
On Tighter Inequalities for Efficient Similarity

Search in Metric Spaces

Tao Ban and Youki Kadobayashi ∗

Abstract—Similarity search consists of the efficient
retrieval of relevant information satisfying user for-
mulated query conditions from a database with pre-
built indexing structures. Since the evaluation of the
distance functions between queries and indexed ob-
jects is often computationally expensive, there have
been many attempts to build indexing structures that
use as few distance computations as possible to an-
swer queries. Among these methods, for 20 years
the Approximating and Eliminating Search Algorithm
(AESA) has been the baseline in terms of the required
distance computations. By storing a pre-computed
inter-object distance matrix, AESA is able to ex-
tensively apply the triangle-inequality based pruning
rules to avoid unnecessary distance computations.

In this paper, to further improve the performance
of AESA, we introduce a novel group of pruning
rules that are proven to be tighter than the triangle-
inequality based rules and hence can further re-
duce the number of distance computations during the
search. The new pruning rules require the assump-
tion of positive semi-definite metric space models and
can be used in most modern applications. With some
slight modification, they can be easily extended to
search algorithms in general metric spaces. In the
simulations, when incorporated with the proposed
pruning rules, AESA showed a significant improve-
ment in distance-computation reduction. For low di-
mensional problems, applying the new pruning rules
cut the distance computations in half, and for high
dimensional problems, the reduction was sometimes
more than 90%. The pruning rules were also applied
to LAESA, a variant of AESA which imposes a lin-
ear storage requirement. For this algorithm, they not
only helped to save more distance computations, but
considerably reduced the storage requirement as well.

Keywords: Similarity search, nearest neighbor search,

metric space model, positive semi-definite metric

1 Introduction

We are faced today with a rapidly increasing amount of
published information. It would be hard to survive this
information explosion without the search engines that are

∗Information Security Research Center, National Institute of

Information and Communications Technology, Tokyo, 184-8795

Japan. Email: bantao@nict.go.jp, youki-k@is.aist-nara.ac.jp.

readily accessible on the web, PC, and various database
servers. In these systems, similarity search techniques
are always involved when retrieving relevant information
from a large amount of data with limited computational
resources. In addition, in the fields of data mining, com-
puter vision, and pattern recognition, similarity search
has also been playing an important role as a prominent
data processing step.

The goal for a similarity search application is often one
of the following [18], [25]: Point Query: Finding objects
having particular feature values; Range Query: Finding
objects whose feature values fall within a given range in
relation to some query object; Nearest Neighbor Query:
Finding the closest object to the query object within an
object set; Spatial Join Query: Finding pairs of objects
from the same set or different sets that are sufficiently
similar to each other. To achieve these goals in spite of
specific computation, storage, and especially time limita-
tions, many similarity search algorithms have been pro-
posed. One popular approach is mapping data objects
into feature vectors and then conducting a search in the
feature space. This method is computationally efficient
because the geometrical properties of the feature space
can help to speed up the search. However, it also intro-
duces the undesirable element of indirection into the pro-
cess. Moreover, for sophisticated applications—for exam-
ple, when the indexed data consists of strings and trees—
finding the vectorial presentation of the data is itself an
open question. Another, and more elegant, approach is
to define a distance function directly between objects and
then build indexing structures based on the properties of
the distance function. Researches have shown that if the
distance satisfies some basic conditions, including non-
negativity, identity, symmetry, and triangle inequality,
efficient algorithms can be formulated for fast similar-
ity search [5], [18], [12], [25]. Such a function, together
with the data domain, are generally known as a metric
space. A metric space model is considered a more general
methodology for similarity search, since in some data do-
mains, defining a distance function between objects can
be accomplished more intuitively than mapping objects
to feature vectors. Examples might include unstructured
data such as multimedia objects, text documents, protein
sequences, images, etc.

