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Abstract—A hybrid population based Ant Colony
Optimization (ACO) algorithm PFold-P-ACO for
protein folding in the HP model is proposed in this pa-
per. This is the first population based ACO algorithm
in the bioinformatics. It is shown experimentally that
the algorithms achieves on nearly all test sequences
at least comparable results to other state of the art
algorithms. Compared to the state of the art ACO al-
gorithm PFold-P-ACO obtains slightly better results
and is faster on long sequences.
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1 Introduction

Proteins are one of the most important classes of biologi-
cal molecules. Proteins for example have structural func-
tions in the muscle and the cytoskeleton, have catalytic
functions and coordinate motion and signal transduction.
Chemically, a protein is a chain where each element is one
of 20 different amino acids. Each amino acid consists of a
central carbon atom bonded to an amino group (NH2), a
carboxyl group (COOH) and a side chain or residue (R).
Hence, the amino acids differ only in the residue R. One
of the most important differences between the residues
is their hydrophobicity, i.e., how much they are repelled
from a mass of water. The properties of the residues
together with the environment are responsible that the
protein chain folds into a complex conformation. This
conformation is called the “native” conformation of the
molecule. The native conformation is thermodynamically
stable, i.e., it has small Gibbs free energy, and is very im-
portant for the function of the protein.

The structure of a protein can be described on different
levels: the amino acid sequence is the primary structure,
the secondary structure describes characteristic struc-
tures of the backbone of the molecule within local regions
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(e.g., alpha-helices or beta-sheets), the tertiary structure
refers to the entire 3-dimensional structure. Different
types of algorithms have been developed to predict the
tertiary or secondary structure of proteins. All these algo-
rithms use a model that is an abstraction of real proteins
and describes important characteristics. An important
class of models are the lattice models. A lattice model
consists of a lattice that describes possible positions for
the amino acids and an energy function that is to be min-
imized and depends on the positions of the amino acids
on the lattice. The most simplest lattice model is the
HP model which is based on the observation that hy-
drophobic forces are very important factors that drive
the protein folding process. Advantages of the HP model
are simplicity, that it shows several aspects of real pro-
teins, and remains the hardness features of the biological
problem.

In this paper we propose a hybrid population based Ant
Colony Optimization algorithm called PFold-P-ACO for
solving the protein folding in the HP model. PFold-P-
ACO is the first population based Ant Colony Optimiza-
tion Algorithm (P-ACO) algorithm for the problem do-
main of bioinformatics.

The paper is organized as follows. Section 2 describes the
HP model and mentions some heuristics from the litera-
ture for the protein folding problem in the HP model. An
introduction to ACO and ACO approaches for the protein
folding problem is given in Section 3. Population based
ACO and our algorithm PFold-P-ACO are described in
Section 4. The experiments and the results are presented
in Section 5. Conclusions are given in Section 6.

2 The HP model

The HP model is introduced by Dill [8, 16]. It is a lat-
tice model that is based on the fact that for folding the
most important difference between amino acids is their
hydrophobicity, i.e., how much they are repelled from a
mass of water. The reason is that hydrophobicity is the
main driving force to fold a molecule into the native con-
formation (at least for of small globular proteins). In the
HP model all 20 different amino acids are classified into
two types: hydrophobic or non-polar (H) and hydrophilic
or polar (P).



A primary structure with n amino acids is viewed as a se-
quence S = s1, . . . , sn with si ∈ {H, P} for i = 1, . . . , n.
A conformation is a mapping C of the amino acids si to
the points of a cartesian lattice. Two and three dimen-
sional cartesian lattices are used here. In the following we
describe the 2-dimensional model. The definitions for the
3-dimensional model are analogous. We use the following
notation: if C is a conformation then (xi, yi) denotes the
position in the lattice to which si is mapped by C. All
valid conformations are self-avoiding paths on the carte-
sian lattice. A mapping is a path when amino acids si,
sj that are consecutive in the molecule, i.e., |i − j| = 1,
are mapped to neighbored positions (xi, yi), (xj , yj) on
the lattice, i.e., |xi − xj | + |yi − yj | = 1. A path is self-
avoiding when all two different amino acids si, sj , i 6= j
are mapped to different positions, i.e., (xi, yi) 6= (xj , yj).

