets
p): removes a packet when the L_COL is reached
from the queue p;

 RemovePacket(Possible_packets p): removes
the packet from the queue p;

IAENG International Journal of Computer Science, 35:1, IJCS_35_1_22
__

(Advance online publication: 19 February 2008)

 RemovePacketsBlockSent(Possible_packet
s p, int d): removes the packets sent by Block
ACK policy to a destination;

 RemovesPacketsEmpty(Possible_packets p,
int d, double c, bool a): removes empty
packets to a destination and update the delays;

 ResetTXOP_limit(): changes the value of the
TXOP_limit to 0;

 SetState(Possible_packets p, State s):
sets the state of the buffer p to state s;

 SetTXOP_limit(double x, Possible_
packets p): changes the TXOP_limit to a value ;

 Buffers_size(Possible_packets p): returns
the size of the buffer p;

 Buffers_size(): returns the number of packets in
all buffers;

 DataPackets_to_i(Possible_packets p,
int o, int d): counts the data packets to a
destination;

 DataPackets_to_i(Possible_packets p,
int o, int d): counts the data packets to a
destination;

 Packets_to_i(Possible_packets p, int
o,int d): counts the total packets to a destination;

 GetTXOP_limit(): returns the value of the
TXOP_limit;

 GetVBlock(Possible_packets p, int d):
returns the value of the VBlock_ACK buffer to a
destination;

 GetFirstPacketLost(Possible_packets p):
gets a packet which has waited the response during
the ACK Time_out from the queue p;

 GetLastPacket(Possible_packets p): returns
the last packet sent from the queue p;

 GetNextPacket(Possible_packets p): returns
the next packet to send from the queue p;

 ADDBAReqPackets_to_i(Possible_packets
p, int o, int d): returns a boolean if there is a
ADDBA Request packet in the buffer p;

 CheckPacketEmpty(Possible_packets p,
int d): returns a boolean if there is a empty packet
in the buffer p;

 PacketsNotSent(Possible_packets p):
returns a boolean if there is packets not sent in the
buffer p;

 GetState(Possible_packets p): returns the
state of the buffer p;

 GetSBlock(Possible_packets p, int d):
returns the state of the buffer p to the destination d.

Packet: the objects of this class are the packets that fill in the
buffer
o attributes

 payload;
 time_gen: when it was created;
 backoff_condition: 0 do not generate backoff, 1

generate backoff, 2 decrement backoff down to 0;
 origin: the originator of the traffic;

 destination: to whom it is to be transmitted;
 backoff_value: number of slots to be

decremented;
 Ncolision: number of collisions the packet has

suffered;
 packet_type: it can be of VO (voice), VI (video),

BE (best effort) and BK(background);
 frag: queue of fragments of the packet;
 rts_first: used to check if the fragment is the first

or not.
o methods

 AddFrag(Possible_packets p, fragment
f):adds a fragment to the packet;

 ChSentFalse(bool x): changes the variable send
of the last fragment sent to false;

 ChangeSend(): changes the variable send of the
first fragment not sent to true;

 DelFrag(): erases the last fragment sent of the
packet;

 IncNcollisions(): increments the number of
collisions the packet suffered;

 SetBackoffcondition(int x): changes the
variable backoff_condition of the packet;

 FragsNotSent(): returns the number of the
fragments not sent in the packet;

 GetBackoffcondition(): returns the variable
backoff_condition of the packet;

 GetBackoffvalue(): returns the variable
backoff_value of the packet;

 GetDestination(): returns the variable
destination of the packet;

 GetPayloadNextFrag(): returns the variable
payload of the first fragment to send;

 GetPayloadLastFrag(): returns the variable
payload of the last fragment sent;

 GetPayloadSecFrag(): returns the variable
payload of the second fragment to send;

 GetNcolision(): returns the number of collisions
of the packet;

 GetModulationLastFrag(): returns the variable
modulation of the last fragment sent;

 SetModulationNextFrag(double x): changes
the variable modulation of the fragment x;

 SetrxDataNextFrag(double x): changes the
variable rxData_Pr_db of the fragment to x;

 SetSNRNextFrag(double x): changes the
variable SINR_db of the fragment to x;

 GetSNRLastFrag(): returns the variable SINR_db
of the last fragment sent;

 GetTimeGen(): returns the variable time_gen of
the packet;

 GetBlockLastFrag(): returns the variable Block
of the last fragment sent;

 GetRTSPacket(): returns the variable rts_first of
the packet;

 GetTypeLastFrag(): returns the variable type of
the last fragment sent;

IAENG International Journal of Computer Science, 35:1, IJCS_35_1_22
__

(Advance online publication: 19 February 2008)

 GetTypeNextFrag(): returns the variable type of
the first fragment to send;

 GetTypePacket(): returns the variable send of the
fragment to false;

 ChSentFalse(bool x): changes the variable
packet_type of the packet.