In the framework of fast similarity search in metric
spaces, the widely adopted criterion used to evaluate the
performance of search algorithms is the number of dis-
tance computations invoked during the search. This is
because the evaluation of complicated metric distance
functions is usually much more computationally inten-
sive than side operations. In this sense, the technique
called the Approximating and Eliminating Search Algo-
rithm (AESA) [21], [22] is probably the fastest metric
search algorithm. During a search, AESA extensively
applies the triangle-inequality to approximate the dis-
tances from the query object to the indexed objects and
eliminates objects that do not satisfy the query condi-
tion. It is reported to be able to answer nearest-neighbor
queries with an approximately constant number of dis-
tance computations. However, the bottleneck of AESA
is its quadratic storage requirement. To make use of the
triangle-inequality, AESA requires that an N × N inter-
object distance matrix be pre-computed and stored in
the main memory, where N is the number of indexed ob-
jects. For 20 years, AESA has been the baseline method
for metric search algorithms, which aim to answer simi-
larity queries with as few distance computations as pos-
sible. In fact, all of the development on metric index
methods can be seen as attempts to simulate the per-
formance of AESA using less memory [5]. There have
been many studies with the goal of reducing its prepro-
cessing time or employed storage space. The LAESA [15]
chooses M elements from the dataset as potential piv-
ots, and reduces the quadratic storage cost of AESA to
O(MN). An improved version of LAESA is the Tree
LAESA [16], which achieves sub-linear side computations
at query time at the expense of doubling the average num-
ber of distance computations. The Reduced Overhead
AESA [23] strictly calculates the same number of dis-
tances as AESA, but reduces the query processing time.
Recently, graph t-spanner indexes [17] were used to simu-
late AESA, obtaining almost the same number of distance
calculations with much less memory. In [9] a new tech-
nique called iAESA was introduced to choose the next
pivot, which guesses a better close candidate and yields
some reductions in the number of distance computations.
To improve the search performance of the algorithms, in
[10], the author suggests applying the AESA technique to
most of the existing metric search structures to efficiently
reduce the number of distance computations during the
search.

All of the above mentioned methods—in fact most of the
available metric search algorithms—try to avoid distance
computations by applying the triangular-inequality. Al-
though the triangle-inequality is computationally cheap,
its pruning performance degenerates quickly as the di-
mensions of the data increase. It is interesting to observe
that the triangular inequality is defined in a 1D embed-
ding space: all objects are embedded in the space defined
by the distance from the pivot—a reference object. All

information perpendicular to this dimension is ignored.
Assume that the indexed objects can be embedded into
a Euclidean space with a finite dimension c. It can be
expected that a more accurate approximation of inter-
object metric distances can be obtained in a higher di-
mensional embedding space: The higher the dimension of
the embedding space, the better the projected distance
approaches the metric distance. When the dimension of
the embedding space exceeds c, the projected distance
will be identical to the corresponding metric distance.
Following this idea, we proposed two groups of inequal-
ities to estimate the inter-object distances in the metric
space. For easy conceivability, the new approximations
were defined in the 2D and 3D embeddings of the met-
ric space. With the same storage cost, the proposed in-
equalities were experimentally proven to be tighter than
the triangle-inequality. In particular, the 3D inequali-
ties were theoretically proven to be tighter than their
1D counterparts. To evaluate the efficiency of the pro-
posed inequalities, we incorporated them into two index-
ing structures. The first one was AESA and we aimed
to estimate a new baseline for similarity search in metric
spaces. The second algorithm was the LAESA algorithm,
which requires much less storage than AESA with the
cost of a few additional distance computations. In [1],
the proposed lower bounds were applied to the GNAT
indexing structure [2], which is one of the most popular
metric trees, with preferable performance reported.

The rest of this paper is organized as follows. In Section
2, we briefly review the problem of metric search, to-
gether with the classical AESA and LAESA algorithms
and other popular metric indexing structures. Section
3 specifies the proposed inequalities to approximate the
inter-object distances in metric spaces. Section 4 speci-
fies the detailed implementation of the search algorithms
adopting these inequalities. Some discussions on the im-
plementation and side computations are given in Section
5. Section 6 reports the numerical results of a series of
simulations. Section 7 concludes the paper.

2 Related Works

Before specifying the AESA search strategies, we will first
review the properties of a metric space model and com-
monly used metric queries.

