

Abstract—The Controller Output Error Method (COEM) is

introduced and applied to the design of an adaptive fuzzy

controller for a PUMA robot. The method employs a gradient

decent algorithm to minimize a cost function which is based on

the error at the controller output. The cost function is minimized

by adapting some or all of the parameters of the fuzzy controller.

The paper also describes the replacement of a controller for a

PUMA 512 robot with a newly designed PC based (open

architecture) controller employing COEM. The original

structure of the PUMA robot is retained. The hardware of the

new controller includes in-house designed parts as: PWM

amplifiers; digital and analog controllers; I/O cards; signal

conditioner cards; and 16 bits A/D and D/A boards. An Intel

Pentium IV industrial computer is used as the central controller.

The control software has been implemented using VC++

programming language. The trajectory tracking performance of

all the six joints was tested at varying velocities. The

experimental results showed that it is feasible to implement the

suggested open architecture platform for PUMA 500 Series

robots through software routines running on a PC.

Index Terms—PUMA robot, Adaptive fuzzy control, Pulse

width modulation (PWM) amplifier, Graphical user Interface

(GUI), Controller output error method (COEM).

I. INTRODUCTION

Robots form an essential part of mechatronics and Computer

Integrated Manufacturing (CIM) systems. Robots are

generally controlled by dedicated controllers. As upgrades

become costly and interfacing becomes complex due to

hardware and software conflicts, the flexibility of the robotic

manipulators is reduced. Dedicated hardware and proprietary

software which normally allows only high level programming

by the users are costly and difficult to understand.

 Since the early years of 1980’s many projects have been

carried out to develop an open architecture controller such as

NGC[1], GISC[2], ROBLINE[3] and so on which try to solve

the problem of realization of an open architecture controller,

and several prototype systems have been developed.

However, they are not widely accepted due to the overly

restrictive definitions and special standards.

Manuscript received January 07, 2008. This work was supported in part

by the Simulation & Machine Control Lab, College of Automation

Engineering, Nanjing University of Aeronautics & Astronautics.

M. Farooq is with the Simulation & Machine Control Lab, College of

Automation Engineering, Nanjing University of Aeronautics &

Astronautics, 210016, PR China (phone: +86-25-84892310; fax:

+86-25-84498069; e-mail: muhfarooq@nuaa.edu.cn)

Dao-Bo Wang is with the Simulation & Machine Control Lab, College of

Automation Engineering, Nanjing University of Aeronautics &

Astronautics, 210016, PR China (e-mail: dbwang@nuaa.edu.cn).

.

The Unimate PUMA 500 series Robots mainly uses DEC LSI

11 processor running VAL robot control software[4].

Methods of bypassing VAL are discussed in literature,

including Unimation technical reports[5]. However, most of

these procedures have been confined to replacing the LSI 11

with another DEC computer, leaving peripheral hardware

intact. A well- refined open structure architecture for

industrial robot is discussed in [6]. However; it is mainly

based on Common Object Request Broker Architecture

(COBRA), leaving scope to simplify the hardware and

software work. A hardware retrofit for Puma 560 robot is

discussed in [7]

but still it relies on special-purpose TRC041

cards installed on the backplane of Mark II controller.

 The shift towards the personal computer open architecture

robot controller and the impact of using these newer

controllers for system integration is discussed in [8]. In fact; it

is far more cost effective to develop new hardware using less

specific interfaces. An improved PC-based design for Puma

robot was presented in [9] but this hardware configuration

purely depends on in-house built designs. In our paper a

flexible, modular hardware is developed for the puma robot,

incorporating a personal computer, in-house as well as

specialized hardware. Some technical problems in the

previous design for velocity test profile of joints1, 2 and 4

have also been addressed. The joints position tracking error at

high velocities is also minimized in our design.

 In this paper, an adaptive fuzzy control design is developed

for robot trajectory tracking control. The controller output

error method (COEM) is introduced in proposed design,

which can be used for the on-line tuning of parameters of a

fuzzy controller. This method can be used with any fuzzy

controller design; the only requirement is that controller must

be stable before the commencement of on-line tuning. Thus,

at first, any fuzzy rule-based model and any inference

mechanism can be employed to parameterize and initialize

controller of the system, and then COEM is applied

subsequently to tune parameters of fuzzy controller for

purpose of achieving better performance Although the

method has already been discussed by few authors
10, 11

 but its

implementation for a PUMA robot using an open architecture

platform was not studied so far. The authors employ the

adaptive fuzzy control using COEM method as a control

strategy to implement the open architecture design for PUMA

560 robot.