The energy function in the HP model reflects the fact that
the hydrophobic amino acids have a propensity to form a
hydrophobic core. Therefore, the energy function adds a
value −1 for every pair of hydrophobic amino acids (H)
that are adjacent on the lattice but not consecutive in the
sequence. Formally, the energy E(C) of a conformation
C is

∑
1≤i≤j−2≤n I(i, j) where I(i, j) = −1 if |xi − xj |+

|yi − yj | = 1 and I(i, j) = 0 otherwise.

The protein folding problem in the HP model — called
HP-Protein Folding problem — is to find for a given pro-
tein S = s1 . . . sn, si ∈ {H, P} a valid conformation C on
the cartesian lattice such that the energy E(C) is mini-
mum. In [5] it was shown that the HP-Protein Folding
problem is NP hard, i.e., it is very unlikely that there ex-
ists a polynomial time algorithm for solving the problem.
Therefore, it is interesting to find heuristics for solving
the HP-Protein Folding problem.

The variety of heuristics that have been developed for
HP-Protein Folding problem that include (Metropolis)
Monte Carlo algorithms, chain growth algorithms, evo-
lutionary algorithms, memetic algorithms, immune al-
gorithms and ACO algorithms. An exact branch-and-
bound algorithm has been presented in [31]. In the fol-
lowing we shortly present some of the heuristics (for re-
cent more complete overviews see [26, 33]) but the ACO
algorithms are described in more detail the next section.

Unger and Moult presented a genetic algorithm [30] that
incorporates a Monte Carlo method as mutation operator
to change the individual conformations in the population.
Each individual is encoded as a sequence of sequence of
moves (left, right, ...) in the lattice. As crossover op-
erator a one-point crossover is applied. The probability
to be selected for crossover depends on the energy the
conformations so that low energy structure have a higher
chance. Patton et al. [21] described a standard GA that
uses a penalty method to enforce the self-avoiding con-
straints. Liang and Wong [18] proposed a hybrid between
Monte Carlo optimization and GA.

A memetic algorithm [4] that uses a self-adaptive strat-
egy for Local Search (LS). Depending on the degree of
convergence LS can act toward either exploitation or di-
versification. A temperature parameter that is chosen
according to a Boltzmann distribution is used to deter-
mine the chances that a LS move that causes a decrease
in fitness is accepted. Krasnogor et al. [15] extended the
memetic algorithm by the introduction of a contact map
memory of current solutions in the mating strategy.

A filter-and-fan algorithm has been proposed by Rego
and Glover [23]. This algorithm switches between a local
search to identify a local optimum and a filter and fan
search which is as a restrictive form of tabu search to
explore larger neighborhoods in order to overcome local
optimality.

A chain growth method (CG) by Beutler and Dill [6] bi-
ases the construction towards finding a good hydrophobic
core. The so called ’pruned-enriched Rosenbluth method’
(PERM) which is also a biased chain growth algorithm
has been applied by Hsu et al. [13] for the Protein Fold-
ing problem. The algorithm evaluates partial conforma-
tions and employs pruning and enrichment operators to
explore partial solutions. This algorithm and its variant
by Huang and Lü [14] are among the best algorithms for
the protein Folding problem is.

3 Ant Colony Optimization

Ant Colony Optimization (ACO) is a metaheuristic that
is inspired by the foraging behaviour of real ants ([9]).
ACO has been applied successfully to solve various com-
binatorial optimization problems (see [10, 20]). It is an
iterative method where artificial ants search for good so-
lutions. Every ant of an iteration builds up a solution
stepwise thereby going through several decisions. The
ants that found a good solution mark their paths through
the decision space by putting some amount of (artificial)
pheromone on the edges of the path. The following ants
of the next iteration are attracted by the pheromone and
search in the solution space near good solutions.