2.1 Similarity Search in Metric Spaces

Let D be the domain of objects, d : D×D → R a distance
measure on D, the tuple M = (D, d) is called a metric
space. If ∀u,v,z ∈ D, the following conditions hold [2].

d(u,v) ≥ 0 non − negativity (1)

d(u,v) = 0 ⇔ u = v identity (2)

d(u,v) = d(v,u) symmetry (3)

d(u,v) + d(v,z) ≥ d(u,z) triangular inequality (4)

A metric query is generally defined by a query object
q and a proximity condition. There are two types of
queries that are widely used: the range query and nearest
neighbor query. The range query can be specified as:
Given a metric space M = (D, d), a finite set U ⊂ D,
a query q ∈ D, and a range r ∈ R, the result set for a
query Q = (q, r, U) is the set

Qr(q, r, U) = {ui|d(q,ui) ≤ r,ui ∈ U}. (5)

Note that the point query is a special case of a range
query with r = 0. For a nearest neighbor (NN) search,
the algorithm retrieves the closest object to q as the re-
sult. The concept can be generalized as searching for k
nearest neighbors. Thus the result set of a kNN search
Q = (q, k, U) is

Qk(q, k, U) = Q : {Q ⊆ U, |Q| = k,

∀ui ∈ Q,v ∈ U \ Q, d(q,ui) ≤ d(q,v)}. (6)

For simplicity, we confine our discussion mainly to the
nearest neighbor query, which is the most widely explored
metric search type. All of these discussions can be eas-
ily extended to a k-nearest neighbor search algorithm by
maintaining a list of the k candidates seen so far and using
the largest distance among the k candidates to eliminate
the far away objects. The experiment section also re-
ports the results of performance evaluations on k-nearest
neighbor searches. A discussion of other kinds of queries,
including the reverse nearest neighbor query, similarity
join, and a combination of the enumerated search types,
can be found in [18], [25].

2.2 AESA

Following [21], [22], the key to the use of AESA in per-
forming a nearest neighbor search is the following prop-
erty directly derived from the triangular inequality in (4).

Lemma 1 (1D inequalities) Let M = (D, d) be a metric
space, u,p, q ∈ D. The following inequalities hold:

d1D(q,u|p) = |d(q,p) − d(u,p)| ≤ d(q,u), (7)

D1D(q,u|p) = |d(q,p) + d(p,u)| ≥ d(q,u). (8)

If we let P be the set of pivots whose distances from q

and u are known, the greatest lower bound d1D(q,u|P)
on d(q,u) for any object u ∈ D is

d1D(q,u|P) = max
p

i
∈P

|d(q,pi) − d(u,pi)|. (9)

Similarly, the least upper bound is

D1D(q,u|P) = min
p

i
∈P

|d(q,pi) + d(u,pi)|. (10)

As the inequalities help to prune some of the objects from
further consideration, they are generally called pruning
rules [11]. To apply the pruning rules, the distances from

the object p to the indexed object u and the query object
q need to be known beforehand. Hence, object p is called
a pivot.

At the preprocessing step, AESA computes all O(N2)
inter-object distances for the N objects in the indexed
object set X and stores them in a matrix. At query time,
according to (9), the distance matrix is used to provide
distance lower bounds to objects whose distances have
not yet been computed, based on the object distances
already computed. More specifically, AESA first initial-
izes P to the empty set, U = U0 \ P, and d1D(q,u) to 0
for all u ∈ U. At each search step, the next pivot p is
selected as the one with the minimal lower bound from
U and its distance from q is computed. The algorithm
then updates the lower bounds for the remaining objects
in U and eliminates the ones with distance lower bounds
greater than the distance from q to the nearest neighbor
candidate v. AESA terminates once there are no more
objects left in U. The nearest neighbor candidate, v, is
updated if necessary when the distance computation is
invoked.

2.3 LAESA

The main drawback of the AESA approach is the
quadratic storage requirement, with its large preprocess-
ing cost. LAESA alleviates this drawback by choosing a
fixed number, M , of pivots whose distances from all other
objects are computed and stored in advance. Thus, for a
dataset consisting of N objects, the distance matrix con-
tains N × M entries rather than the O(N2) needed for
AESA. The LAESA search algorithm is very similar to
that of AESA, especially when the distances from q to
the selected pivots are preferentially computed.

In particular, let P be the set of selected pivots from
U0, and let U = U0 \ P be the rest of the objects. To
implement the approximating and eliminating strategy,
LAESA first computes the distances between q and all
of the pivots p ∈ P. It then estimates the distance lower
bounds for all the objects in U by applying (9). This
allows objects to be eliminated from U whose lower bound
estimates from q are greater than the distance from q to
the current nearest neighbor candidate. The remaining
objects are sequentially compared with q in ascending
order of their distance lower bounds. In the case of a
distance computation, the nearest neighbor candidate is
updated if necessary.

