

Abstract—Specification and implementation of tests for

In-vehicle Infotainment software system is demanding and time
consuming task. To reduce time and effort specification and
development of tests can be done at model level. We propose
platform independent test development using our extensions to
xUnit Test Framework. Three phases of our test development
approach: test pattern identification, test model development,
and transformation are explained using components of our
Infotainment Human Machine Interface Framework.

Index Terms— Infotainment Human Machine Interface
Framework (iHMIFw), Model Driven Architecture (MDA) ,
Unified Modelling Language (UML), xUnit Framework.

I. INTRODUCTION

 The number of embedded software systems in automotive
domain areas, such as body electronics, infotainment, and
telematics applications, is steadily growing [2] [3]. Most of
today’s automotive software applications are developed and
maintained by multiple programmers, often geographically
distributed, who work on parts of the overall application code.
While leading to improved code churn rates, this practice also
leads to problems. For example, developers may not realize that
they have inadvertently broken parts of the code.

 How to test the software systems, which contains many
functions in short time, and how to evaluate the quality of
each software sub-system are the key problems that must be
taken into consideration. Designers can no longer develop
high-performance software systems from scratch but must
use sophisticated system modeling method [1]. Software
testing methods and objectives differ in automotive
infotainment software applications from the other computer

Hemant Sharma is Software Engineer at Delphi Delco Electronics Europe
GmbH, Bad Salzdetfurth, Germany.
(e-mail: hemant.sharma @ delphi.com).

Dr. Roger Kuvedu-Libla is EMC-Competency-Leader at Delphi Delco
Electronics Europe GmbH, Bad Salzdetfurth, Germany.
(e-mail: roger.kuvedu.libla @ delphi.com).

Dr. A. K. Ramani is Professor at School of Computer Science, Devi Ahilya
University, Indore, INDIA. (e-mail: headscs@dauniv.ac.in).

software applications. Automotive infotainment software
development uses specialized compilers and development
environments that rarely offer sophisticated means for testing
and validation.

With the growing size and complexity of In-vehicle
infotainment HMI software applications, software
verification and validation techniques such as testing and
model checking are increasingly important. While testing
focuses on the actual behavior of the program, model
checking focuses on its business and logical interaction
model. Also for infotainment applications, Testing and model
checking are complementary: testing is lightweight but
incomplete while model checking is heavyweight but
complete.

User interfaces built for In-vehicle infotainment
applications traditionally presented a challenge to
development testing because of the following factors:

• The complex nature of the underlying graphics
framework.

• The coupling of presentation and business logic
within a User Interface.

• The lack of support from underlying architecture
and intuitive automated testing frameworks.

Of course, the first two factors are nothing new - graphical
frameworks are complex by nature and adding business
functionality to a HMI application has always posed a barrier
to testing. On the other hand, a number of handy frameworks
have popped up over the last few years that actually facilitate
testing of HMIs of software systems.

Our goal in this paper is to present our ongoing efforts
towards the specification and efficient execution of testing of
components of infotainment HMI applications by means of
the model driven approach, which includes:

• The clarification of the methodological approach
for the introduction of model-driven testing in the
Infotainment HMI context.

• The identification of a testing metamodel able to be
used in practice in the context of In-vehicle
Infotainment HMI applications, and close to the
xUnit testing frameworks [21, 22].

Towards Model Driven Testing of
 Human Machine Interface Framework for

In-vehicle Infotainment Platforms

Hemant Sharma, Dr. Roger Kuvedu-Libla, and Dr. A. K. Ramani

IAENG International Journal of Computer Science, 35:2, IJCS_35_2_04
__

(Advance online publication: 20 May 2008)

• The selection of test modelling mechanisms capable
to represent the common and the variable parts in
the tests architecture, in usable and efficient way.

• The identification of derivation mechanisms that
cover the transformation of test specifications into
platform specific test cases.

