
 

 

 

  

Abstract—The Controller Output Error Method (COEM) is 

introduced and applied to the design of an adaptive fuzzy 

controller for a PUMA robot. The method employs a gradient 

decent algorithm to minimize a cost function which is based on 

the error at the controller output. The cost function is minimized 

by adapting some or all of the parameters of the fuzzy controller. 

The paper also describes the replacement of a controller for a 

PUMA 512 robot with a newly designed PC based (open 

architecture) controller employing COEM. The original 

structure of the PUMA robot is retained. The hardware of the 

new controller includes in-house designed parts as: PWM 

amplifiers; digital and analog controllers; I/O cards; signal 

conditioner cards; and 16 bits A/D and D/A boards. An Intel 

Pentium IV industrial computer is used as the central controller. 

The control software has been implemented using VC++ 

programming language. The trajectory tracking performance of 

all the six joints was tested at varying velocities. The 

experimental results showed that it is feasible to implement the 

suggested open architecture platform for PUMA 500 Series 

robots through software routines running on a PC.  

Index Terms—PUMA robot, Adaptive fuzzy control, Pulse 

width modulation (PWM) amplifier, Graphical user Interface 

(GUI), Controller output error method (COEM).  

 

I. INTRODUCTION 

Robots form an essential part of mechatronics and Computer 

Integrated Manufacturing (CIM) systems. Robots are 

generally controlled by dedicated controllers. As upgrades 

become costly and interfacing becomes complex due to 

hardware and software conflicts, the flexibility of the robotic 

manipulators is reduced. Dedicated hardware and proprietary 

software which normally allows only high level programming 

by the users are costly and difficult to understand. 

  Since the early years of 1980’s many projects have been 

carried out to develop an open architecture controller such as 

NGC[1], GISC[2], ROBLINE[3] and so on which try to solve 

the problem of realization of an open architecture controller, 

and several prototype systems have been developed. 

However, they are not widely accepted due to the overly 

restrictive definitions and special standards. 
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The Unimate PUMA 500 series Robots mainly uses DEC LSI 

11 processor running VAL robot control software[4]. 

Methods of bypassing VAL are discussed in literature, 

including Unimation technical reports[5]. However, most of 

these procedures have been confined to replacing the LSI 11 

with another DEC computer, leaving peripheral hardware 

intact. A well- refined open structure architecture for 

industrial robot is discussed in [6]. However; it is mainly 

based on Common Object Request Broker Architecture 

(COBRA), leaving scope to simplify the hardware and 

software work. A hardware retrofit for Puma 560 robot is 

discussed in [7]
 
but still it relies on special-purpose TRC041 

cards installed on the backplane of Mark II controller.  

 The shift towards the personal computer open architecture 

robot controller and the impact of using these newer 

controllers for system integration is discussed in [8]. In fact; it 

is far more cost effective to develop new hardware using less 

specific interfaces. An improved PC-based design for Puma 

robot was presented in [9] but this hardware configuration 

purely depends on in-house built designs. In our paper a 

flexible, modular hardware is developed for the puma robot, 

incorporating a personal computer, in-house as well as 

specialized hardware. Some technical problems in the 

previous design for velocity test profile of joints1, 2 and 4 

have also been addressed. The joints position tracking error at 

high velocities is also minimized in our design. 

 In this paper, an adaptive fuzzy control design is developed 

for robot trajectory tracking control. The controller output 

error method (COEM) is introduced in proposed design, 

which can be used for the on-line tuning of parameters of a 

fuzzy controller. This method can be used with any fuzzy 

controller design; the only requirement is that controller must 

be stable before the commencement of on-line tuning. Thus, 

at first, any fuzzy rule-based model and any inference 

mechanism can be employed to parameterize and initialize 

controller of the system, and then COEM is applied 

subsequently to tune parameters of fuzzy controller for 

purpose of achieving better performance Although the 

method has already been discussed by few authors
10, 11

 but its 

implementation for a PUMA robot using an open architecture 

platform was not studied so far. The authors employ the 

adaptive fuzzy control using COEM method as a control 

strategy to implement the open architecture design for PUMA 

560 robot. 