Event: the objects of this class are the events, they are stored
in a list
o attributes

 event_time: period at which the period is going to
take place;

 t_event: type of event already presented before;
 origin: the originator of the event;
 destination: the destination of the event p for

which AC the event is for.
o methods

 set_event: sets the event attributes to the new
ones.

Channel: only one object of this class is created. It stores the
data that has to be passed trough events
o attributes

 transmitters: number of transmitters at that
moment;

 aux_col: when a collision occurs this variable is set
to true;

 n_collisions: total collisions suffered;
 clock.

Output: one object of this class is created per simulation. It
stores the main outputs of the simulation. As a simulation
runs for some time, these outputs are stored in a vector. At
the end the simulations the averages are calculated
o attributes

 delay_total_BK;
 delay_total_BE;
 delay_total_VI;
 delay_total_VO;
 delay_average_BK;
 delay_average_BE;
 delay_average_VI;
 delay_average_VO;
 colisions_total;
 colisions_rate;
 packets_total_BK;
 packets_total_BE;
 packets_total_VI;
 packets_total_VO;
 chann_utilization;
 thr_total;
 thr_per_sec.

Lista: a object of this class (one list) is created to store the
events.
o attributes

 lis: contains al the events;
 inter: iterator of the list.

o methods

 del_event_after: erases all the events after some
time;

 Get_next_event(): returns the first event in the
list;

 see_event_machine(): checks if a given event is
in the list.

Random_generator: the objects of this class serve the of
generate a random number with uniform distribution
Distributions: the objects of this class generate random
numbers with a given distribution

Simulation variables - the main simulation variables are the
following:

event_list: is the list in which all the events are sorted by
time;
stations: a vector which contains all the stations;
output: where the main outputs are saved.

Input variables - the input variables are the following.
MT: total number of stations;
SIMULATION_TIME 100000: simulation lifetime in ms;
DATA_RATE 20000000.0: data rate in bits;
PAYLOAD_BK 12000: payload of the BK packets;
PAYLOAD_VO 1280: payload of the VO packets;
PAYLOAD_VI 10240: payload of the VI packets;
PAYLOAD_BE 12000: payload of the BE packets;
FACTOR 1000.0: factor used for changing units of time to
ms;
DIFS 0.034: DIFS size in ms;
SIFS 0.016: SIFS in ms;
INTER_ARRIVAL_BK 12.5: interarrival time for BK
packets in ms;
INTER_ARRIVAL_VO 20: interarrival time for VO
packets in ms;
INTER_ARRIVAL_VI 10: interarrival time for VI
packets in ms;
INTER_ARRIVAL_BE 2: interarrival time for BE
packets in ms;
SLOT 0.009: SLOT time in ms;
ACK_SIZE 112: acknowledgement size in bits;
DEGREES_FREEDOM 2: number of simulations that
will be taken with different random seeds;
RTS_TH 3000: RTS threshold, to use a RTS procedure;
RTS_SIZE 160: RTS size in bits;
CTS_SIZE 112: CTS size in bits;
CW_MIN 31: CWmin;
L_COL 8: collisions limit;
TXOP_BK 0: TXOP size for the BK traffic, being 0 means
that only one MSDU can be transmitted in a TXOP;
TXOP_BE 0: TXOP size for the BK traffic;
TXOP_VI 3.008: TXOP size for the VI traffic in ms;
TXOP_VO 1.05: TXOP size for the VO traffic in ms.

Functions for events
Our simulator was build in standard C++. The definition of

the functions used to initialize the traffic, to generate the
backoff, and the AIFS, and of the functions that deal with the
events (that change the state of the machines as well) is the
following:

IAENG International Journal of Computer Science, 35:1, IJCS_35_1_22
__

(Advance online publication: 19 February 2008)

 Initialize(list_events, ed, stations,
fs): this function serves to add machines and
schedule the traffic for them(ed is an event and fs is
a object for writing);

 AIFS(Possible_packets p): generates the AIFS
for a given AC;

 Generate_backoff(int colisoes): generates
the backoff for a given AC;

 New_pck_bk(list_events, ed, stations,
chan, fs): this function adds packets to a given
buffer (BK). The fragmentation of the MSDU into
several MPDU (if required) is performed here. Also
a new arrival is scheduled here;