This paper is organized as follows: In the following section
an overview of related research is provided. Section 3 shortly
explains the architecture of iHMIFw. In section 4, we
describe the test framework architecture. Section 5 describes
the model driven test development approach. In section 6, we
elaborate the future activities and finally conclude the paper.

II. BACKGROUND

The testing techniques for automotive infotainment
software systems are based on the specification of a program.
This specification driven testing is also called black-box
testing. White-box testing on the other hand is based on
knowledge on the implementation of a program [13]. Quite
some confusion exists between these definitions [14]. Unit
testing can be seen as a mix between both techniques, hence
called grey-box testing. Developers of unit tests can use some
specific implementation knowledge for writing tests. On the
other hand, unit tests can also be written according to a
(detailed) specification.

The rising popularity of automated unit testing seems to
have inspired the creation of several GUI test toolkit projects.
JFCUnit [19] has a tool class called JFCTestHelper for
examining the state of the graphical environment, as well as
massaging the event stream to programmatically manipulate
components. Tests are coordinated with JUnit. Jemmy [20] is
a library for automating Java GUI applications. It has an
advanced abstraction tree for finding, examining and
manipulating specific graphical components.

In the field of software development the complexity of
systems has been reduced by using abstract specifications.
Models are used to represent the more complex entities to
understand, communicate, explore alternatives, simulate,
emulate, calibrate, evaluate and validate software [15].
Therefore it is a logical consequence to represent test code as
models, too. In the case of test models all advantages
mentioned before are provided. The benefit of models lies in
their abstractness as opposed to implementation specific
concreteness of code [16]. Model driven test development
does not oblige which software development methodology
has to be used. It suits to testing first methodologies like
Agile [17] and Lean [18] development as well as for Model
Driven Development.

Most approaches to model-based testing [5, 6, 7] used in
automotive infotainment domain do not consider the
separation described in MDA, i.e., they are either tailored
towards a specific target platform or they are generic in this
respect, taking into account platform-independent model
information only.

In order to benefit from the separation of PIMs and PSMs
in the generation and execution of tests, the strategy of
Model-Driven Testing [16] has to refine the three classic
tasks of model-based testing:

• the generation of test cases from models according
to a given coverage criterion,

• the generation of a test oracle to determine the
expected results of a test,

• the execution of tests in test environments, possibly
also generated from models.

With an appropriate level of detail in the interface
specifications of domain-specific components, it is possible
to automatically generate some or all of their test cases. In
fact, test cases can be specified and generated in parallel to
the specification and generation of components.

A lightweight automation framework for system tests can
extend the benefits of extreme programming (XP) unit testing
[8] to a higher level, supporting test first development for
system tests, and decreasing the difficulty of writing system
tests.

III. INFOTAINMENT HMI FRAMEWORK ARCHITECTURE

This section provides an overview of architecture of our
HMI framework, iHMIFw, for In-vehicle infotainment
applications. The framework has been developed using
MDA methodology and partitioned into independent
components based on functional areas. Figure 1 partially
represents the components of the HMI framework.

iHMIFw emphasizes on application development using the
iterative practice of Test Driven Development [4], to have the
following benefits:

• Shorter code implementation time

• Reduction in code defects

• Fewer instances of overcomplicated and
unnecessary code

• Reduced likelihood of introducing bugs when
fixing bugs, refactoring or introducing new
features.

The components of HMI framework are organized to make
the framework scalable and flexible. The framework has a set
of core components and some optional components.

Core components provide the bare minimum functionality
that is required for an HMI application. Optional component
can be configured along with framework to provide
additional functional interfaces. These core components help
to design HMI for an Infotainment application, independent
of the application, with basic features such as Widgets, Views
etc.

IAENG International Journal of Computer Science, 35:2, IJCS_35_2_04
__

(Advance online publication: 20 May 2008)

Figure 1: iHMIFw Components.

Responsibility of individual core component is described
below.

Core :: View

This component is responsible for HMI View creation. It
provides interfaces to describe the appearance and behavior
of the view. Further, this component is also responsible to
define the view tree structure for an HMI application and
defining the view state transition.