II. ORIGINAL PUMA UNIMATE 500 

The Unimation Mark II is an industrial robot controller as 

shown as in Fig.1. It consists of mainly a DEC LS1 serial 
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Fig.1 Unimate Puma 512 block diagram 

 

 

interface board; CMOS board and EPROM board; servo 

interface board and Six digital servo boards [12]. 

The original system used a large number of operational 

amplifiers and discrete components for conditioning of shaft 

encoder signals and amplification of analog control voltages. 

This leaves considerable scope to simplify and compact the 

controller design by substitution of more modern 

components. 

 

III. NEW HARDWARE CONFIGURATION 

The PUMA 512 robot used for work is described in Fig.2. 

It is a member of the Unimate 560 series of Robots, having six 

joints. 

Each of PUMA 512 joints is driven by through a gear train 

by a permanent magnet DC servo motor which incorporates a 

rotary shaft encoder, a tachometer and a potentiometer. The 

new system’s block diagram is shown in the Fig.3. The PWM 

amplifier box contains 6 in- house built amplifiers employing 

SA01. The SA01 amplifier is a pulse width modulation 

amplifier that can supply 2KW to the load. 

The control box includes an internally designed digital 

conditioner card for shaft encoder’s signals and an analog 

conditioner card for potentiometer and tachometer. The 

in-house built encoder conditioner card uses ALTERA MAX 

7256AETC100-10 CPLD [13]. It belongs to MAX 7000A 

programmable device family. The card has 3 CPLDs one for  

each shaft encoder 

The robotic arm needs two digital conditioner cards. The 

CPLDs are programmed using VHDL language. The signals 

A+, A-, B+, B-, Z+ and Z-, VCC and DGND are the eight 

signals from rotary shaft encoder which are interfaced to the 

CPLD via a differential line receiver MC3486. The 24 signals 

D0_waist to D23_waist go to 6 channels 722 DIO card. The 

other 5 joints’ shaft encoders are connected to digital 

conditioner card in the same way. The power supply  

 
 

Fig.2 PUMA robot 512 joints identification 

 

unit incorporates power supplies for PWM amplifiers units, 

signal conditioner cards and an excitation 110V power supply 

for 6 servo motors. 

A Pentium IV industrial computer is used as a central 

controller. It has one 6 channel 722 DIO card, 16 bits 816 A/D 

and 6126 D/A cards.  

 The analog signals from tachometers and potentiometers 

are fed into the analog conditioner card. The card was 

designed at Simulation & Machine Control lab (S & MC).  

After conditioning the signals, they are fed to industrial PC 

(A/D card). The analog feedback signals from D/A are 

provided to PWM amplifiers for each joint to complete the 

speed loop.    

A. Advantages of new PC based PUMA robot 

A new PC-based PUMA robot manipulator control system 

has three advantages:  simplicity, flexibility and low cost. The 

hardware and software complexity of the Unimate Mark II 

robot controller is extensively reduced as discussed in section 

3. Flexibility refers to the ability to implement arbitrary 

control strategies which can easily integrate sensor 

information into low level control. Flexibility also refers to 

the ability to easily use wide variety of sensors in the 

trajectory generator. The suggested PC based platform has the 

ability to easily integrate such sensors as sonars, ranging 

lasers, cameras etc. that would allow the user to implement 

complex control strategies (e.g. vision based control). With 

the current digital servo boards in the Mark II, none of these 

advanced modes are feasible. 

Another potential advantage of the suggested platform is its 

cost effectiveness. Due to economies of scale and increased 

CPU power, personal computers have become viable and cost 

effective alternatives to workstations in engineering 

applications. An Intel processor easily outperforms a Spark 

IPX while costs less than a thousand dollars. 

IV. DESCRIPTION OF THE CONTROL SCHEME 

A. Manipulator dynamic model 

The dynamic model of an n-link manipulator is given as 

[14]: 
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 τG(q)q)qC(q,qM(q) =++ &&&&  (1)  

Where q is the n dimensional joint variable, q&  is the time 

derivative of q, i.e. velocity, M(q) is the n × n inertia matrix, 

qqqC &&),(  is the n-dimensional vector of coriolis and 

centrifugal force, G(q) is the n-dimensional vector of gravity 

force and τ  is the n dimensional vector of applied torque. 