It is well known that pivot selection can drastically affect
the performance of LAESA. Between two sets of pivots
with the same size, the better chosen pivots can yield
greater eliminating ability and thus largely reduce the
search time. In [15], the pivot selection algorithm at-
tempts to choose pivots that are as far away from each
other as possible. In this way, objects from corners of the
space are chosen as pivots. Better eliminating ability is

achieved because the distance densities of corner objects
are much flatter than for objects at the center.

2.4 Other Metric Search Algorithms

In general, any successful metric search should pay at-
tention to two key points: the indexing structure used
to organize the indexed objects and techniques to avoid
unnecessary distance computations.

Besides the mentioned AESA class of algorithms, which
seek to reduce the distance computations as much as pos-
sible, there have been many proposals for advanced in-
dexing structures that try to hit a balance between the
distance computations, side computations, and storage
cost. A few of these are the metric tree approaches, such
as the Vantage Point tree (VPT) [24], Burhard-Keller tree
(BKT) [3], Generalized Hyperplane tree (GHT) [20], Geo-
metric Near-neighbor Access tree (GNAT) [2] and Metric
tree (M-tree) [7], and similarity hashing methods, such as
the D-index [8] and its decedents. In these algorithms,
objects are organized into locally adjacent groups so that
the pruning rules can be applied to multiple objects at
one time. In this way, side computations can be greatly
reduced.

3 Proposed Lower and Upper Bounds

We can analyze the design of metric search algorithms
from another point of view. For a metric space model,
nothing beyond the inter-object distance can be acquired.
In this sense, the distance matrix possesses all the infor-
mation that we can get from the metric space model.
Note that AESA tries to take advantage of all the infor-
mation from the distance matrix to reduce the distance
computations, whereas other algorithms, e.g. the metric
tree structures, only make use of some sketched informa-
tion about the matrix. This may be the reason why it is
hard for other indexing structures to beat AESA when
the evaluation criterion is the reduction of distance com-
putations.

On the other hand, it might be possible to improve the
search efficiency with respect to the pruning techniques.
It is interesting to ask whether, with a fixed set of pivots,
we can obtain a lower bound on the distance between two
objects q and u that is tighter than that produced by (9).
As suggested in [1], with a slightly more strict assumption
of the metric space model, we can effectively tighten the
lower bound. In the following, we first discuss a Euclidean
case and then generalize the discussion to metric spaces.

3.1 Embedding of the Metric Space

In a multi-dimensional Euclidean space, a 2D embedding
space can be defined by a triple of non-identical points
o, p and u, as shown in Fig. 1. Let −→op be a coordinate
axis, with o being the origin and p defining the positive

direction. Let the projection of u on the axis be u′. Then
by the law of cosines, the projected distance between o

and u along −→op is:

d̄(o,p;u) = d(o,u′) = cos θd(o,u)

=
1

2d(o,p)

(
d2(o,u) + d2(o,p) − d2(u,p)

)
. (11)

We can see that the projected distance d(o,p;u) can be
computed using only the inter-object distances, thus it
might be possible to apply the lower bound derived from
(11) to metric space models. Then it is natural to won-
der about what circumstance might allow a metric space
model to give rise to a configuration of points, {xi}, in a
Euclidean space, where the associated Euclidean distance
L2(xi,xj) ≡ d(ui,uj) for all ui,uj ∈ U. We have the
following lemma to the answer to this question. How-
ever, note that since the projection onto the 2D embed-
ding space requires the assumption of a Euclidean space
model, the above discussion cannot be generalized to all
metric space problems if no stronger assumption is taken.

Lemma 2 Let M = (D, d) be a metric space, U =
{ui, i = 1, · · · , N} ⊂ D. Define the inter-object squared
distance matrix as BN×N , where [B]ij = d2(ui,uj),
i, j = 1, · · · , N , and the gram matrix G as

G = −
1

2
(I −

1

N
11T)B(I −

1

N
11T), (12)

where 1 = {1, 1, · · · , 1} is the n-ary all ones vector and
I the identity matrix. If G is positive semi-definite, then
there exists a configuration xi, i = 1, · · · , N in a Eu-
clidean space with a dimension up to N that satisfies

L2(xi,xj) ≡ d(ui,uj), (i, j = 1, · · · , N). (13)

Proof: Let the coordinates of N points in a c dimensional
Euclidean space be given by xi (i = 1, · · · , n), where xi =
(xi1, · · · , xic)

T . Then the Euclidean distance between the
ith and the jth points is given by

d2

ij = (xi−xj)
T (xi−xj) = xT

i xi +xT
j xj −2xT

i xj . (14)

Let the gram matrix be G = {gij}, where

gij = xT
i xj . (15)

Here we show how to find G from dij.