Core :: HMIBase

HMIBase component defines the structure of HMI
applications. This component enables the HMI application to
interface with platform specific aspects such as startup and
shutdown of application.

Core :: Communication

The communication between components of HMI
Application as well as communication with external
applications is supported by this component.

Core :: Graphics Interface

This component interfaces to graphics resources in the
system. This includes graphics libraries, display access
handlers, image management and font resource files.

Core :: Widget Interface

HMI Applications are allowed to use specific widgets
available in infotainment application specific widget
libraries. This component provide interface to the widget
resources, the HMI application intend to use.

Core :: Context

This component provides interfaces that help HMI
Applications to define the context for its individual views.
Further, this component has mechanism to read context
configuration information from a XML file.

IV. TEST FRAMEWORK ARCHITECTURE

The test framework we propose here is inspired by ‘xUnit
Testing Framework’. Over the years the xUnit testing
framework has become a de facto standard. Most integrated
development environments have xUnit integration via a
plug-in. The framework is referred to in many programming,
software development, maintenance, reengineering as well as
software testing books [21, 22, 23]. The xUnit framework is
being adopted by industry as well, by means of JUnit itself or
its commercial derivatives.

In the subsections below, we describe the derived xUnit
patterns and the meta-model for the test framework.

A. Patterns for Model Testing

In this section, we provide an overview of test patterns
derived from xUnit patterns to enrich behavioral, logical and
organizational test development for Infotainment HMI
components.

HMI Mock Pattern

A common problem with HMI unit tests is to test complex
objects that rely on external systems. A unit test must make
some assumptions on the state of the object to test. This state
should be restored on each test run. External systems do not
always allow this. Mock objects are a technique to prevent

IAENG International Journal of Computer Science, 35:2, IJCS_35_2_04
__

(Advance online publication: 20 May 2008)

this problem. Instead of using the actual implementation, that
possibly uses external systems, a fake - hence the name mock
- object is used. A mock object contains no concrete
implementation and is solely used to validate whether the
application code behaves as expected.

Figure 2 shows the Mock Test pattern that has been
customized for iHMIFw. Classes MockView and
MockService implement the same interface as a real View
and Service classes respectively. Objects of MockView class
shall serve as observation point for individual view-behavior
verification.

Figure 2: Mock Test Pattern for iHMIFw.

Similarly, the objects of class MockService shall be useful
for communication state-behavior verification. Both classes
shall produce ‘lenient’ mock object instances such that the
tests are independent of the order of their execution.

HMI Layer Test Pattern

The Infotainment HMI applications based on iHMIFw
inherit the Layered Architecture from the framework to
separate major technical concerns. Most applications shall
have, at minimum, some kind of presentation (user interface)
layer, a business logic layer or domain layer and a persistence
layer. Some future layered HMI application architectures
may have even more layers. It is difficult to get good test
coverage when HMI application is organized as integration
of component in layered fashion. Such application
architecture forces the use of ‘Indirect Testing’ of individual
function group of components.

In order to get good test coverage of logic of each layer
these application shall be supported by iHMIFw specific
Layer test pattern. This iHMIFw specific Layer Test pattern
has been derived from xUnit Layer Test pattern [6].

Figure 3 presents the custom Layered Test pattern for
iHMIFw components and applications based on iHMIFw.
Layered Test interfaces are either realized or extended to

derive layer specific test. ViewLayerTest and
ServiceLayerTest are the components that collectively
represent interface test classes for View and Service Layers
of iHMIFw respectively. View Layer Test class shall provide
objects to test the presentation logic of Views independent of
the business logic of HMI application. Service
communication logic test objects shall be provided by
Service Layer Test classes.

Figure 3: Layered Test pattern for

 iHMIFw Components.

HMI Test Organization Pattern

 Figure 4: Test Organizational Pattern for iHMIFw.