After taking the effects of random disturbances into 

account, the manipulator dynamic model becomes as under: 

 τ)q(q,BG(q)q)qC(q,qM(q) d =+++ &&&&&  (2)  

Where ),( qqBd
&  represents an additive bounded 

disturbance due to load variation and modeling errors. 

A. The Controller Output Error Method 

The Controller output error method is a technique of fine 

tuning the parameters of a fuzzy system within the control 

architecture shown in Fig.4.COEM is a strategy for adapting 

the parameters of a controller without the use of an implicit 

or explicit plant model. The underlying idea of COEM is as 

follows. Each time the response of a plant to a set-point 

signal is observed, we learn how to repeat that response, 

should it be required in future. 

Traditionally, adaptive control strategies have been 

categorized into two groups: direct and indirect. These 

approaches rely implicitly or explicitly on a plant model in 

order to derive the appropriate change in each controller 

parameter from the plant output error, y(k)r(k)(k)ey == . In 

COEM, the plant output error is not utilized and therefore no 

plant model is required. The lack of dependence on the plant 

output error, however, introduces a restriction on the 

application of COEM. Since the cost function is not based on 

the plant output error, this error is not directly minimized. 

This implies that if the controller does not already stabilize 

the plant, COEM is not likely to cause it to do so. In other 

words, the controller must be able to stabilize the plant 

before COEM is utilized. 

We consider the non linear plant 

 1)q(ku(k),....u1),qy(kF(y(k),...1)y(k +−+−=+  (3) 

where )(ky  is the plant output at instant k  F(.) is a non linear 

function and u(k) is the control signal. The constant p and q 

defines the order of the plant.  

At any instance the state of the plant may be defined by 
T1)]py(k[y(k),....S +−= Assuming that the plant is 

observable). The fuzzy controller produces a control 

signal )(ku , which drives the output of the plant 

to )1( +ky . Regardless of whether or not this was the 

desired response, if the transition from state S  to an output 

)1( +ky is required again in future, the appropriate control 

signal for the plant would be )(ku . This is in contrast to the 

normal control problems where the aim is to design a 

controller which will drive the plant output to track the given 

reference signal )(kr . 

The fuzzy controller in fig.4 outputs the signal 

)(̂ku instead of producing a control signal u(k). Thus the 

output error is u(k)k)(u(k)eu −= ˆ . An important point is that 

although )(̂ku is produced by the controller; it is not applied 

to the plant. In fact it is used to calculate )(keu . )(̂ku is 

computed by producing a new controller input vector which 

is passed through the fuzzy controller. A fuzzy controller can 

be defined as a functional relation between a set of inputs and 

outputs. This is given by 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 3 Schematic diagram of new robot hardware 

IAENG International Journal of Computer Science, 35:2, IJCS_35_2_01
______________________________________________________________________________________

(Advance online publication: 20 May 2008)



 

 

 

 

)Θ(k)G(z(k),u(k) = , where 

 Tm)]1),...u(ku(k1),nky(k),...y([r(k),z(k) −−+−=  (4) 

Where G( ) is the function defining the controller 

characteristics, )(kΘ is the set of controller parameters and 

)(kz is the controller input vector and, m and n are the 

constants. Note that l=m+n+1.  

 The fuzzy controller is parameterized by  

l(k)β(k),σ(k),µk
ii

j
i
j ,....2,1j;N....2,1i;{)( ===Θ  

(k)û is calculated by producing a new controller input vector, 

(k)ẑ  which is passed through the fuzzy controller as 

Θ(k))k),(G(zk)(u ˆˆ = , where 

 T
m)]1),...u(ku(k1),nky(k),...y(1),[y(kk)(z −−+−+=ˆ   (5) 

The input vector z(k) differs from (k)ẑ in the first element, 

where y(k+1) replaces r(k). 

We have chosen to use the Gaussian membership function 

and the centric method of fuzzy inference in this paper as a 

concrete fuzzy structure to convey the idea. The method to be 

described in Section 4.3 is not dependent on the choice of 

membership function nor the choice of inference mechanism. 

Whether one chooses to use, for example, a triangular 

membership function or the Takagi-Sugeno inference 

mechanism, the method developed in Section 4.3 can be 

applied directly. 