 Stop_ltn_d(list_events, ed, stations,
chan, fs): the packet in a given buffer of one given
machine is made available and the payload
compared with the RTSLimit to answer if the packet
will be sent with RTS/CTS method or not. With this
function the simulator verifies the
backoff_condition, and determines if the machine
has to send the packet normally, to generate a
backoff, or to continue decreasing the
backoff_value;

 Time_slot(list_events, ed, stations,
chan, fs): this function will be applied to
machines that are in the Backoff_Timer state. When
the machine invokes the backoff procedure, all the
machines that are in Backoff_Timer state are going
to schedule an event time_slot to decrease the
backoff_value by one unit. When the backoff_value
reaches zero then the machine will start the
transmission;

 Start_TX(list_events, ed, stations,
chan, fs): first of all, it is checked if there is an
internal collision, if there is none, the machine will
obtain a TXOP. Then, if there is enough time to send
the packet the transmission will start. The other
machines will update their NAVs, for this MPDU
plus another, if there is one, and if it is possible to
send (according to the TXOP limit policy);

 Start_RX(list_events, ed, stations,
chan, fs): the buffer of the machine which is
going to receive is set to RX state;

 Stop_TX(list_events, ed, stations, chan,
fs): the buffer of the machine which is transmitting
is set to LISTEN_SIFS state;

 Stop_RX(list_events, ed, stations, chan,
fs): this function detects if there is a collision. If the
transmission is successful then the receiver will send
an ACK to confirm the data. If a collision is detected
then the receiver will not send the ACK. Then, after
an ACKTimeout time, the sender will invoke the
backoff procedure;

 Stop_ltn_S(list_events, ed, stations,
chan, fs): it sets the state of the transmitter
machine to WAIT_ACK;

 RES_ok(list_events, ed, stations, chan,
fs): if the machine receives an ACK then checks if

there are more MPDUs or MSDUs to transmit, and if
the TXOP will allow sending them;

 RES_nok(list_events, ed, stations, chan,
fs): it will perform the procedures inherent to a
retransmission.

VI. PHYSICAL LAYER
The physical layer specification used in this work is the IEEE

802.11a standard [3], [5] that defines an Orthogonal Frequency
Division Multiplexing (OFDM) based PHY layer that operates
in the 5 GHz frequency band, being able to achieve bit-rates as
high as 54 Mbps. It defines 8 non-overlapping channels of 20
MHz each across the low and middle 5 GHz bands (5.15-5.35
GHz) and four extra channels across the high 5 GHz band
(5.725-5.825 GHz). Each of these channels is divided into 52
sub-carriers, with each sub-carrier being approximately 300
kHz wide. In each channel 48 sub-carriers are used for data
transmission, while the remaining 4 sub-carriers are used as
pilots for coherent detection. A high data rate is achieved by
combining 48 lower bit-rate data streams transmitted in
parallel, each modulating a different sub-carrier. The parallel
transmission of 52 modulation symbols, one in each
sub-carrier, forms an OFDM symbol. These are created by an
Inverse Fast Fourier Transform (IFFT), which combines the
sub-carriers before transmission.

IEEE 802.11a specifies 8 different transmission modes,
obtained with different combinations of modulation and
convolutional code rate. Each transmission mode corresponds
to a different bit-rate. Within an OFDM symbol the same
transmission mode is used in all data sub-carriers. The IEEE
802.11a transmission modes are listed in Table III, together
with the respective number of bytes transmitted in one OFDM
symbol (Bytes-per-Symbol, BpS). The convolutional encoder
always encodes data with code rate 1/2. The 3/4 and 2/3 codes
are derived from the original 1/2 code by a technique called
puncturing. Puncturing is a procedure for omitting some of the
encoded bits in the transmitter, and inserting a dummy “zero”
metric into the convolutional decoder at the receiver, in place of
the omitted bits. This technique is a simpler and more efficient
way of generating a higher code rate.

Table III - IEEE 802.11a PHY modes.

Mode Modulation Code Rate Bit-rate BpS
1 BPSK 1/2 6 Mbps 3
2 BPSK 3/4 9 Mbps 4.5
3 QPSK 1/2 12 Mbps 6
4 QPSK 3/4 18 Mbps 9
5 16-QAM 1/2 24 Mbps 12
6 16-QAM 3/4 36 Mbps 18
7 64-QAM 2/3 48 Mbps 24
8 64-QAM 3/4 54 Mbps 27

In indoor radio environments, signals coming from multiple

indirect paths added to the direct path induce delay spread. This
may be large enough to cause Inter-Symbol Interference (ISI) if
high rates are used. OFDM counters this effect within each
sub-carrier by transmitting data in parallel using lower-rate

IAENG International Journal of Computer Science, 35:1, IJCS_35_1_22
__

(Advance online publication: 19 February 2008)

sub-carriers. However, ISI can be further reduced with the
introduction of a guard interval in the beginning of each OFDM
symbol. A guard interval longer than the maximum channel
excess delay ensures that ISI is eliminated. With a guard
interval of length Tg, a new block duration is obtained as
T’b = Tg+Tb. In IEEE 802.11a, Tg = Tb/4 = 800 ns, which means
that T’b = 4ns.