II. ORIGINAL PUMA UNIMATE 500

The Unimation Mark II is an industrial robot controller as

shown as in Fig.1. It consists of mainly a DEC LS1 serial

Implementation of a New PC based Controller

for a PUMA Robot based on COEM

M. Farooq M, Member IAENG. Dao Bo Wang

IAENG International Journal of Computer Science, 35:2, IJCS_35_2_01
__

(Advance online publication: 20 May 2008)

Fig.1 Unimate Puma 512 block diagram

interface board; CMOS board and EPROM board; servo

interface board and Six digital servo boards [12].

The original system used a large number of operational

amplifiers and discrete components for conditioning of shaft

encoder signals and amplification of analog control voltages.

This leaves considerable scope to simplify and compact the

controller design by substitution of more modern

components.

III. NEW HARDWARE CONFIGURATION

The PUMA 512 robot used for work is described in Fig.2.

It is a member of the Unimate 560 series of Robots, having six

joints.

Each of PUMA 512 joints is driven by through a gear train

by a permanent magnet DC servo motor which incorporates a

rotary shaft encoder, a tachometer and a potentiometer. The

new system’s block diagram is shown in the Fig.3. The PWM

amplifier box contains 6 in- house built amplifiers employing

SA01. The SA01 amplifier is a pulse width modulation

amplifier that can supply 2KW to the load.

The control box includes an internally designed digital

conditioner card for shaft encoder’s signals and an analog

conditioner card for potentiometer and tachometer. The

in-house built encoder conditioner card uses ALTERA MAX

7256AETC100-10 CPLD [13]. It belongs to MAX 7000A

programmable device family. The card has 3 CPLDs one for

each shaft encoder

The robotic arm needs two digital conditioner cards. The

CPLDs are programmed using VHDL language. The signals

A+, A-, B+, B-, Z+ and Z-, VCC and DGND are the eight

signals from rotary shaft encoder which are interfaced to the

CPLD via a differential line receiver MC3486. The 24 signals

D0_waist to D23_waist go to 6 channels 722 DIO card. The

other 5 joints’ shaft encoders are connected to digital

conditioner card in the same way. The power supply

Fig.2 PUMA robot 512 joints identification

unit incorporates power supplies for PWM amplifiers units,

signal conditioner cards and an excitation 110V power supply

for 6 servo motors.

A Pentium IV industrial computer is used as a central

controller. It has one 6 channel 722 DIO card, 16 bits 816 A/D

and 6126 D/A cards.

 The analog signals from tachometers and potentiometers

are fed into the analog conditioner card. The card was

designed at Simulation & Machine Control lab (S & MC).

After conditioning the signals, they are fed to industrial PC

(A/D card). The analog feedback signals from D/A are

provided to PWM amplifiers for each joint to complete the

speed loop.

A. Advantages of new PC based PUMA robot

A new PC-based PUMA robot manipulator control system

has three advantages: simplicity, flexibility and low cost. The

hardware and software complexity of the Unimate Mark II

robot controller is extensively reduced as discussed in section

3. Flexibility refers to the ability to implement arbitrary

control strategies which can easily integrate sensor

information into low level control. Flexibility also refers to

the ability to easily use wide variety of sensors in the

trajectory generator. The suggested PC based platform has the

ability to easily integrate such sensors as sonars, ranging

lasers, cameras etc. that would allow the user to implement

complex control strategies (e.g. vision based control). With

the current digital servo boards in the Mark II, none of these

advanced modes are feasible.

Another potential advantage of the suggested platform is its

cost effectiveness. Due to economies of scale and increased

CPU power, personal computers have become viable and cost

effective alternatives to workstations in engineering

applications. An Intel processor easily outperforms a Spark

IPX while costs less than a thousand dollars.

IV. DESCRIPTION OF THE CONTROL SCHEME

A. Manipulator dynamic model

The dynamic model of an n-link manipulator is given as

[14]:

IAENG International Journal of Computer Science, 35:2, IJCS_35_2_01
__

(Advance online publication: 20 May 2008)

 τG(q)q)qC(q,qM(q) =++ &&&& (1)

Where q is the n dimensional joint variable, q& is the time

derivative of q, i.e. velocity, M(q) is the n × n inertia matrix,

qqqC &&),(is the n-dimensional vector of coriolis and

centrifugal force, G(q) is the n-dimensional vector of gravity

force and τ is the n dimensional vector of applied torque.