A. Fuzzy controller system 

Consider the non linear plant (3). The Sugeno’s type 

inverse fuzzy model [15] of the process can be formulated as 

given below: 

The fuzzy rule base R contains a set of N fuzzy rules as

 }......,{ 21 NRuleRuleRuleR =  where the ith fuzzy rule is  

iii
iskuthenAiskzifRule β)(

~
)(:  

Where 
T

l kzkzkz )](),......([)( 1= is a vector which contains all inputs to 

the fuzzy controller, and 

]
~

,.......
~

[
~

1
i

l

i
AAiA = is a linguistic vector referring to fuzzy 

variable z (k).
iβ  is a consequent parameter corresponding 

to the control signal )(ku .The number of individual 

membership functions for specific input value )(kz j  is jk . 

 

 

 

 

 

 

 

 

 

 

Fig.4 Fuzzy control system using COEM 

 

In this paper the linguistic values are defined by Gaussian 

membership functions and are given as: 

 

 
2

j )/σµ(k)(z
eA

i
j

i
j

~ −−
=i

j  (6) 

Where j
iσ  and j

iµ are unknown constant parameters. 

These parameters will be adjusted on-line using a Gradient 

Descent Algorithm.  

The output of the controller is obtained as: 

 

∑

∑

=

==
N

i

i

N

i

ii

ku

1

1)(

ω

βω

 (7) 

Where 
iβ represents the consequent parameters and 

iω is 

the rule-firing- strength given as: 

 ∏
=

==
l

1j

i N,....2,1i
~

(k))(zA j
i
jω  (8) 

 

B. Fuzzy control initialization 

While designing a fuzzy controller, the linguistic rules are 

directly derived from the expert knowledge of the plant or 

some numerical techniques can be used to generate the rules 

automatically. The latter approach was utilized here. 

 The algorithm for initializing the controller was 

developed using the following steps: 

1) Generate T numerical data samples (
tt

u,z ) by 

applying random signals to the input of the plant. 

2) Specify the maximum and minimum values of all 

inputs 
−+

jj ZZ , to the fuzzy controller. 

3) Define a number of individual membership 

functions jK for each input. 

4) Determine the initial centre
i
jµ , of each antecedent 

membership function, distributed uniformly over 

the universe of jZ using an 

interval 1−−
−+

jjj /KZZ . The centers are chosen 

such that they are distributed evenly over the 

universe of jZ .  

5) Determine the dispersions, 
i
jσ of the antecedent 

membership function as 

 N,....2,1i, =−=
−+

jjjj
i
j /KZZασ   (9) 

where jα is the interaction coefficient of 

membership functions. 

6) From the rule-based system with all the possible 

combinations of the membership  

functions. The maximum possible number of rules 

is j
i

1j K=∏ . The shape of the Gaussian membership 

function with 16 rules is shown in the Fig. 5.  

7) A heuristic method (8) is used to set the parameters 

of the consequent part as 
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Fig. 5 Membership functions for fuzzy controller with 16 rules. 
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8) If the system behavior is still not desirable, then we 

have to repeat the controller initialization steps with 

more membership functions and larger interaction 

coefficient. 

C. Parameter adaptation using Gradient Descend 

Algorithm  

The controller output error is used in a cost function such as 

 
2

2

1
(k)eJ(k) u=  (11) 

The adaptation of controller parameters is done to minimize 

the cost function. For this method to be effective, it is 

desirable that the membership functions employed have a 

continuous first derivative. The Gradient Descend algorithm 

is employed here.  

The parameters are updated by: 
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Now using (11), the partial derivative of the cost function, 

J(K), to each parameter can be formulated as 
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Where η is the rate of descend. If the lth rule is 

dependent on the ith membership function of the jth input, 

ij
lc is equal to 1 otherwise equal to zero. 

V. SOFTWARE DESIGN OF THE CONTROLLER 

To implement the control algorithms developed in section 3, 

real-time software was developed using C++ and VC++ [15]. 

Given the nature of the hardware, the software design is 

based on the use of timer interrupts to generate the discrete 

time controller sampling period. The interrupt service 

routine runs the controllers for all six joints. There were 

some implementation constraints to optimize the code with 

respect to memory and computation time for real time system. 

To solve this problem, we have optimized our software 

coding to decrease the computation time, however, at the 

expense of memory. 