Shmygelska and Hoos proposed several variants of an
ACO algorithm for the HP-Protein Folding problem
([24, 25, 26]). The latest algorithm ACO-HPPFP-3 iter-
ates over the following three phases: construction phase,
local search phase, pheromone update phase. In the con-
struction phase each ant constructs a candidate solution
by sequentially growing a conformation of the given HP
sequence, starting from a folding point that is chosen uni-
formly at random among all sequence positions. Since
conformations are rotationally invariant, the position of
the first two amino acids can be fixed without loss of
generality. A candidate conformation for a HP sequence
of length n corresponds to a decision sequence of length
n − 2. Each decision extends the subsequence of amino
acids that have already placed by placing either the pre-



ceding or the following amino acid in the chain (i.e., either
the direct predecessor of the first amino acid in the sub-
sequence or the direct successor of the last amino acid on
the subsequence). The decision indicates the position of
the newly placed amino acid on the 2D or 3D lattice rel-
ative to its two direct predecessors in the given sequence.
Possible decisions are whether the chain folds straight
(S), left (L), right (R) in 2D, (and also up (U), down (D)
in 3D). Whether the partial conformation is extended to
the front or to the back, is done such that the ratio of the
lengths of the unfolded residues at each end of the pro-
tein remains (roughly) unchanged. The relative direction
d ∈ {S, L, R} in which the conformation is extended in
construction step i is determined probabilistically based
on a heuristic function ηi,d and pheromone values τi,d

according to the formula:

pi,d =
ηα

i,d · τβ
i,d∑

e∈{S,L,R} ηα
i,e · τβ

i,e

(1)

where α > 0 and β > 0 are parameters that determine
the relative influence of pheromone and heuristic informa-
tion. The pheromone values τi,d indicate the desirability
of using direction d at sequence position i. Initially, all
τi,d values are equal. Throughout the search process, the
pheromone values are updated to bias the folding towards
the use of local directions that occur in low-energy struc-
tures.

In the pheromone update phase each pheromone value
τi,d is evaporated according to τi,d := ρ · τi,d where ρ < 1
is the pheromone persistence parameter. Subsequently,
selected ants with low-energy conformations update the
pheromone values according to τi,d := τi,d + ∆i,d,c where
∆i,d,C is the relative solution quality of the given ant’s
candidate conformation C if that conformation contains
local direction d at sequence position i, and zero other-
wise. For further details and information on the following
parts of ACO-HPPFP-3 see [26]: i) the heuristic method,
ii) the backtracking method that is used when a direction
is not possible because the chain would run into itself, i.e.,
it would invalidate the self-avoiding property, iii) the lo-
cal search method that is used to improve conformations
that have been found be the ants.

4 P-ACO and PFold-P-ACO

One of the main characteristics of an ACO algorithm is
the pheromone information which stores information on
good solutions that have been found by ants of former
iterations. The pheromone information is what is trans-
ferred from one iteration of the algorithm to the next. An
alternative to this scheme has been proposed by Guntsch
and Middendorf [11] and is called Population based ACO
(P-ACO). Instead of pheromone information as in ACO,
in P-ACO a population of solutions is transferred from
one iteration of the algorithm to the next. The ants in the

new iteration use this population to construct pheromone
information from it and then proceed as in standard ACO
for solution construction by using also Formula (1). In-
stead of pheromone update P-ACO uses a population up-
date and several strategies have been proposed for a solu-
tion to enter or leave the population (see [11]). Two po-
tential advantages of P-ACO compared to standard ACO
are: i) the population update and pheromone construc-
tion needs for typical applications (e.g., for permutation
problems like the Traveling Salesperson problem) time
O(n) where n is the problem size instead of time O(n2)
that is necessary for standard ACO pheromone update,
ii) the population can be used to apply operations on the
solutions (e.g. crossover). A potential disadvantage of
P-ACO compared to ACO is that the number of differ-
ent pheromone values is small (typically, the population
size) whereas for standard ACO it is potentially infinite.
Thus, a P-ACO algorithm might be faster than a stan-
dard ACO algorithm but it is not clear whether it can
achieve the same solution quality.

It has been shown experimentally that P-ACO works
equally good as ACO even when the P-ACO algorithm
uses only a small population ([11]). It was also shown
that P-ACO can be used for multi-objective problems
[1, 12, 7]. An extended P-ACO algorithm with niching
has been proposed in [2]. The P-ACO principle has also
been used to develop an ACO algorithm for continuous
optimization problems [27]. Since P-ACO has been tested
on classical problem like TSP ([1, 3, 11, 12, 7]) or single
machine scheduling problems [12] only it is interesting to
apply it to other problem domains.