First, to overcome the indeterminacy of the solution re-
sulting from translation, we require that the centroid of
the configuration of points be placed at the origin. That
is

N∑

i=1

xil = 0, l = 1, · · · , c. (16)

From (14) and (16), we have

1

N

N∑

i=1

d2

ij = xT
j xj +

1

N

N∑

i=1

xT
i xi,

1

N

N∑

j=1

d2

ij = xT
i xi +

1

N

N∑

j=1

xT
j xj ,

1

N2

N∑

i=1

N∑

j=1

d2

ij =
2

N

N∑

i=1

xT
i xi. (17)

Substituting (17) to (14) gives

gij = −
1

2

(

d2

ij −
1

N

N∑

i=1

d2

ij −
1

N

N∑

j=1

d2

ij

+
1

N2

N∑

i=1

N∑

j=1

d2

ij

)

. (18)

Define matrix A as aij = −1

2
d2

ij, then the gram matrix G

can be computed from

G = HAH, (19)

where H is the centering matrix,

H = I −
1

N
11T . (20)

Following [14], suppose that the dissimilarities δij =
δ(ui,uj), where δ(·, ·) is a metric distance function, are
used instead of dij to define matrix A, which is then cen-
tered to produce the gram matrix G. Note that from the
definition of the metric space model and (19), both A and
G are real valued symmetric matrices. Then it is guar-
anteed that G can be diagonalized with its eigenvalues λi

(i = 1, · · · , c) and their associated eigenvectors vi are
real. Thus we have

G = V ΛV T , (21)

where Λ = diag(λ1, · · · , λc),V = v1, · · · ,vc.

Equation (21) can also be rewritten as

G = XXT (22)

where X = [xi]
T , xi = λ

1

2 vi. If G is positive semi-
definite, then xi are real valued vectors.

Now the distance between the ith and jth points of the
configuration is given by (xi − xj)

T (xi − xj), and hence

(xi − xj)
T (xi − xj) = xT

i xi + xT
j xj − 2xT

i xj

= gii + gjj − gij

= aii + ajj − 2aij

= −2aij = d2

ij , (23)

by substituting for gij using (18). Hence the distance
between xi and xj in the Euclidean space equals to the
dissimilarity δ(ui,uj).¥

Figure 1: Distances in the 2D Euclidean embedding.

As can be learned from the proof, the configuration of
points in the embedding space can be found by a se-
quence of basic matrix operations. We call a metric space
model that can always produce a positive semi-definite
gram matrix positive semi-definite. Fortunately, most
of the commonly used metric space models are positive
semi-definite so that the lower bounds derived from this
property are applicable to most metric search problems.
Note that a positive semi-definite metric space is in ac-
cordance with positive semi-definite kernels [19], which
have recently been extensively studied in the field of ma-
chine learning. In fact, a positive semi-definite kernel al-
ways corresponds to a positive semi-definite metric space.
Hence, the techniques explored here are readily adaptable
to most modern applications.

3.2 New Bounds on the Distances

By Lemma 2, we have the following lemma, which defines
a novel lower bound on the distance between two objects
when their distances to two pivots are known.

Lemma 3 (2D lower bound) Let M = (D, d) be a positive
semi-definite metric space. o,p,u ∈ D, o 6= p. Then for
any q ∈ D, the following inequality holds:

d2D(p,u|o,p) = |d̄(o,p; q) − d̄(o,p;u)| ≤ d(q,u). (24)

Proof: Lemma 3 follows directly from the basic properties

of the Euclidean space. Because
−−→
q′u′ is the projection of

−→qu along −→op, the equation holds if and only if −→qu parallels
−→op.¥

In Lemma 3, only the projected distance along −→op is con-
sidered. The following lemma employs the distance per-
pendicular to −→op for a tighter lower bound.