After taking the effects of random disturbances into

account, the manipulator dynamic model becomes as under:

 τ)q(q,BG(q)q)qC(q,qM(q) d =+++ &&&&& (2)

Where),(qqBd
& represents an additive bounded

disturbance due to load variation and modeling errors.

A. The Controller Output Error Method

The Controller output error method is a technique of fine

tuning the parameters of a fuzzy system within the control

architecture shown in Fig.4.COEM is a strategy for adapting

the parameters of a controller without the use of an implicit

or explicit plant model. The underlying idea of COEM is as

follows. Each time the response of a plant to a set-point

signal is observed, we learn how to repeat that response,

should it be required in future.

Traditionally, adaptive control strategies have been

categorized into two groups: direct and indirect. These

approaches rely implicitly or explicitly on a plant model in

order to derive the appropriate change in each controller

parameter from the plant output error, y(k)r(k)(k)ey == . In

COEM, the plant output error is not utilized and therefore no

plant model is required. The lack of dependence on the plant

output error, however, introduces a restriction on the

application of COEM. Since the cost function is not based on

the plant output error, this error is not directly minimized.

This implies that if the controller does not already stabilize

the plant, COEM is not likely to cause it to do so. In other

words, the controller must be able to stabilize the plant

before COEM is utilized.

We consider the non linear plant

 1)q(ku(k),....u1),qy(kF(y(k),...1)y(k +−+−=+ (3)

where)(ky is the plant output at instant k F(.) is a non linear

function and u(k) is the control signal. The constant p and q

defines the order of the plant.

At any instance the state of the plant may be defined by
T1)]py(k[y(k),....S +−= Assuming that the plant is

observable). The fuzzy controller produces a control

signal)(ku , which drives the output of the plant

to)1(+ky . Regardless of whether or not this was the

desired response, if the transition from state S to an output

)1(+ky is required again in future, the appropriate control

signal for the plant would be)(ku . This is in contrast to the

normal control problems where the aim is to design a

controller which will drive the plant output to track the given

reference signal)(kr .

The fuzzy controller in fig.4 outputs the signal

)(̂ku instead of producing a control signal u(k). Thus the

output error is u(k)k)(u(k)eu −= ˆ . An important point is that

although)(̂ku is produced by the controller; it is not applied

to the plant. In fact it is used to calculate)(keu .)(̂ku is

computed by producing a new controller input vector which

is passed through the fuzzy controller. A fuzzy controller can

be defined as a functional relation between a set of inputs and

outputs. This is given by

Fig. 3 Schematic diagram of new robot hardware

IAENG International Journal of Computer Science, 35:2, IJCS_35_2_01
__

(Advance online publication: 20 May 2008)

)Θ(k)G(z(k),u(k) = , where

 Tm)]1),...u(ku(k1),nky(k),...y([r(k),z(k) −−+−= (4)

Where G() is the function defining the controller

characteristics,)(kΘ is the set of controller parameters and

)(kz is the controller input vector and, m and n are the

constants. Note that l=m+n+1.

 The fuzzy controller is parameterized by

l(k)β(k),σ(k),µk
ii

j
i
j ,....2,1j;N....2,1i;{)(===Θ

(k)û is calculated by producing a new controller input vector,

(k)ẑ which is passed through the fuzzy controller as

Θ(k))k),(G(zk)(u ˆˆ = , where

 T
m)]1),...u(ku(k1),nky(k),...y(1),[y(kk)(z −−+−+=ˆ (5)

The input vector z(k) differs from (k)ẑ in the first element,

where y(k+1) replaces r(k).

We have chosen to use the Gaussian membership function

and the centric method of fuzzy inference in this paper as a

concrete fuzzy structure to convey the idea. The method to be

described in Section 4.3 is not dependent on the choice of

membership function nor the choice of inference mechanism.

Whether one chooses to use, for example, a triangular

membership function or the Takagi-Sugeno inference

mechanism, the method developed in Section 4.3 can be

applied directly.