At the start of operation the robot is calibrated. The 

calibration procedure begins by running real-time control 

with the encoders reset and the demand position set to 0. The 

real-time controller will not cause any movement as the 

demand position values are equal to the actual values. For 

each joint in turn, the main program will check the joint 

potentiometer value and drive the joint toward the home 

position. Upon reaching the potentiometer home position 

and locating the nearest shaft encoder index pulse the 

corresponding quadrature counter will be cleared and the 

desired value set to 0. The procedure is repeated until all 

joints are properly calibrated. 

      The graphical user interfaces developed for robot are 

shown partially in Fig. 6 and Fig. 7.  

       Fig. 6 shows different options for robot control. The 

“Position-Control” and “Rate-Control” are used to control 

the robot 6 joints’ position and speed respectively. The 

“Signal-Generator” is designed mainly for testing the robot 

position-trajectory performance. The “Data-View” and 

“data-Curve” display the joints position and speed data. Fig. 

7 demonstrates “Position-Control” window only. The 

software has several levels: 

 

• System initialization and self diagnosis: which initializes 

custom boards, configures the robot and diagnoses each 

block of the system; 

• System coordination and safety check: which works with 

the safety device to monitor robot status and stop 

operations in case of errors or emergency; 

• Basic I/O routines for feedback information and output 

control signals: which reads joint encoders, position 

signals, estimate velocities and convert digital control 

signals into analog ones; 

•  

 

 

 

 

 

 

 

 

 

 

 

Fig.6 GUI of PC based PUMA Robot 

IAENG International Journal of Computer Science, 35:2, IJCS_35_2_01
______________________________________________________________________________________

(Advance online publication: 20 May 2008)



 

 

 

• Kinematics & dynamic routines: This includes forward 

and inverse kinematics for path planning as well 

dynamic routines. 

• User interface: This provides users with control buttons 

to properly operate the robot, convenient means of 

planning experiments and post-processing experimental 

data.   

VI. RESULTS 

For this robot, the Denavit-Hartenberg can be defined in 

accordance of coordinate system. Matrix nA  shows relative 

positioning of links.  
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6,.....2,1nsins,cosc nnnn ===  forθθ  And dn, an 

and nθ : Constant D-H parameters.  

The parameters of the robotic arm manipulators are l1=0.3m; 

l2=0.44m; l3=0.38m; m1=25; m2=26.3; m3=15. The friction 

and disturbance terms are taken as: 
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The implementation uses 16 rules initially, with four 

individual membership functions for each of y(k) and r(k), 

i.e. K1=4 and K2=4. The interaction coefficients are 

7.021 ==αα while 01.0=η was used. The shape of the four 

Gaussian membership functions is shown in the fig 

The suggested system was developed and applied to Puma 

560 robot. The original proprietary controller was replaced 

with it. The PC runs the Windows 2000 operating system.  

The PC-based controller is evaluated from two different 

aspects. The first aspect is to examine how easy the system 

integrations and modifications are. The second is to examine 

the performance of the control. The first aspect is obvious. 

The suggested PC-based hardware and software ensure that 

the extensibility and scalability are available. The second 

aspect is evaluated by the trajectory-tracking experiment. 

To verify the effectiveness of the new controller, experiments 

were performed to test the tracking control of the robot 

manipulator. Firstly, each joint is separately requested to 

follow a desired trajectory. In this test, each joint is asked to 

move to a specified destination while following a 

predetermined path.  

 Fig. 8 and Fig. 9 show the desired position trajectories 

and position tracking errors respectively for six joints. The 

desired profile consists of two parts: (a) linear acceleration 

from rest to maximum velocity for joints 1, 2, 3 and 5 while 

linear deceleration for joint 4 and (b) decelerate linearly. The 

position tracking errors of joint 1, 3, 4, 5 and 6 are in the 

acceptable range of 0.005rad to 0.01rad except joint 2 for 

which the tracking error is 0.02rad. 

To further verify the controller trajectory tracking 

performance, all the joints were requested to follow a varying  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.7 Robot Position-control GUI layout 
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Fig 8 Desired position trajectories (Radians vs. Seconds) 

 

 
 

  Fig 9 Position tracking error (Radians vs. Seconds) 

 

 

trajectory. Fig 10 & Fig.11 shows the joint trajectory tracking 

performance and error respectively. All the other joints show 

acceptable tracking performances. 