In the following subsections we describe our hybrid
P-ACO algorithm called PFold-P-ACO. It consists of
two parts: a P-ACO part and a branch-and-bound part.
When the P-ACO part has not found an improvement
over a certain number of iterations, the branch-and-
bound part starts. The branch-and-bound part uses the
pheromone information frome the P-ACO part and is a
heuristic that does not do a complete enumeration.

4.1 ACO Part

The population that is used by PFold-P-ACO contains
always the best 10 conformations that have been found.
But to keep enough diversity a new found conformation
that has the same HH-contacts as a conformation that is
already in the population is not allowed to enter the pop-
ulation. If a new found conformation has the same energy
as a conformation in the population it replaces the one
in the population with probability 0.5. The Construction
Phase and the Local Search Phase are described in the
following subsections.

Construction Phase. Similar as in ACO-HPPFP-3
from [26] each ant constructs a solution by sequentially
growing a conformation of the given sequence, starting



from an element that is chosen uniformly at random. Dif-
ferent from algorithm ACO-HPPFP-3 in PFold-P-ACO
the probability that the next element to be placed is cho-
sen in direction of the beginning or end of the sequence
equals the relative length of the remaining prefix respec-
tively suffix of the sequence. But if it is possible that
a long subsequence of P amino acids can be extended
or certain prescribed HH-contact can be realized this is
always done (details are described later.

All pheromone values τi,d i = 1, . . . , n − 1, d = S,L, R
are initialized with value 1. Each ant chooses randomly
a conformation from the population and sets all corre-
sponding pheromone values to 4. As heuristic values the
ants use the change of the energy ∆E of the partial con-
formation that occurs when a decision is made, i.e., λi,d =
e∆E . An ant that has to decide how to fold at si+1 makes
with probability σ ≥ 0 a decision randomly with equal
probability for S, L, or R (if all are possible). Otherwise,
the ant considers the pheromone values and decides for di-
rection d with probability τα

i,d ·λβ
i,d/(

∑
h∈{S,L,R} τα

i,h ·λβ
i,h)

if all directions are possible where parameters α and β de-
fine the relative influence of pheromone and heuristic. If
not all directions are possible only the pheromone values
corresponding to the allowed directions are taken into ac-
count. If for example directions S and R are allowed but
direction L is forbidden by a constraint as described in
the following then the probability to fold in direction d is
τi,d · λi,d/(

∑
h∈{S,R} τi,h · λi,h).

Several constraints are used that might forbid some de-
cisions for an ant. If the ant can not make an alternative
decision it makes a backtrack step and revises the former
decision. This is done until the ant finds a decision that
is not forbidden or until a Time-to-Live (TTL) counter
that counts the number of backtrack steps stops the ant.

Constraint 1. Inspired by an idea from [19] a set of pre-
scribed amino acid contacts is used to guide the search
for good conformation. Different from [19] the set H that
is used by the ants in the PFold-P-ACO contains only
HH-contacts. Further, set H contains only local restric-
tions, i.e., for every HH-contact in H the distance of the
two H elements in the sequence is at most 9. Moreover,
two HH-contacts are not both included into the set H if
they are in conflict with each other, i.e., when it is not
possible that both contacts can be realized by a confor-
mation. The following easy criterion is used to detect
such a case. Let x1, x2 are the sequence positions of the
H elements of one HH-contact and y1, y2 are the sequence
positions of the H elements of another HH-contact. Then
both HH-contacts are in conflict if y1 − x2 + p > y2 − y1

where p = 2, if (y1 − x2 > 1) ∧ (y1 − x2 > x2 − x1) and
otherwise p = 0. The conflict criterion is illustrated in
Figure 3.

If during the construction phase an ant places the first
element of a HH-contact in H it initializes a vector of

counters —- one counter for every moving direction (up,
down, left, right). The counters are used to check for
every decision in the construction process whether the
current element is placed near enough to the location of
first element of the required HH-contact so that the HH-
contact can still be realized with respect to distance (it
is not checked if it is really possible to realize the HH-
contact).