A. Fuzzy controller system

Consider the non linear plant (3). The Sugeno’s type

inverse fuzzy model [15] of the process can be formulated as

given below:

The fuzzy rule base R contains a set of N fuzzy rules as

 }......,{ 21 NRuleRuleRuleR = where the ith fuzzy rule is

iii
iskuthenAiskzifRule β)(

~
)(:

Where
T

l kzkzkz)](),......([)(1= is a vector which contains all inputs to

the fuzzy controller, and

]
~

,.......
~

[
~

1
i

l

i
AAiA = is a linguistic vector referring to fuzzy

variable z (k).
iβ is a consequent parameter corresponding

to the control signal)(ku .The number of individual

membership functions for specific input value)(kz j is jk .

Fig.4 Fuzzy control system using COEM

In this paper the linguistic values are defined by Gaussian

membership functions and are given as:

2

j)/σµ(k)(z
eA

i
j

i
j

~ −−
=i

j (6)

Where j
iσ and j

iµ are unknown constant parameters.

These parameters will be adjusted on-line using a Gradient

Descent Algorithm.

The output of the controller is obtained as:

∑

∑

=

==
N

i

i

N

i

ii

ku

1

1)(

ω

βω

 (7)

Where
iβ represents the consequent parameters and

iω is

the rule-firing- strength given as:

 ∏
=

==
l

1j

i N,....2,1i
~

(k))(zA j
i
jω (8)

B. Fuzzy control initialization

While designing a fuzzy controller, the linguistic rules are

directly derived from the expert knowledge of the plant or

some numerical techniques can be used to generate the rules

automatically. The latter approach was utilized here.

 The algorithm for initializing the controller was

developed using the following steps:

1) Generate T numerical data samples (
tt

u,z) by

applying random signals to the input of the plant.

2) Specify the maximum and minimum values of all

inputs
−+

jj ZZ , to the fuzzy controller.

3) Define a number of individual membership

functions jK for each input.

4) Determine the initial centre
i
jµ , of each antecedent

membership function, distributed uniformly over

the universe of jZ using an

interval 1−−
−+

jjj /KZZ . The centers are chosen

such that they are distributed evenly over the

universe of jZ .

5) Determine the dispersions,
i
jσ of the antecedent

membership function as

 N,....2,1i, =−=
−+

jjjj
i
j /KZZασ (9)

where jα is the interaction coefficient of

membership functions.

6) From the rule-based system with all the possible

combinations of the membership

functions. The maximum possible number of rules

is j
i

1j K=∏ . The shape of the Gaussian membership

function with 16 rules is shown in the Fig. 5.

7) A heuristic method (8) is used to set the parameters

of the consequent part as

IAENG International Journal of Computer Science, 35:2, IJCS_35_2_01
__

(Advance online publication: 20 May 2008)

Fig. 5 Membership functions for fuzzy controller with 16 rules.

∑∏

∑∏

= =

= =
=

T

1t

l

1j

T

1t

l

1ji

~

~

)(zA

)u(zA

t
j

i
j

tt
j

i
j

β
 (10)

8) If the system behavior is still not desirable, then we

have to repeat the controller initialization steps with

more membership functions and larger interaction

coefficient.

C. Parameter adaptation using Gradient Descend

Algorithm

The controller output error is used in a cost function such as

2

2

1
(k)eJ(k) u= (11)

The adaptation of controller parameters is done to minimize

the cost function. For this method to be effective, it is

desirable that the membership functions employed have a

continuous first derivative. The Gradient Descend algorithm

is employed here.

The parameters are updated by:

)(

)(
)()1(

k

kJ
kk

Θ∂

∂
−Θ=+Θ η

Now using (11), the partial derivative of the cost function,

J(K), to each parameter can be formulated as

 []

[]

∑

∑

∑

∑

∑

=

=

=

=

=

−−

−=
∂

∂

−−

−=
∂

∂

−=
∂

∂

N

1i

i3i
j

N

1l

lil
ij

i
jju

N

1i

i2
j

i

N

1l

lil
ij

i
jju

i
j

i
N

1i

i
u

i

ω)(σ

(k))u(βωc)µ(k)Z(k)(2e

σ(k)

J(k)

ω)(σ

(k))u(βωc)µ(k)Z(k)(2e

u

J(k)

ω

(k)ωe

β

J(k)

ˆˆ

ˆˆ (12)

Where η is the rate of descend. If the lth rule is

dependent on the ith membership function of the jth input,

ij
lc is equal to 1 otherwise equal to zero.