The cyclic prefix has two drawbacks worth to be mentioned.
One of them is the overhead transmitted over the radio channel,
which reduces the maximum data rate achievable on top of
OFDM. The other one is that the cyclic prefix of duration Tg
leads to a power loss, as the receiver only uses the energy
received during time Tb, discarding the energy that corresponds
to Tg. A power loss αg must thus be taken into account,

'
b

g
b

T
T

α =

(1)

Consequently, the ratio between the effective average

symbol energy and the noise power spectral density, av

o

E
N

, is

related to the SINR in the following way:
 av s

g g
o o

E E SINR
N N

α α= ⋅ = ⋅

(2)

where s

0

E
N

 is the ratio between the raw average symbol energy

(i.e., including the energy of the cyclic prefix) and the noise
power spectral density.

The PPDU frame format is depicted in Figure 5. It consists of
a PLCP preamble of 12 OFDM symbols, followed by the PLCP
SIGNAL field and a variable size DATA field.

RATE
4 bits

Reserved
1 bit

LENGTH
12 bits

Parity
1 bit

Tail
6 bits

SERVICE
16 bits PSDU Tail

6 bits
Pad
 bits

DATASIGNAL
1 OFDM symbol

PLCP preamble
12 OFDM symbols

PLCP Header

Fig. 5: Format of the IEEE 802.11a PPDU.

The preamble field is composed of 10 repetitions of a “short

training sequence” (used for automatic gain control, diversity
selection, timing acquisition, and coarse frequency acquisition
in the receiver) and two repetitions of a “long training
sequence” (used for channel estimation and fine frequency
acquisition in the receiver), preceded by a guard interval. The
PLCP header is composed of the SIGNAL field and the
SERVICE field. The former constitutes an OFDM symbol and
is transmitted with the lowest rate (BPSK-1/2), being
composed of the payload RATE indicator, a reserved bit, the
payload LENGTH, an even parity bit and six “zero” tail bits.
The SERVICE field belongs to the DATA part and comprises
seven “zero bits” used to synchronise the descrambler,
followed by 9 bits reserved for future use. The DATA field also
comprises the PSDU followed by 6 “zero” tail bits and a
number of pad bits so that the total length of the DATA part
corresponds to an integer number of OFDM symbols. The
DATA part is encoded with the RATE specified in the
SIGNAL field.

Link Adaptation
Link-adaptation can be based on several techniques:

1. Adaptation of frame size;
2. Automatic Repeat Request (ARQ);
3. Forward Error Correction (FEC);
4. Selection of coded modulation schemes with different
bandwidth efficiency (bits/symbol) and thus different
physical bit-rate. This technique is usually called
rate-adaptation.

All these techniques incur on an overhead penalty, which
must be weighted against the overall goodput and energy
efficiency that can be achieved. There are several proposals of
link-adaptation schemes presented in [6], [7], [8], [9].

Another rate-adaptation mechanism for IEEE 802.11a is
proposed in [10], and further developed in [11]. In this
algorithm, the sender chooses the bit-rate that achieves the
highest goodput taking into account the channel state
information (CSI) estimate and the number of transmission
attempts. A PHY mode threshold table is calculated based on a
conditional probability density function that models channel
status variation. This rate-adaptation mechanism is compared
with ARF by means of computer simulation, demonstrating its
better performance. The algorithm considers no CSI feedback
protocol. Instead the sender estimates the path loss at the
receiver based on the received power of frames that come from
the receiver (e.g., ACK and CTS frames) and the transmission
power indication in the PPDU. Thus it is assumed that the path
loss is the same in both directions, which may not be true due to
multipath effects. The sender also estimates the noise at the
receiver based on local noise power, which does not take into
account the differences in terms of the experienced
interference.

A requirement for the effectiveness of link-adaptation is to
have a good estimate of the channel status. This can be
accomplished with different techniques. In [6] and [12] the
estimate of the packet error probability is obtained from the
ratio between the number of failed transmissions and the total
number of transmission attempts. The disadvantage of such
approach is that it usually takes a significant number of
transmission attempts to infer a good packet error probability
estimate. When the channel is subject to fading effects, the
reception quality may change faster than link-adaptation.