Constraint 2. It is required that the elements of P-rich
subsequences are placed near to each other. A P-rich sub-
sequence is defined such that before and after it comes an
H element and it contains at least 75% percent P elements
and does not contain a singleton P element that has no
P neighbor. Similar as for the required HH-contacts a
vector of counters is used for every P-rich subsequence.
It is checked when an element of a P-rich subsequences is
to be placed that its location would not be too far from
the location of the first element of this subsequence. If,
the location is too far the ant has to make an alternative
decision.

The reason to introduce Constraint 2 was that it can be
seen that the ants tend to create conformations several
small hydrophobic cores if PFold-P-ACO runs without
Constraint 2 (an example for this is given in figure 1).
This is a problem because most proteins the minimum so-
lution contain only one hydrophobic core (as mentioned,
e.g., in [6]). For the ants it is difficult to find a conforma-
tion with one core because a conformation often reflects
a solution with local optimization that often has an en-
ergy value that is close to the known minimum. The
reason why the ants tend to create several small cores
are the P-rich subsequences. Due to the fact that the P
elements did not directly influence the energy calculation
the pheromone intensity for all 3 directions when placing
a P element are often not very different and therefore the
probability for all three directions are similar. As a re-
sult when placing a P rich subsequence the ants often fold
the molecule away from a hydrophobic core. Therefore,
Constraint 2 forces the ants to fold P-rich subsequences
within a small area.

Constraint 3. HP-contacts are not allowed.

Local Search Phase. A local search is used that is sim-
ilar to the filter-and-fan approach from [23]. The move
operator is called pull-move introduced in [17] and de-
scribed in detail in [23]. The pull-move is initiated by
moving one node of the current conformation to one of
its empty diagonal adjacent positions in a square of the
lattice where the positions of one side of the square are
occupied be the node itself and one of its direct neighbors.
Depending on the structure of the conformation the dis-
placement of the initiating node may require other nodes
to change their positions. In a pull-move, displaced nodes
are only allowed to occupy vacant adjacent positions in
the lattice.



Table 1: Test HP sequences D100-x of length 100 and their best known energy values Emin. The corresponding best
folded conformations are shown in Figure 2.

ID Emin Sequence
D100-1 -24 P2HP5HPHP12HP4H3P (P2H2)2(PH)3P4HP17HP2HP3H3PHP2HP2(PH)2P2H2P6H
D100-2 -42 H2P4H2(PH5)2(PH)3P11HPH3P (HP2)2H2P4H2PHP2H2PHPH6P2H4P3(H2P )4P2HP3H4

D100-3 -52 P2H2P3HPH5P2HPH10PH2P2H(P2H2)2P3HPH3PH2(P2H3)2H(PH3)2H2P3HP2H(PH3)2
HP2H2P4H2

Figure 1: Example sequence S1-6: conformation (left) with energy value -20 that was found by a variant of PFold-
P-ACO that did not use Constraint 2 and an optimal conformation (right) with energy value -21.

The η best conformations from the construction phase
are selected as start conformations for local search. To
each selected conformation the 4 best pull moves are ap-
plied. From all conformations that have been obtained
the 4 best ones are selected for the next iteration of local
search. After each iteration of local search it is checked
whether a better conformation has been found. If so an
iteration counter is set to zero, otherwise the iteration
counter is increased by one. If the value of the iteration
counter equals 10 the local search procedure is stopped.
Some restrictions are applied during the local search: i)
a conformation is selected only if it has at least 0.7 as
much HH-contacts as the so far best found conformation,
ii) for each conformation a tabu list that contains the last
5 pull moves is used in order to hinder that pull moves
are reversed, iii) a conformation is only accepted if its di-
ameter is at most (4/3)

√
n or if it has more HH-contacts

than the so far best found solution.

It should be mentioned that even when our tests have
shown that these constraints make it more easier for the
algorithm to find good conformations for the test se-
quences it can in principal happpen that the constraints
make it impossible for the algorithm to find the optimum
for some HP sequences.