V. SOFTWARE DESIGN OF THE CONTROLLER

To implement the control algorithms developed in section 3,

real-time software was developed using C++ and VC++ [15].

Given the nature of the hardware, the software design is

based on the use of timer interrupts to generate the discrete

time controller sampling period. The interrupt service

routine runs the controllers for all six joints. There were

some implementation constraints to optimize the code with

respect to memory and computation time for real time system.

To solve this problem, we have optimized our software

coding to decrease the computation time, however, at the

expense of memory.

At the start of operation the robot is calibrated. The

calibration procedure begins by running real-time control

with the encoders reset and the demand position set to 0. The

real-time controller will not cause any movement as the

demand position values are equal to the actual values. For

each joint in turn, the main program will check the joint

potentiometer value and drive the joint toward the home

position. Upon reaching the potentiometer home position

and locating the nearest shaft encoder index pulse the

corresponding quadrature counter will be cleared and the

desired value set to 0. The procedure is repeated until all

joints are properly calibrated.

 The graphical user interfaces developed for robot are

shown partially in Fig. 6 and Fig. 7.

 Fig. 6 shows different options for robot control. The

“Position-Control” and “Rate-Control” are used to control

the robot 6 joints’ position and speed respectively. The

“Signal-Generator” is designed mainly for testing the robot

position-trajectory performance. The “Data-View” and

“data-Curve” display the joints position and speed data. Fig.

7 demonstrates “Position-Control” window only. The

software has several levels:

• System initialization and self diagnosis: which initializes

custom boards, configures the robot and diagnoses each

block of the system;

• System coordination and safety check: which works with

the safety device to monitor robot status and stop

operations in case of errors or emergency;

• Basic I/O routines for feedback information and output

control signals: which reads joint encoders, position

signals, estimate velocities and convert digital control

signals into analog ones;

•

Fig.6 GUI of PC based PUMA Robot

IAENG International Journal of Computer Science, 35:2, IJCS_35_2_01
__

(Advance online publication: 20 May 2008)

• Kinematics & dynamic routines: This includes forward

and inverse kinematics for path planning as well

dynamic routines.

• User interface: This provides users with control buttons

to properly operate the robot, convenient means of

planning experiments and post-processing experimental

data.

VI. RESULTS

For this robot, the Denavit-Hartenberg can be defined in

accordance of coordinate system. Matrix nA shows relative

positioning of links.





















−

−

=

1000

dcosαsinα0

sinθasinαcosθcosαcosθsinθ

cosθasinαsinθcosθsinθcosθ

A
nnn

nnnnnnn

nnnnnnn

n

Where



















 −

=





















−

−

=

0000

d100

sa0ss

ca0sc

A,

1000

0010

0c0s

0s0c

A
2

2222

2222

2

11

11

1

,



















−

−

=





















−

−

=

1000

0010

0c0s

0s0c

A,

0000

d100

sa0cs

ca0sc

A
44

44

4
3

3333

3333

3

,



















 −

=

1000

d100

00cs

00sc

A
5

55

55

5

and



















 −

=

1000

0100

00cs

00sc

A
66

66

6

6,.....2,1nsins,cosc nnnn === forθθ And dn, an

and nθ : Constant D-H parameters.

The parameters of the robotic arm manipulators are l1=0.3m;

l2=0.44m; l3=0.38m; m1=25; m2=26.3; m3=15. The friction

and disturbance terms are taken as:









=

5cos(5t)

5cos(5t)
Bd N-m

The implementation uses 16 rules initially, with four

individual membership functions for each of y(k) and r(k),

i.e. K1=4 and K2=4. The interaction coefficients are

7.021 ==αα while 01.0=η was used. The shape of the four

Gaussian membership functions is shown in the fig

The suggested system was developed and applied to Puma

560 robot. The original proprietary controller was replaced

with it. The PC runs the Windows 2000 operating system.

The PC-based controller is evaluated from two different

aspects. The first aspect is to examine how easy the system

integrations and modifications are. The second is to examine

the performance of the control. The first aspect is obvious.

The suggested PC-based hardware and software ensure that

the extensibility and scalability are available. The second

aspect is evaluated by the trajectory-tracking experiment.

To verify the effectiveness of the new controller, experiments

were performed to test the tracking control of the robot

manipulator. Firstly, each joint is separately requested to

follow a desired trajectory. In this test, each joint is asked to

move to a specified destination while following a

predetermined path.