The Auto Rate Fallback (ARF) algorithm presented in [13]
also bases its decisions on the number of missing
acknowledgements. However, it is simpler as it does not seek to
obtain an accurate packet error probability estimate. Instead, it
lowers or raises the bit-rate based on a small number of losses
or successful transmissions (2 or 10, respectively).

Another technique is based on the estimation of the received
power and SINR experienced at the receiver [14], [15]. Such
approaches are assumed in the link-adaptation techniques
presented in [9], [10], [16], [11], where it is shown that
link-adaptation based on SINR estimates is more efficient than
ARF. However, they assume perfect estimates, which are
usually difficult to obtain. In fact, the tolerance on the received
power estimate considered in [17] ranges from ±5 dB to ±8 dB.

IAENG International Journal of Computer Science, 35:1, IJCS_35_1_22
__

(Advance online publication: 19 February 2008)

In the techniques proposed in [10] and [11], the error could
even be magnified by the fact that the estimates assume that the
path loss is symmetric and the noise experienced by the
receiver is the same as that experienced by the sender.

In our simulations, we implement a procedure very similar to
the one from [10]. We estimate the received power and SINR
experienced at the receiver, based on the last reception of that
machine. In this algorithm, the sender chooses the bit-rate that
achieves the highest goodput taking into account the SINR
estimate. A PHY mode threshold table (presented in next
Section) is computed based on the simulations carried out.
More details on the implementation of the physical layer in the
simulator can be found in [18].

VII. VALIDATION OF PHY PLUS MAC
According to the IEEE 802.11 standard, the length of a MAC

service data unit (MSDU) must be less than or equal to 2304
octets. The length of a MSDU shall be an equal even number of
octets for all fragments except the last one of a fragment burst,
which may be smaller. In this Section, we assume that the
MSDUs to be transmitted are all 2304-octet long. Each MSDU
might be either fragmented or not fragmented up to 10
equal-size MPDUs. The PHY and MAC characteristics of
IEEE 802.11a OFDM are presented in Table IV.

Table IV: IEEE 802.11a OFDM PHY Characteristics.

Slot time 0.009 ms
ACK size 112 bit
SIFS 0.016 ms
DIFS 0.015 ms
RTS threshold 3000 bit
RTS size 160 bit
CTS size 112 bit
CWmin 31 slots
CWmax 1023
Collisions threshold 7
Fragmentation threshold 8000
Simulation time 10000 ms

Figure 6 presents results of goodput performance for
different PHY modes without fragmentation while Figure 7
presents results with fragmentation. As expected, the highest
rate PHY modes show better goodput performance for the
highest SINR range, while the lowest rate PHY modes have
improved goodput performance in the lowest SINR range.

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30
SINR [dB]

G
oo

dp
ut

 [M
b/

s]

Mod 8
Mod 7
Mod 6
Mod 5

Mod 4
Mod 3
Mod 2
Mod 1

Fig. 6: Goodput versus SINR for the 8 different transmission

modes without fragmentation.

0

2

4

6

8

10

12

14

16

18

0 5 10 15 20 25 30
SINR [dB]

G
oo

dp
ut

 [M
b/

s]

Mod 8
Mod 7
Mod 6
Mod 5

Mod 4
Mod 3
Mod 2
Mod 1

Fig. 7: Goodput versus SINR for the 8 different transmission

modes with fragmentation.

One interesting observation is that the goodput performance

of PHY mode 3 (QPSK modulation with rate ½ coding) is
always higher than of PHY mode 2 (BPSK modulation with
rate ¾ coding) under all SINR conditions. Although QPSK has
worse error performance than BSPK, the worse performance of
the ¾ rate convolutional code (compared to the ½ rate
convolutional code) has a more dominating effect. Therefore,
without the appropriate power control schemes, PHY mode 2
may not be a good choice if PHY mode 3 is present. From
Figures 6 and 7 we can conclude that, for the same PHY mode,
fragmentation decreases the maximum goodput due to the
overheads; however, it improves the goodput performance at
certain SINR range. The optimal combination of the PHY mode
to achieve the highest goodput for different SINR conditions is
presented in Figures 8 and 9, without and with fragmentation,
respectively.

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25

SINR [dB]

G
oo

dP
ut

 [M
b/

s]

Fig. 8: Goodput versus SINR without fragmentation when an

optimal transmission mode selection is used.