4.2 Branch-and-Bound Part

The branch-and-bound process starts with two traces.
One trace starts folding at sequence position s1 and the
other at sequence position sn. Both traces work indepen-

dently but exchange information on the energy of new
best conformations. This information is used to estimate
whether a partial conformation can potentially reach a
new best energy value or should be cut. A mix between
breadth first search and depth first search is done. More
exactly, the algorithm searches on a level l of the tree
(breadth first search) until it contains more than 300
nodes. The 150 best of these partial conformations are ex-
tended to level l +1 and so on. Only when the algorithm
does not find a conformation (because all branches on
corresponding subtrees are cut as described afterwards)
the other 150 partial conformations on level l are used.
The following five criteria are used to heuristically decide
whether the search tree is extended or cut at a leaf.

Criterion 1. This criterion uses the pheromone informa-
tion as constructed by the ACO part. Consider a leaf of
the search tree and assume that the corresponding partial
conformation C consists of s1, . . . , si−1 and the element
to be placed is si. Let Imax =

∑i
j=1 max{Sj , Lj , Rj}

be the sum of the maximum pheromone values for the
first i decisions. Then an extension of C with decision
d ∈ {S,L, R} for placing si is not considered if the sum of
pheromone values corresponding to the extended partial
conformation is smaller than Imax · Φl where 0 < Φl < 1
is a parameter.

Criterion 2. For each H element i in the sequence a mini-
mum energy value is computed that has to be reached by
a partial conformation that consist of elements s1, . . . , si.
This minimum value is based on the average energy value



Figure 2: Best found conformations for D100-1 (upper),
D100-2 (middle) and D100-3 (bottom).

Figure 3: HH-contacts (6,9) and (7,12) are in conflict:
if a connection between 6 and 9 is established it is not
possible to connect 7 and 12.

Eavg(i) of the prefixes of length i of the conformation in
the population delivered by the ACO part. The longer
the conformation becomes the higher the required energy
value. For i ∈ [1, n/2] the minimum value bEavg(i)c+ 1,
for i from n/2 + 1 up to the position before the last few
H elements the minimum value bEavg(i)c is used. For
the rest of the sequence it is required that the best so far
found energy value can still be obtained.

Criterion 3. It is checked whether it is possible to extend
the current partial conformation so that it can become a
new best found conformation. This is done by computing
the potential that the partial conformation and the rest
of the sequence have. This potential can be calculated
according to the following formula:

Epot =

Ecur −min{2 ∗#even + even0,
]e∑

i=1

freeeven,i}

−min{2 ∗#odd + odd0,
]o∑

i=1

freeodd,i}
−min{

max{0, 2 ∗#even + even0 −
]e∑

i=1

freeeven,i},

max{0, 2 ∗#odd + odd0 −
]o∑

i=1

freeodd,i}
}

The computation considers: i) the energy value of
the current partial conformation Ecur, ii) the number
freeeven,i (freeodd,i) of free and reachable locations next
to an H element in the partial conformation where i is
an index to number the H elements at even (respectively
odd) positions within the sequence and ]e (respectively
]o) is the total number of H elements with an even (re-
spectively odd) index the partial conformation, iii) the
number of H elements with even (odd) indices #even (re-
spectively #odd) that have not been placed. It should be
noted that a location is considered “reachable” in the def-
inition of freeeven,i (freeodd,i) if at least two neighbored
locations are not occupied by the partial conformation or
at least one neighbored position is free and the sequence
ends with an H element on an even (odd) position and
the empty location can potentially be filled by an even
(odd) element. Note that every inner H element in the
rest of the sequence could (potentially) have two possible
H neighbors when it is placed. If the last element of the
sequence is an H element it could (potentially) have three
H neighbors when it is placed. Accordingly, the value of
even0 (odd0) is 1, if the sequence ends with an H element
and the sequence length is even (odd) and otherwise 0.