 Fig. 8 and Fig. 9 show the desired position trajectories

and position tracking errors respectively for six joints. The

desired profile consists of two parts: (a) linear acceleration

from rest to maximum velocity for joints 1, 2, 3 and 5 while

linear deceleration for joint 4 and (b) decelerate linearly. The

position tracking errors of joint 1, 3, 4, 5 and 6 are in the

acceptable range of 0.005rad to 0.01rad except joint 2 for

which the tracking error is 0.02rad.

To further verify the controller trajectory tracking

performance, all the joints were requested to follow a varying

Fig.7 Robot Position-control GUI layout

IAENG International Journal of Computer Science, 35:2, IJCS_35_2_01
__

(Advance online publication: 20 May 2008)

Fig 8 Desired position trajectories (Radians vs. Seconds)

 Fig 9 Position tracking error (Radians vs. Seconds)

trajectory. Fig 10 & Fig.11 shows the joint trajectory tracking

performance and error respectively. All the other joints show

acceptable tracking performances.

Two further tests were performed to examine the

simultaneous joints movement: (1) the maximum velocity

was set at 15000 counts/sec. To test the simultaneous joints

movement, all six joints were asked to move at their fastest

respective speeds and (2) the linear interpolation mode test in

which the individual joints should arrive at their respective

destinations at the same time.

Fig.10. Comparison between planned and followed

trajectory of joint1 (Radians vs. Seconds)

Fig.11 Trajectory tracking error for joint1.

(Radians vs. Seconds)

The same tests were performed with varying joints’

velocities and accelerations. Joint 1 and joint 3 showed

higher position tracking errors at higher velocities and

accelerations, however, all the remaining joints showed

satisfactory performance. All the joints show satisfactory

performance at low velocity as well as they exhibit low

position tracking error while following a velocity profile at

high speeds.

For robustness, The FLC is compared with the

conventional PD controller. The PD controller was first well

tuned for a normal operation. Then friction and disturbance

was introduced in the hardware testing. The results in Fig.12

to Fig.15 show that the proposed controller for the PUMA

robot is much more robust as compared to a well tuned PD

controller.

Fig. 12 FLC with friction ≈ 0.23Nm (Joint1 of robot) (Radians vs.

Seconds)

Fig. 13 PD with friction ≈ 0.23Nm (Joint 1 of robot) (Radians vs.

Seconds)

IAENG International Journal of Computer Science, 35:2, IJCS_35_2_01
__

(Advance online publication: 20 May 2008)

Fig. 14 FLC with unit input disturbance

(Radians vs. Seconds)

Fig. 15 PD with unit input disturbance

(Radians vs. Seconds)

Another experiment was done to compare the performance of

our implemented fuzzy controller with LQR and sliding

mode controller. Though the other controller also show good

tracking performance, FLC was able to compensate for some

disturbances and sensing noise as shown in the Fig. 16(a, b

and c).

VII. DISCUSSION AND CONCLUSION

In this paper, the preliminary results are achieved in the

development and implementation of a new simple PC based

replacement controller for PUMA 512 robot. By assembling

.

controller from off-the-shell hardware and software

components, the benefits of reduced and improved

robustness have been realized.

 Although the experiments were performed at

educational and research institution, the research is oriented

towards industrial applications

The paper uses the method “Controller Output Error

method (COEM)” for on-line tuning of the fuzzy controller.

This method can be used with any fuzzy controller design;

the only requirement is that the controller must be stable

before initializing the tuning. So any fuzzy rule-based model

can be used to parameterize and initialize the controller of

the system. COEM is subsequently applied to tune the

parameters of fuzzy controller for purpose of achieving

better performance.

Gaussian membership function and the centric method of

fuzzy inference in this paper are chosen as a concrete fuzzy

structure to convey the idea. The method described in

Section 4.3 is not dependent on the choice of membership

function nor the choice of inference mechanism. Whether

one chooses to use, for example, a triangular membership

function or the Takagi-Sugeno inference mechanism, the

method developed in Section 4.3 can be applied directly.

Though, some technical problems were faced while

performing the tests at higher velocities for joint 1 and joint

3, the newly designed hardware and software works very well

and overcomes the problems in the previous PC based design

for PUMA robot. All the joints show satisfactory

performance at low velocity as well as they exhibit low

position tracking error while following a velocity profile at

high speeds.

The experimental results showed that it is feasible to

implement modern control methods for PUMA 500 Series

Robots through software routines running on a PC.