Lemma 4 (3D lower and upper bounds) Let M = (D, d)
be a positive semi-definite metric space, o,p,u, q ∈ D,
o 6= p. Let u′ and q′ be the projections of u and q on

Figure 2: Distances in the 3D Euclidean embedding.

−→op, respectively. Then the following inequality holds:

d(q,u) ≥ d3D(p,u|o,p)

=
√

d2(u, q|o,p) + (d(q, q′) − d(u,u′))2. (25)

Similarly, d(q,u) is upper bounded by

d(q,u) ≤ D3D(p,u|o,p)

=
√

d2(u, q|o,p) + (d(q, q′) + d(u,u′))2. (26)

Proof: In Fig. 2, the objects are shown in the 3D space
defined by o, p, u, and q. The projection of q onto axis
−→op is marked as q′ and its projection onto the plane de-
cided by o,p,u is marked as q′′. Line −→uv is parallel to
−→op and cuts the extension line of

−−→
q′′q′ at point v. Then

we have

d̄(o,p;u) − d̄(o,p; q) = d(u′, q′) = d(u,v). (27)

Since 4uvp is a right-angled triangle, by the Pythagorean
theorem, we have

d(q,u) =
√

d2(u,v) + d2(q,v) (28)

In 4qq′v, from the triangular inequality,

d(q,v) ≥ |d(q, q′ − d(q′,v)|. (29)

Substituting (27) and (29) to (28) and replacing d(q′,v)
with d(u,u′) gives (25). Similarly, we have (26).¥

Generally, when incorporated in a metric search algo-
rithm, the tighter the distance lower bound, the better
the pruning performance of the algorithm to avoid unnec-
essary distance computations. It is obvious that the 3D
lower bound is tighter than its 2D counterpart. For posi-
tive semi-definite metric spaces, given more than two non-
identical pivots, we can prove that the 3D lower bound is
also tighter than the 1D lower bound defined in Lemma
1, as stated in the following lemma.

Lemma 5, Let M = (D, d) be a positive semi-definite
metric space, with o,p ∈ D, (o 6= p) as pivots. The fol-
lowing inequalities hold:

d3D(q,u|o,p) ≥ max
(
d1D(q,u|o), d1D(q,u|p)

)
, (30)

D3D(q,u|o,p) ≤ min
(
D1D(q,u|o), D1D(q,u|p)

)
. (31)

Proof: Here, we use two consequent objects to denote the
distance between them. Then, following the denotations
in Lemma 4 and Fig. 2, we have

d2

3D
(q,u|o,p) = (u′o − q′o)2 + (uu′ − qq′)2

= u′o2 − 2u′o · q′o2 + q′o2

+uu′2 − 2uu′ · qq′ + qq′2

= u′o2 + uu′2 + q′o2 + qq′2

−2(cos θ cos γ + sin θ sin γ)uo · qo

= uo2 + qo2 − 2 cos(θ − γ)uo · qo

≥ d2

1D
(q,u|o). (32)

On the fourth line of the deduction, we have made use
of the product-to-sum trigonometric identities. Similarly,
we have

d2

3D
(q,u|o,p) ≥ d2

1D
(q,u|p). (33)

(30) follows from (32) and (33). Following the same rea-
soning we have (31). ¥

3.3 Extending to Generic Metric Spaces

To incorporate the proposed inequalities into search al-
gorithms in generic metric spaces, consideration should
be given to the case where a metric distance leads to a
matrix B that is not positive semi-definite. According
to [6], the solution for this case is adding a constant to
the metric distances in B, except for the self-distances
(.ui,ui). The new distance functions {d′ij} in the form

of d′ij = dij + C(δij , where C is a constant and δij the
Kronecker delta, makes B positive semi-definite. This
has been referred to as the additive constant problem for
many years. The smallest value of C that can turn B into
a positive semi-definite is −2λn, where λn is the smallest
eigenvalue of B [13].

4 Search Algorithms

In this section, we specify the search algorithms with the
new lower bounds incorporated with the search strategy
of AESA and LAESA. We call the new distance bounds
a projection based distance bounds, and dub the follow-
ing algorithms PAESA (the Projection-based AESA) and
LPAESA.

4.1 PAESA

As specified in Table 1, PAESA basically follows the al-
gorithm of AESA [21], [22]. The major difference be-
tween PAESA and AESA is the application of the new

Table 1: The PAESA metric search algorithm.