Criterion 4. For a long subsequence that consists only of
P elements (pure P subsequence) there exists many pos-
sibilities how to fold it but the energy value of the partial
conformation will not change during. Therefore, for all



Table 2: Energy of best conformation found with PERM
[13, 26], filter-and-fan [23] (F&F), ACO-HPPFP-3 [26]
(HPPFP-3), and PFold-P-ACO (PFold-P); a (b,c,d) en-
ergy value obtained only for 2/5 (2/5,1/2, 9/10) of the
runs; e energy value obtained only for 3/5 of the runs,
the other results obtained -47
Protein PERM F&F HPPFP-3 PFold-P

S1-1 -9 -9 -9 -9
S1-2 -9 -9 -9 -9
S1-3 -8 -8 -8 -8
S1-4 -14 -14 -14 -14
S1-5 -23 -23 -23 -23
S1-6 -21 -21 -21 -21
S1-7 -36 -36 -36 -36
S1-8 -42 -42 -42 -42
S1-9 -53 -53 -53b -53

S1-10 -50 -50 -49 -49d

S1-11 -48 -48 -47 -48e

B30-6 -13 - -13 -13
B30-9 -18 - -18 -18
B50-5 -22 - -22 -22c

B50-7 -17 - -17 -17c

D1 -19 - -19 -19
D2 -17 - -17 -17

D100-1 - - -24a -24
D100-2 - - -42a -42
D100-3 - - -52 -52c

partial conformations for s1, . . . , sj where the last two el-
ements of a pure P subsequence si, . . . , sj , j ≥ i + 2 are
placed on the same location and which have an equal pre-
fix of length i all those are cut which satisfy the following
criterion: the weight of the prefix of length i of the con-
formation is less than the average weight of the prefixes
of length i of this conformations. Basically the weight
is high when the energy of the partial conformation is
small, the corresponding pheromone value are high, and
its potential is high (see for details [29]).

Criterion 5. If the weight of a partial sequence of length
k is not at least 5% higher than the weight of its prefix
of length k − 5 the node is cut.

5 Experiments and Results

The parameter values used for PFold-P-ACO are: α =
1.2, β = 1.6 and σ = 0.05. Each TTL counter has initial
value 2.5 · n when n is the length of the sequence. The
ACO part of PFold-P-ACO stops after a maximum num-
ber of 100000 0iterations. The population size is 10 and
the number of ants per iteration is 20. Test runs have
been executed on a 2.8 GHz Intel Xeon double proces-
sor PC with 4GB RAM. The HP test sequences are 11
standard benchmark sequences from [28] (S-1,. . . S-11), 4
sequences that have been used in [26] from the PDB [22]
(B-30-6,B-30-9, B-50-5,B-50-7), and 2 sequences from [26]

Table 3: Average computation times for PERM [13, 26],
filter-and-fan [23] (F&F), ACO-HPPFP-3 [26] (HPPFP-
3), and PFold-P-ACO (PFold-P); the run times for s1-11
for PFold-P-ACO are averages over the runs that pro-
duced a conformation with energy -48.
Protein PERM F&F HPPFP-3 PFold-P

S1-1 <1s 0s <1s 0.06s
S1-2 <1s 2s <1s 0.4s
S1-3 2s 0.5s <1s 0.2s
S1-4 <1s 4s 4s 1.1s
S1-5 2s 10s 1m 13.3s
S1-6 3s 22s 15s 15.4s
S1-7 4s 56s 20m 4m
S1-8 78h 24s 1.5h 35m
S1-9 60s 1.3m 24h 4.5h

S1-10 - 8.6h 12h 15h
S1-11 8m 9h 10h 1.5h(-47)

8.5h(-48)
B30-6 1.6s - 70.9s 8.5h
B30-9 0.06s - 0.06s 0.9s
B50-5 9.4s - 13m 9.3m
B50-7 4.5m - 2m 2.5m

D1 2s - 4m 2.2m
D2 3.5h - 16m 25m

D100-1 - - 42.4h 3.5h
D100-2 - - 38.5h 1.5h
D100-3 - - 25.8h 14.5h

(D-1, D-2). Moreover 3 sequences that are shown in Ta-
ble 1 have been created by us using a method provided in
[26] (D100-x, x ∈ {1, 2, 3}). For the sequences of length
≥ 85 10 runs have been made per test sequences and for
the shorter sequences 100 runs.

In addition to the best existing ACO algorithm
ACO-HPPFP-3 from [26] we compare PFold-P-ACO with
another state of the art algorithm PERM [13] and with
the very good algorithm filter-and-fan algorithm of Rego
et al. [23] (F&F). A variant of PERM is used which folds
from both sides and is called PERMtexp in [26] where also
the run times results for PERM and F&F can be found.