IAENG International Journal of Computer Science, 35:2, IJCS_35_2_04
__

(Advance online publication: 20 May 2008)

Figure 5: iHMIFw Test Meta-model

In-vehicle Infotainment HMI applications based on
iHMIFw are expected to have significantly large number of
structural and behavior test classes.

 Further, as the number of test methods shall grow, an
efficient mechanism is required to decide wrapper test classes
to hold the test methods. To get a simplified structure of
application tests, the iHMIFw provides a Test Organization
pattern derived from the Test Fixture pattern defined in [6].

 Figure 4 presents the Test Fixture interface packages that
establish the Test Organizational Pattern for iHMIFw test
organization. Component specific partition of Test
Organization interfaces shall help to achieve a declarative
style of Test Suit development.

B. Test Meta-Model

The specification of a meta-model, capturing entities and
relationships of interest during xUnit based testing, is
facilitated through the consistent terminology in testing
literature and supporting tools.

The metamodel for testing presented in the figure 5 is a
conceptual framework able to cope with variability in testing
[9], therefore, although it follows the general principles
stated by the UML profile for testing [10], modifies and
extends the profile in several aspects. In particular, our
metamodel includes some elements already available in the
profile, such as Test Class, Test Suite, and the concept of Test
Scenario. The mapping of the Test Class to Component
Interface as well as the realization of extended Test Pattern
interface in conjunction to ‘Requirements Model’ testing [9],
are however, unique in our approach.

The metamodel shows the main entities of the test
approach and their relationships. The HMI requirements are
the basis of the test; in particular, requirements (both generic
in the Infotainment HMI family and specific to a subset of
Infotainment functionality in the integrated system) drive the
design of test classes. The xUnitTestClass is a group of test
cases related with certain HMI functionality. These test cases
are based on Test Scenarios, which are derived from a model
of the HMI behavior specification.

V. TEST SPECIFICATION AND TRANSFORMATION

DIRECTIVES

To accent the agile part of our model-driven test
development approach we want to support the test-driven
development by enabling model-driven unit, layer and
integration test development. Therefore, beside the
generation of test case model from application model we
want to automatically generate platform specific test cases
from our test model.

A. Approach Towards Test Development

In this section we present the steps of our approach for test
development. Activity diagram in figure 6 shows our model
driven test development process enabling model driven unit
and integration testing.

For the iHMIFw xTest patterns and meta model has been
developed, as described in previous sections, and stored in a
repository. The test development process can be summarized
in the following steps:

IAENG International Journal of Computer Science, 35:2, IJCS_35_2_04
__

(Advance online publication: 20 May 2008)

Figure 6: Test Development Approach

• Generate Test UML Model - First step in Test
Development is to develop test model from the
UML design model. Class diagrams from the
design model serve as basis for test class
generation. Interfaces from xTest::Interface are
extended to get the test classes for HMI classes in
class diagram from design model.

• Test Model Transformation – Test classes and the
relationship between them, as represented by test
class diagram, is transformed to provide source
code and test configuration .

B. Platform Independent Test Modeling

The basic idea of our test development approach is the
specification of test classes by using defined xUnit test
interface classes. Further, the test classes are enriched with
pre- and post-conditions (Infotainment Contract), which can
be viewed as a test oracle [11, 12] and runtime assertion
checking can be used as a decision procedure for a test oracle.

In order to keep the test model simple for presentation
purpose, we have partially used the core components of
iHMIFw in class diagram of Figure 7 below. This figure
represents partial model for the framework and form the basis
to develop platform independent test model.

Interface class IObject is the base class from which all the
framework classes have been derived. IWidgetBaseInterface
provides the base structure for Widgets that shall be used in
views of HMI applications. HMI Views shall use ViewBase
to inherit minimal functionality for the view. The views shall
contain multiple widgets to manage the appearance and
collective behavior. WidgetAppearance and WidgetBehavior
classes provide the basic appearance and behavior features
respectively.

Figure 7: iHMIFw::Core PIM

Figure 8 shows the Platform Independent Test Model
(TPIM) derived from the platform independent model for
core components of iHMIFw. Corresponding to every class
in PIM model of the framework, a test class has been shown
in TPIM. IHMIMock represents the behavioral test interface
(Mock object interface).