In this work, the values used for transmission mode selection

are extracted from Figure 8. If we call SMTk to the SINR
threshold for mode k, the transmission mode m is selected as
follows

m=8 if SINR_max ≥ SMT8
m=7 if SMT8>SINR_max ≥ SMT7

m=6 if SMT7>SINR_max ≥ SMT6

m=5 if SMT6>SINR_max ≥ SMT5

m=4 if SMT5>SINR_max ≥ SMT4

m=3 if SMT4>SINR_max ≥ SMT3

m=1 otherwise.

IAENG International Journal of Computer Science, 35:1, IJCS_35_1_22
__

(Advance online publication: 19 February 2008)

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25

SINR [dB]

G
oo

dp
ut

 [M
b/

s]
 i

Fig. 9: Goodput versus SINR with fragmentation when an

optimal transmission mode selection is used.

After selecting the transmission mode, the sender always

uses the maximum transmission power. The PHY mode
distribution in the square coverage zone is presented in Table
V. PHY mode 2 does not have any percentage since the
goodput performance of PHY mode 3 is always better than of
PHY mode 2 under all SINR conditions.

Table V - IEEE 802.11a PHY modes.

Mode Bit-rate Distribution [%]
1 6 Mbps 28.22
2 9 Mbps -
3 12 Mbps 21.51
4 18 Mbps 18.10
5 24 Mbps 9.27
6 36 Mbps 10.08
7 48 Mbps 1.83
8 54 Mbps 10.99

The bird’s-eye view of cell area is presented in Figure 10.

Fig. 10 – Bird’s view of cell area.

VIII. SYSTEM, SCENARIO AND ASSUMPTIONS
Lets consider a cellular WiFi system where each cell has a

set N+1 IEEE 802.11e stations communicating through the
same wireless channel. While station 0 is the Access Point or
QoS Access Points (QAP), the other N wireless terminals or
QoS stations (QSTA). The propagation time is assumed to be
absorbed by some mechanisms of the IEEE 802.11. Each
station has four buffers whose size depends on the kind of

service being dealt in order to guarantee a given value for the
goodput (payload of the packet).

Simulations have to be undertaken in order to get the best
buffer size to be used. One of the approaches is to consider the
buffer with infinite size. This buffer will be filled with a MAC
Service Data Unit (MSDU) generator that characterises the
service being dealt in the given buffer. If the MSDU is bigger
than a fragmentation threshold, it will be fragmented. In order
to cope with service quality the packet transmission follows the
Enhanced Distributed Channel Access (EDCA) IEEE 802.11e
MAC procedure. Due to collisions or interference a packet may
not be correctly received. The number of collisions is
represented by a global variable that checks whether there is
more than one user transmitting simultaneously. The
interference issues are addressed by using a radio propagation
model. Each packet exits the buffer only after the reception of
an acknowledgement, or if it has suffered more than a collision
threshold.

In this first phase the users are assumed to be static, and are
distributed uniformly in a square area of 2500 square meter.

The topology to be implemented consists of several wireless
stations and an Access Point (AP). Three types of traffic
sources were chosen, namely high priority voice, medium
priority video and low priority FTP data. The traffic sources
parameters are shown in Table VI. In this Table the Access
Categories (AC) are also presented of each type of traffic.

Table VI – Traffic Parameters [3].

 Voice Video Background (FTP)
AC VO VI BK
Packet size 1280 bit 10240 bit 18430 bit
Packet interval 20 ms 10 ms 12.5 ms

IX. SIMULATION RESULTS
Our simulations consider one access point with several client

machines. Results include packet delay, goodput, in bit per
second, and channel utilization. A performance measure
combining throughput and delay into single function will be
proposed in a near future.

Results considering MAC and PHY layers are obtained, for
each parameter, as the average of 20 simulations (each with
different random seeds). Results with MAC layer alone are
presented in [19].

Packet delay is the period of time between the moment at
which the packet arrives to the buffer and the moment at which
the packet is successfully transmitted. The results for stand
alone voice (VO) uplink and downlink traffic, background
(BK) and video (VI) are presented in Figure 11.

In terms of grade of service, from [20] the voice application
supports delays up to 30 ms, the video application supports
delays up to 300 ms, while the delay for the background
applications can be up to 500 ms. Hence, our QAP supports up

IAENG International Journal of Computer Science, 35:1, IJCS_35_1_22
__

(Advance online publication: 19 February 2008)

0

500

1000

1500

2000

2500

0 10 20 30 40 50
Stations

D
el

ay
 p

er
 p

ac
ke

t [
m

s]
 i

VO uplink
VO downlink
VI
BK

Fig. 11 - Delay as a function of the number of nodes for VO,

VI, and BK applications.

to 40 voice users, 18 video users, and 11 background users with
an appropriate degree of QoS. The system is limited by the
downlink connection.