Presently the authors are working to implement and adapt

the system for an industrial CNC milling machine.

 (a)

 (((b)

 (c)

Fig.16.Robot Joint 1 tracking performance (a) FLC implementation,

(b) LQR implantation, (c) Slide mode control implementation

IAENG International Journal of Computer Science, 35:2, IJCS_35_2_01
__

(Advance online publication: 20 May 2008)

ACKNOWLEDGMENT

The authors would like to thank to Miss Bai Tingting who

helped us in robot hardware design and Mr. Ye Guohai for

his contribution in mechanical design and assembly. We

would also like to thank Dr. Huang for helping us in

debugging the GUI software in VC++.

REFERENCES

[1] S. Sorenson, Overview of Modular, Industry standard based open

architecture controller, Proc. Intl. Conference of Robots and

Vision Automation, Detroit Michigan, , 1993, USA,

[2] D. J. Miller, R. C. Lenox, An Object Oriented Environment for

Robot system Architecture, Control system magazine, IEEE,

1991, Vol 11, Issue 2, pp. 14-23.

[3]. M. B. Jr. Leahy, S. B. Petroski, Unified Telerobotic

Architecture Project status report, IEEE Intl. Conference

Systems, man and Cybernetics, San Antonio, Texas,1994, Vol.

1, pp. 249-253.

[4]. Unimation Robotics. User’s Guide to VAL 398P2A: A Robot

Programming and Control System, Unimation Inc., Danbury,

Connecticut, 1983, USA.

[5]. R. Vistness, Breaking away from VAL. Technical Report,

Unimation Inc. Danbury, Connecticut, 1982, USA.

[6]. Pan Laingdong, Huang Xinhan., Implementation of a PC-based

robot controller with open architecture, Proceedings. IEEE

International Conference on Robotics and Biometrics, 2004,

pp. 790-794.

[7]. V. M. Becerra, C. N. J. Cage, W. S. Harwin, P. M. Sharkey,

Hardware retrofit and computed torque control of a Puma 560

Robot updating an industrial manipulator. IEEE Control

Systems Magazine, 2004, v 24, no. 5, pp. 78-82

[8]. P. Fiedler, & C. Schlib, Open Architecture Robot Controllers

and Workcell Integration, Robotics Today, 1998, Vol. 11, no.4,

pp. 1-4.

[9]. J. Katupitiya, R. Radajewski, J. Sanderson, M. Tordon,

Implementation of a PC based controller for a PUMA Robot,

Proc. IEEE Conference on Mechatronics and Machine Vision

in Practice, 1997, Australia, pp. 14-19.

[10]. H. C. Anderson, A. Lofti and A. C. Tsoi, A new approach to

adaptive fuzzy control: The controller output error method.

Proc. IEEE conference on system, man and Cybernetics [C].

Part B. 1997, 27(4), 686~691

[11]. V. M. Becerra, S. Cook, J. Deng, Predictive Computed-torque

control of a PUMA 560 Manipulator robot. Proc. 16th IFAC

world congress, 2005, Prague.

[12]. 15. P. I. Corke, Operational Details of the Unimation Puma

Servo System, Report, CSIRO Division of Manufacturing

Technology, 1993, Australia.

[13]. L. Hanho, G. E. Sobelman, VLSI Design of Digit-Serial FPGA

Architecture, Journal of Circuits, Systems, and Computers,

2004, Vol. 13, No. 1

[14]. F. L. Lewis, C. T. Abdallah, & D. M. Dawson, Robot

Manipulator Control, Theory and Practice, 2nd ed., Marcel

Dekker, 2004.

[15]. K. M. Passino.and S. Yurkovich. Fuzzy Control. Menlo Park,

Addison and Wesley Longman, 1998, 250~390.

IAENG International Journal of Computer Science, 35:2, IJCS_35_2_01
__

(Advance online publication: 20 May 2008)

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4937
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4937

	I. INTRODUCTION
	II. Original puma unimate 500
	III. new hardware configuration
	A. Advantages of new PC based PUMA robot

	IV. description of the control scheme
	A. Manipulator dynamic model
	A. The Controller Output Error Method
	A. Fuzzy controller system
	B. Fuzzy control initialization
	C. Parameter adaptation using Gradient Descend Algorithm

	V. Software design of the controller
	VI. results
	VII. discussion and conclusion