Figure 8: iHMIFw::Core Platform Independent Test

Model

IHMIFixture and IServiceFixture bring in the test suit
organization strategy for test classes. The test classes
realizing these interfaces provide objects that individually
represent Mock test cases. Defined collection of objects from
test class shall form scenarios for layer tests. A fixture
configuration along with test classes shall organize tests into
a test suit. Test collection definition and fixture configuration

IAENG International Journal of Computer Science, 35:2, IJCS_35_2_04
__

(Advance online publication: 20 May 2008)

are the topics for our future work.

C. Platform Specific Test Model

Similar to classical unit-testing, our test items are
operations. The behaviour of an operation is dependent of the
input parameters and the system state. Thus, a test case has to
consider the parameter values of an operation and a concrete
system state.

A test case for an operation consists of concrete parameter
values and a concrete system state. We can generate a test
case for an operation from our model in three successive
steps.

• In the first step, we generate values for the input
parameters of an operation as specified in the
class diagram.

• we initialize the pre-condition of an infotainment
contract with the parameter values generated in
step one. The variables in the parameter-list are
used to restrict the attribute values of objects in
the pre-condition.

• In the last step of our test case generation, we
have to find out how to generate a system state
which contains the object structure found in step
two.

Figure 9(a) : PSM - iHMIFw::Core Generated Test

Case

Figure 9(a) shows, out of the test specification model a
platform independent test code that has been generated for
the class xWidgetBaseInterfaceTest. The class inherits Mock
interface for behavioral tests for the widgets. This leads to
incorporation of one test method corresponding to each
method of WidgetBaseInterface class. Secondly, inheritance
of fixture interface helps in partitioning of test methods for
complex widgets. Widget Test objects shall be initialized at
test startup via configurable test data.

All test cases need access to representative data to use in
testing the functionality of the HMI application component.
Test PIM transformation, in second step, generates XML
configuration information corresponding to test classes. This
configuration information mainly describes test data and test
execution setup sequence. . Test objects shall use data out of
XML configuration files for two main purposes:

• for initialization parameters for test execution ,

• for determining the sequence of execution for test
methods.

Figure 9(b) represents an example of XML configuration
file for xWidgetBaseTest test class.

Figure 9(b) : PSM - iHMIFw::Core Test Case

Configuration

IAENG International Journal of Computer Science, 35:2, IJCS_35_2_04
__

(Advance online publication: 20 May 2008)

The transformation will result in source code and
configuration XML repository for set of test classes
corresponding to iHMIFw::Core components. The test
library resulting from these test classes shall be usable for
execution from test automation tools [24, 25] that are using
xUnit Test Framework.

VI. CONCLUSION

In this paper, we proposed an approach for test case
development for components of HMI framework for
In-vehicle infotainment platform implementing model driven
approach. By using extended xUnit test patterns, it is
possible to derive test model for iHMIFw components. We
have established test patterns, by extending the existing xUnit
patterns that will help in platform independent test modeling.
Further, we presented meta-model for development of
iHMIFw test PSM.

We have shown that the UML design model of iHMIFw
can be used to develop platform independent test model
enriched with unit, coverage and integration test classes.
Further, it has also been shown, how transformation of test
PSM will provide test classes along with test configuration.

The growing complexity of HMI software applications in
In-vehicle Infotainment systems needs solutions which allow
complexity reduction by raising the abstraction level. Model
driven test development is a step further to achieve more
manageable and transparent HMI development. We have
shown that model driven test development can be adapted for
unit testing, integration testing, system testing and
performance testing of HMI components of infotainment
platform. By using UML, we build on a well known standard
that is predominantly used in today’s model-driven
development processes. Further, we presented how to use the
test patterns in a model driven test development process.