Another performance measure is the maximum goodput
achievable for a given channel capacity. It is certain that a
fraction of the channel capacity is used up in form of overhead,
acknowledgments, retransmission, token delay, etc.

Channel capacity is the maximum possible data rate, i.e., the
signalling rate on the physical channel. It is also known as the
data rate or transmission rate, assumed to be variable, between
6 and 54 Mb/s. Goodput is the amount of “user data” that is
carried by the wireless network. The results for goodput as
function of the number of stations are presented in Figures 12
and 13. The maximum achieved goodput is 16 Mb/s.

0.0E+00

5.0E+06

1.0E+07

1.5E+07

2.0E+07

0 10 20 30 40 50
Stations

G
oo

dp
ut

 [b
it/

s]

VI
BK

Fig. 12 - Goodput as a function of the number of nodes for VI,

and BK applications.

Figure 13 presents the goodput for VO applications in both
directions. When the number of stations is higher than 40 the
goodput decreases; this is due to small CW size. The goodput in
the downlink is equal to 64kb/s up to 38 stations. For more than
38 stations, the collisions start to occur very often and the
goodput of each station decreases.

Due to the scarcity of wireless bandwidth, we also studied
the medium utilization, and we computed the average data rate
for the client stations. Since the distribution of users in the
square is uniform, it is easy to compute the probability of a
given transmission mode, being easy to compute the average
data rate.

0.0E+00

5.0E+05

1.0E+06

1.5E+06

2.0E+06

2.5E+06

0 10 20 30 40 50
Stations

G
oo

dp
ut

 [b
it/

s]

VO downlink
VO uplink

Fig. 13 - Goodput as a function of the number of nodes for VO,

downlink and uplink directions.

The channel utilization is the ratio of goodput over the
average data rate, and is presented in Figure 14 (as a function of
the number of stations). The highest obtained value for
utilization is around 80%, and is obtained for VI. The lowest
one is obtained for VO traffic. This occurs because the packet
size is much higher for VI than for VO.

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50
Stations

Ch
an

ne
l u

til
iz

at
io

n

VO
VI
BK

Fig. 14 - Channel utilization, as a function of the number of

nodes, for VO, VI, and BK applications.

X. CONCLUSIONS AND FUTURE WORK
Our IEEE 802.11e event driven simulator is a tool that

allows for tuning-up several parameters like the ones related to
how to use block acknowledgement, normal acknowledgement,
and no acknowledgement policies. Policies that provide access
to the medium, that ensure some degree of service, based on the
channel SINR, delays, and bit error rate can be tested.

In the simulations, higher values of goodput are found for the
VI and BK applications, mainly because the frames transmitted
in these services are longer than the ones for the voice
application but also the application data rate is higher. As a
consequence, the number of supported stations of VI and BK is
lower than the number of supported VO stations.

It should be noticed that the use of small CW for the VO
access category may not be a very good idea since when the
number of stations is higher than 38 the goodput starts to
decrease due to a small CW size. By suffering successive
collisions the retransmission threshold is overcome causing the
increase of packet losses. As CW is longer for the BK traffic,
there is a longer period for the random backoff generator to

IAENG International Journal of Computer Science, 35:1, IJCS_35_1_22
__

(Advance online publication: 19 February 2008)

generate a backoff. The collisions do not exist in BK and VI
applications because the data traffic is only present for
downlink direction (from access point to stations). As the VO
traffic is bidirectonal, collisions occur very frequently because,
apart of the access point, all the stations are contending to
access to the medium.

For future work, we suggest to extract results with mixtures
of applications and to suggest block acknowledgement policies.
Handover policies between APs will also be an objective to be
fulfilled, where a scenario supporting more than one cell can be
used. Later, our simulator will be integrated into the
IT-MOTION simulator, and further work will be performed to
optimise inter-working among different systems (e.g., WiFi,
HSDPA, and WiMAX).

ACKNOWLEDGMENT
The authors would like to acknowledge the fruitful

contributions given by António Grilo for the implementation of
the PHY part of the simulator. This work was partially funded
by CROSSNET (Portuguese Foundation for Science and
Technology POSI and POSC projects with FEDER funding),
by IST-UNITE, and by “Projecto de Re-equipamento
Científico" REEQ/1201/EEI/ 2005 (a Portuguese Foundation
for Science and Technology project).