Two further tests were performed to examine the 

simultaneous joints movement: (1) the maximum velocity 

was set at 15000 counts/sec. To test the simultaneous joints 

movement, all six joints were asked to move at their fastest 

respective speeds and (2) the linear interpolation mode test in 

which the individual joints should arrive at their respective 

destinations at the same time. 

 

 
 

Fig.10.   Comparison between planned and followed 

trajectory of joint1 (Radians vs. Seconds) 

 

 
 

Fig.11   Trajectory tracking error for joint1. 

(Radians vs. Seconds) 

 

The same tests were performed with varying joints’ 

velocities and accelerations. Joint 1 and joint 3 showed 

higher position tracking errors at higher velocities and 

accelerations, however, all the remaining joints showed 

satisfactory performance. All the joints show satisfactory 

performance at low velocity as well as they exhibit low 

position tracking error while following a velocity profile at 

high speeds. 

For robustness, The FLC is compared with the 

conventional PD controller. The PD controller was first well 

tuned for a normal operation. Then friction and disturbance 

was introduced in the hardware testing. The results in Fig.12 

to Fig.15 show that the proposed controller for the PUMA 

robot is much more robust as compared to a well tuned PD 

controller. 

 

Fig. 12 FLC with friction ≈ 0.23Nm (Joint1 of robot) (Radians vs. 

Seconds) 

 

 
 

Fig. 13 PD with friction ≈ 0.23Nm  (Joint 1 of robot) (Radians vs. 

Seconds) 
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Fig. 14 FLC with unit input disturbance 

(Radians vs. Seconds) 

 
 

Fig. 15 PD with unit input disturbance 

(Radians vs. Seconds) 

 

Another experiment was done to compare the performance of 

our implemented fuzzy controller with LQR and sliding 

mode controller. Though the other controller also show good 

tracking performance, FLC was able to compensate for some 

disturbances and sensing noise  as shown in the Fig. 16(a, b 

and c). 

VII. DISCUSSION AND CONCLUSION 

In this paper, the preliminary results are achieved in the 

development and implementation of a new simple PC based 

replacement controller for PUMA 512 robot. By assembling  
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controller from off-the-shell hardware and software 

components, the benefits of reduced and improved 

robustness have been realized. 

 Although the experiments were performed at 

educational and research institution, the research is oriented 

towards industrial applications 

The paper uses the method “Controller Output Error 

method (COEM)” for on-line tuning of the fuzzy controller. 

This method can be used with any fuzzy controller design; 

the only requirement is that the controller must be stable 

before initializing the tuning. So any fuzzy rule-based model 

can be used to parameterize and initialize the controller of 

the system. COEM is subsequently applied to tune the 

parameters of fuzzy controller for purpose of achieving 

better performance. 

Gaussian membership function and the centric method of 

fuzzy inference in this paper are chosen as a concrete fuzzy 

structure to convey the idea. The method described in 

Section 4.3 is not dependent on the choice of membership 

function nor the choice of inference mechanism. Whether 

one chooses to use, for example, a triangular membership 

function or the Takagi-Sugeno inference mechanism, the 

method developed in Section 4.3 can be applied directly. 

Though, some technical problems were faced while 

performing the tests at higher velocities for joint 1 and joint 

3, the newly designed hardware and software works very well 

and overcomes the problems in the previous PC based design 

for PUMA robot. All the joints show satisfactory 

performance at low velocity as well as they exhibit low 

position tracking error while following a velocity profile at 

high speeds.  

The experimental results showed that it is feasible to 

implement modern control methods for PUMA 500 Series 

Robots through software routines running on a PC. 

Presently the authors are working to implement and adapt 

the system for an industrial CNC milling machine. 