A comparison between PERM, F&F, ACO-HPPFP-3 and
PFold-P-ACO can be found in tables 2 and 3. All algo-
rithms produce very good results on the S1-x sequences
but only PERM and F&F found the best results for all
them. PFold-P-ACO found the optimal results for all
these sequences with the exception of sequence S1-10.
The other ant algorithm ACO-HPPFP-3 found the op-
timal values for all but the two sequences S1-10 and S1-
11. With respect to run time PERM is often relatively
fast, but has serious problems with some sequences, e.g.,
symmetric sequences (see also [13]). This can be seen
for sequence S1-8 where PERM needs 78h, but ACO-
HPPFP-3 needs only 1.5h and the other two algorithms
need significantly less than 1h. F&F has a similar run-



time on most S1-x Sequences as the ACO algorithms and
is significantly faster on sequences S1-8 and S1-9. Unfor-
tunately, so far we could not get results of F&F for the
other sequences from the authors of [23]. On sequences
B30-x, B50-x, and Dx algorithms PERM, ACO-HPPFP-
3 and PFold-P-ACO obtained conformations with the
same minimum free energy. On the long sequences D100-
x both ant algorithms found conformations of the same
minimum free energy values. The only difference is that
ACO-HPPFP-3 could for two of the sequences (D100-1,
D100-2) not find the minimum value in all runs whereas
PFold-P-ACO could not find for one sequence (D100-3)
the minimum value in all runs.

Comparing the ACO algorithms it should be mentioned
that the results on S1-x, B30-x, B50-x, D-1 and D-
2 from [26] were obtained on a one 2.4GHz processor
PC, whereas for PFold-P-ACO we used a two proces-
sor 2.8GHz PC. On the other hand ACO-HPPFP-3 is
written in C whereas PFold-P-ACO is written in Java.
The results for sequences D100-x have been obtained by
us for PFold-P-ACO and ACO-HPPFP-3 on the same
two processor PC. Taking all this into account, it seems
that PFold-P-ACO is slightly faster on the S-4,...,S-11 se-
quences (an exception is S-10) and seems slightly slower
on the B30-x, B50-x, D-1 and D-2 sequence. On the
long sequences D100-x PFold-P-ACO is clearly faster.
Altogether, PFold-P-ACO seems faster on long sequences
whereas both algorithms are similar on small and medium
length sequences.

Figure 4 shows the influence of relative size of H com-
pared to number of estimated HH-contacts with distance
≤ 9 in the final conformation (for details see [29]). It can
be seen that the size of H has a strong influence on the
run time. The results indicate that for long sequences a
medium size number of prescribed HH-contacts is advan-
tageous whereas for small sequences a larger number of
prescribes HH-contacts is better.

The influence of parameters α and β (see Formula (1)) on
the run time until an optimal solution is found is shown
in Figure 5. Values α > 1 and β > 1 are clearly advanta-
geous. The best values for the tested proteins where for
1.1 ≤ α ≤ 1.2 and 1.6 ≤ β ≤ 1.9.

6 Conclusions

A hybrid population based Ant Colony Optimization
(ACO) algorithm for the HP-Protein folding problem has
been proposed. The algorithm is called PFold-P-ACO
and consists of an ACO part and a heuristic branch-
and-bound part. The branch-and -bound part uses the
pheromone information that is delivered by the ACO
part. PFold-P-ACO is the first population based ACO
(P-ACO) algorithm that has been designed for solving
a bioinformatics problem. It was shown experimentally
that algorithm PFold-P-ACO achieves on nearly all test

Figure 4: Run times in seconds until the optimum is
found for S1-4 (dotted line, left scale) and S1-7 (right
scale) for different values of set H compared to the num-
ber of estimated HH-contacts with distance at most 9 in
the final conformation.

Figure 5: Run times in seconds until the optimum is
found for S1-4 (upper) and S1-7 (lower) for different val-
ues of α and β. In both charts the left bottom scale rep-
resents α and the right bottom scale is β. The vertical
scale shows the average run times.



sequences conformations with the same free energy values
as other state of the art algorithms. Moreover, PFold-P-
ACO is in general slightly better and also clearly faster
on long sequences than the existing best ACO algorithm.
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