REFERENCES
[1] IEEE Std. 802.11e; Wireless LAN Media Access Control (MAC) and
Physical Layer (PHY) Specifications, 2005.
[2] IEEE Std. 802.11; Wireless LAN Media Access Control (MAC) and
Physical Layer (PHY) Specifications, 1999.
[3] Quiang Ni, “Performance Analysis and enhancements for IEEE 802.11e
Wireless Networks,” IEEE Network, Vol. 19, No. 4, July/Aug. 2005, pp. 21-27.
[4] Jonathan Rodriguez (editor), “Intermediate Specification of Algorithms for
Cross-Layer Optimisation,” IST-UNITE CEC deliverable 4-026906/IT/
DS/4.1.1, IST Central Office, Brussels, Belgium, 2007.
[5] IEEE Std. 802.11a; Wireless LAN Media Access Control (MAC) and
Physical Layer (PHY) Specifications: High-speed Physical Layer in the 5 GHz
Band, 1999.
[6] P. Lettieri, B. Srivastava, “Adaptive Frame Length Control for Improving
Wireless Link Throughput, Range, and Energy Efficiency,” in Proc. of IEEE
INFOCOM’98 –17th Conference on Computer Communications, San
Francisco, USA, Mar. 1998.
[7] D. Xu, B. Li, K. Nahrstedt, “QoS-Directed Error Control of Video Multicast
in Wireless Networks,” in Proc. of IEEE ICCCN’99 - 8th IEEE International
Conference on Computer Communications and Networks, Boston-Natick, MA,
USA, pp. 257-262, Oct. 1999.
[8] A. Majumdar, D. Sachs, I. Kozintsev, K. Ramchandran, “Multicast Unicast
Real-Time Video Streaming over Wireless LANs,” IEEE Transactions on
Circuits and Systems for Video Technology, Vol. 12, No. 6, June 2002,
pp.524-534.
[9] G. Holland, N. Vaidya, P. Bahl, “A Rate-Adaptive MAC Protocol for
Multi-Hop Wireless Networks,” in Proc. of ACM/IEEE Int. Conf. on Mobile
Computing and Networking (MOBICOM’01), Rome, Italy, July 2001.
[10] D. Qijao, S. Choi, “Goodput enhancement of IEEE 802.11a wireless LAN
via link adaptation,” in Proc. of IEEE ICC’2001 - Int. Conf. on
Communications, Helsinki, Finland, June 2001.
[11] D. Qijao, S. Choi, K. Shin, “Goodput Analysis and Link Adaptation for
IEEE 802.11a Wireless LANs,” IEEE Transactions on Mobile Computing, Vol.
1, no. 4, Oct.-Dec. 2002.
[12] M. Radimirsch, “An Algorithm to Combine Link Adaptation and Transmit
Power Control in HIPERLAN Type 2,” in Proc. of PIMRC’2002 - Personal
Indoor and Mobile Radio Conference 2002, Sep. 2002.
[13] A. Kamerman, L. Monteban, “WaveLAN-II: A high-performance wireless

LAN for the unlicensed band,” Bell Labs Technical Journal, Summer 1997, pp.
118-133.
[14] K. Balachandran, S. Kadaba, S. Nanda, “Channel Quality Estimation and
Rate Adaptation for Cellular Mobile Radio,” IEEE Journal on Selected Areas in
Communications, Vol. 17, no. 7, July 1999.
[15] K. Olszewski, “Channel Quality Measurement Method for 802.16ab PHY
Layers,” IEEE 802.16abc-01/45, Oct. 2001.
[16] D. Qijao, A. Soomro, K. Shin, “Energy-Efficient PCF Operation of IEEE
802.11a Wireless LAN,” in Proc. of IEEE INFOCOM’02 – 21st Conference on
Computer Communications, New York, New York, USA, June 2002.
[17] A. Myles, “IEEE 802.11h Draft Normative Proposal,” IEEE
802.11-02/402r0, June 2002.
[18] A Grilo, Quality of Service in IP-based WLANs, Doctoral thesis, Instituto
Superior Técnico, Technical University of Lisbon, Lisbon, Portugal, June.
2004.
[19] O. Cabral, A. Segarra, F. J. Velez, “Simulation of IEEE 802.11e in the
context of interoperability,” in Proc. of ICWN´ 2007 - The 2007 International
Conference of Wireless Networks (held in the context of WCE´ 2007 - World
Congress on Engineering), London, U.K., July 2007.
[20] N. Anastácio, F. Merca, O. Cabral, F. J. Velez, “QoS Metrics for
Cross-Layer Design and Network Planning for B3G Systems,” in Proc. of
IEEE ISWCS’2006 - Third International Symposium on Wireless
Communication Systems, Valencia, Spain, Sep. 2006.

IAENG International Journal of Computer Science, 35:1, IJCS_35_1_22
__

(Advance online publication: 19 February 2008)