 

 

 

 
           (a) 

 

 

 

 

 

       (   (      (b) 

 

 

 

 

 

 

 

                  (c) 

 

 

 

Fig.16.Robot Joint 1 tracking performance (a) FLC implementation, 

(b) LQR implantation, (c) Slide    mode control implementation 

IAENG International Journal of Computer Science, 35:2, IJCS_35_2_01
______________________________________________________________________________________

(Advance online publication: 20 May 2008)



 

 

 

ACKNOWLEDGMENT 

The authors would like to thank to Miss Bai Tingting who 

helped us in robot hardware design and Mr. Ye Guohai for 

his contribution in mechanical design and assembly. We 

would also like to thank Dr. Huang for helping us in 

debugging the GUI software in VC++. 

REFERENCES 

[1]  S. Sorenson, Overview of Modular, Industry standard based open 

architecture controller, Proc. Intl. Conference of Robots and 

Vision Automation, Detroit Michigan, , 1993, USA,  

[2] D. J. Miller, R. C. Lenox, An Object Oriented Environment for 

Robot system Architecture, Control system magazine, IEEE, 

1991, Vol 11, Issue 2, pp. 14-23. 

[3]. M. B. Jr. Leahy, S. B. Petroski, Unified  Telerobotic 

Architecture Project status report, IEEE Intl. Conference 

Systems, man and Cybernetics, San Antonio, Texas,1994, Vol. 

1, pp. 249-253. 

[4]. Unimation Robotics. User’s Guide to VAL 398P2A: A Robot 

Programming and Control System, Unimation Inc., Danbury, 

Connecticut, 1983, USA. 

[5]. R. Vistness, Breaking away from VAL. Technical Report, 

Unimation Inc. Danbury, Connecticut, 1982, USA. 

[6]. Pan Laingdong, Huang Xinhan., Implementation of a PC-based 

robot controller with open architecture, Proceedings. IEEE 

International Conference on Robotics and Biometrics, 2004, 

pp. 790-794. 

[7]. V. M. Becerra, C. N. J. Cage, W. S. Harwin, P. M. Sharkey, 

Hardware retrofit and computed torque control of a Puma 560 

Robot updating an industrial manipulator. IEEE Control 

Systems Magazine, 2004, v 24, no. 5, pp. 78-82 

[8]. P. Fiedler, & C. Schlib, Open Architecture Robot Controllers 

and Workcell Integration, Robotics Today, 1998, Vol. 11, no.4, 

pp. 1-4. 

[9]. J. Katupitiya, R.  Radajewski, J. Sanderson, M.  Tordon, 

Implementation of a PC based controller for a PUMA Robot, 

Proc. IEEE Conference on Mechatronics and Machine Vision 

in Practice, 1997, Australia, pp. 14-19. 

[10]. H. C. Anderson, A. Lofti and A. C.  Tsoi, A new approach to 

adaptive fuzzy control: The   controller output error method. 

Proc. IEEE conference on system, man and Cybernetics [C]. 

Part B. 1997, 27(4), 686~691 

[11]. V. M. Becerra, S. Cook, J. Deng, Predictive Computed-torque 

control of a PUMA 560 Manipulator robot.  Proc. 16th IFAC 

world congress, 2005, Prague. 

[12]. 15. P. I. Corke, Operational Details of the Unimation Puma 

Servo System, Report, CSIRO Division of Manufacturing 

Technology, 1993, Australia. 

[13]. L. Hanho, G. E. Sobelman, VLSI Design of Digit-Serial FPGA 

Architecture, Journal of Circuits, Systems, and Computers, 

2004, Vol. 13, No. 1 

[14]. F. L. Lewis, C. T.  Abdallah, & D. M. Dawson, Robot 

Manipulator Control, Theory and Practice, 2nd ed., Marcel 

Dekker, 2004. 

[15]. K. M. Passino.and S. Yurkovich. Fuzzy Control. Menlo Park, 

Addison and Wesley Longman, 1998, 250~390. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IAENG International Journal of Computer Science, 35:2, IJCS_35_2_01
______________________________________________________________________________________

(Advance online publication: 20 May 2008)

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4937
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4937

	I. INTRODUCTION
	II. Original puma unimate 500
	III. new hardware configuration
	A. Advantages of new PC based PUMA robot

	IV. description of the control scheme
	A. Manipulator dynamic model
	A. The Controller Output Error Method
	A. Fuzzy controller system
	B. Fuzzy control initialization
	C. Parameter adaptation using Gradient Descend Algorithm

	V. Software design of the controller
	VI. results
	VII. discussion and conclusion