In future work we will have to concretize our model-driven
unit testing approach. At First step, we shall refine the
extended patterns and integrate them in to iHMIFw as a
component. Secondly, we shall investigate for dedicated test
automation framework. Finally, we shall establish a test tool
chain for automated testing for iHMIFw and components of
HMI application based on it.

REFERENCES

[1] D. Gajshi et al., “Specification and Design of Embedded Systems”,
Prentice Hall, Englewood Cliffs, N. J., 1994

[2] Ren Yu, Wan Jian, “Software Simulator of Embedded Application
System”, Computer Application, Vol. 11, No. 7, July. 2004,
P.144-146.

[3] Ren Yu, “Threads Communication Performance of Embedded
Simulator”, Computer Application, Vol. 25, No. 25, Dec. 2005,
P.12-14.

[4] David Astels, Test Driven Development: A Practical Guide, Upper
Saddle River, NJ: Prentice Hall PTR, 2003.

[5] Basanieri, F., A. Bertolino and E. Marchetti, A UML-based approach
to system testing, in: J.-M. Jezequel, H. Hussmann and S. Cook,
editors, UML 2002, LNCS 2460 (2002).

[6] Briand, L. and Y. Labiche, A UML-based approach to system testing,
in: M. Gogolla and C. Kobry, editors, UML 2001, LNCS 2185 (2001).

[7] Martena, V., A. Orso, and M. Pezze, Interclass testing of object
oriented software, in: Proceedings of the IEEE International
Conference on Engineering of Complex Computer Systems (ICECCS
2002), 2002.

[8] XUnit Test Patterns. http://xunitpatterns.com/
[9] Coplien, J., Hoffman, D., Weiss, D.: Commonality and Variability in

Software Engineering. IEEE Software, November 1998.
[10] OMG, UML Testing Profile (final submission) by Ericsson, IBM,

Fokus, Motorola, Rational, Softeam, Telelogic. March 2003.
[11] Antoy, S., Hamlet, D.: Automatically checking an implementation

against its formal specification. IEEE Transactions on Software
Engineering 26(1) (2000) 55–69

[12] Peters, D.K., Parnas, D.L.: Using test oracles generated from program
documentation. IEEE Transactions on Software Engineering 24(3)
(1998) 161–173

[13] Bret Pettichord. Thinking outside the boxes, 2004.
[14] Alexandre Petrenko and Andreas Ulrich, editors. Formal Approaches

to Software Testing, Third International Workshop on Formal
Approaches to Testing of Software, FATES 2003, Montreal, Quebec,
Canada, October 6th, 2003, volume 2931.

[15] Thomas, D.: Programming with Models - Modeling with Code. The
Role of Models in Software Development. in Journal of Object
Technology vol .5, no. 8 (November -December 2006) pp. 15–19.

[16] Stahl, T., V¨olter, M.: Modellgetriebene Softwareentwicklung.
dpunkt- Verl. (2005) of Lecture Notes in Computer Science. Springer,
2004.

[17] Beck, K.: Extreme Programming Das Manifest. Addison-Wesley
(2003).

[18] Poppendieck, M., Poppendieck, T.: Lean Software Development
Number ISBN 0-321-15078-3 in The Agile Software Developement
Series. Addison-Wesley (2003)

[19] JFCUnit. http://jfcunit.sourceforge.net/
[20] Jemmy. http://jemmy.netbeans.org/
[21] A. Hunt and D. Thomas. Pragmatic Unit Testing in C# with NUnit.

The Pragmatic Programmers, 2004.
[22] J. Langr. Agile Java Crafting Code with Test-Driven Development,

chapter Lesson 15: Assertions and Annotations. Prentice Hall, 2005.
[23] M. Feathers. Working Effectively with Legacy Code. Prentice Hall,

2005.
[24] StrutsTestCase for JUnit. http://strutstestcase.sourceforge.net/

[25] JUnit Test Decorators.
http://www.clarkware.com/software/JUnitPerf.html

IAENG International Journal of Computer Science, 35:2, IJCS_35_2_04
__

(Advance online publication: 20 May 2008)