0 Inputs: q, U0 = {ui|i = 1, · · · , N};
1 P ← ∅; // set of pivots
2 U ← U0; // set of non-pivots
3 D(ui) ← 0, for ui ∈ U; // lower bound
4 dn ← ∞; // distance to the nearest neighbor
5 while U 6= ∅
6 p ← arg minui∈U D(ui);
7 U ← U \ {p};
8 if d(q,p) < dn then // distance evaluation
9 dn ← d(q,p);
10 b ← p; // update the nearest neighbor
11 for ui ∈ U do // approximation
12 Dlow(ui) ← max

p
j
∈P

appro(q,ui,p,pj);

13 D(ui) ← max(D(ui), Dlow(ui));
14 if D(ui) ≥ dn then

15 U ← U \ {ui}; // elimination
16 P ← P ∪ {p};
17 return b; // Output: the nearest neighbor

distance lower bound for approximation and elimination.
In AESA, for each pivot p selected from the dataset,
Lemma 1 is applied only once to update the associated
lower bound d1D(q,ui) on d(q,ui). However, for PAESA,
when a pivot is added to the pivot set, multiple lower
bounds for d(q,ui) can be computed according to Lemma
3 or Lemma 4. Thus, with M pivots selected, the lower
bounds d2D(q,ui) or d3D(q,ui) for d(q,ui), are selected
as the maximum from the M(M + 1)/2 approximations.
Hence, the lower bound produced by PAESA will gener-
ally be much tighter than that of AESA and hence more
distance computations can be saved. Line 12 of Table 1
applies an inequality to estimate the lower bound of the
distance between q and ui. In the case where Lemma 3
is applied to get the lower bound, we term the algorithm
PAESA2D, otherwise it is dubbed PAESA3D if Lemma
4 is employed.

4.2 LPAESA

Like AESA, PAESA also requires a distance matrix stor-
ing O(N2) inter-object distances, which becomes imprac-
tical for large datasets. Following the idea of LPAESA,
we can alleviate this drawback by choose a fixed num-
ber of M pivots, whose distances from all the objects are
computed and stored beforehand.

Table 2 specifies the search algorithm for LPAESA when
a set of M pivots, P, are previously selected from the
dataset. During the search, the query object is first com-
pared against the pivots and then the distances from the
pivots are used to compute the lower bounds of the non-
pivots. After that, the non-pivots are visited in ascending
order of the lower bound until no object in the set can

Table 2: The LPAESA metric search algorithm.

0 Inputs: q, U0 = {ui|i = 1, · · · , N − M},
P = {pi|i = 1, · · · ,M};

1 U ← U0 \ P; // set of non-pivots
2 dn ← ∞; // distance to the nearest neighbor
3 for pi ∈ P do

4 if d(q,pi) < dn then // distance evaluation
5 dn ← d(q,pi);
6 b ← pi; // update the nearest neighbor
7 for ui ∈ U do //approximation
8 Dlow(ui) ← max

p
j
,p

k
∈P

appro(q,ui,pj ,pk);

9 if (Dlow(ui) ≥ dn) then

10 U ← U \ {ui}; // elimination
11 Us ← sort(U, {Dlow(ui)}); // ascending order
12 for ui ∈ Us do

13 if (Dlow(ui) ≥ dn) then

14 break;
15 if d(q,ui) < dn then // distance evaluation
16 dn ← d(q,ui);
17 b ← ui; // update the nearest neighbor
18 return b; // Output: the nearest neighbor

be the nearest neighbor of the query object. Note that
the distance to the current nearest neighbor candidate
is updated if necessary when a distance computation is
invoked. LPAESA is called LPAESA2D or LPAESA3D
according to the employed lower bound.

4.3 Pivot Selection

To speed up the search, LPAESA requires a distance ma-
trix consisting of the computed distances between the piv-
ots in the pivot set and all of the objects in the dataset.
Note that if the number of selected pivots is M , the stor-
age cost of LPAESA is O(MN).

As pointed out in [4], the way pivots are selected af-
fects the search performance of a metric search algorithm.
Among the pivot selection heuristics studied in [4], the in-
cremental selection strategy shows the best performance
for real world metric spaces, both in terms of approximat-
ing accuracy and computation cost. In the experiment,
we employed an incremental selection algorithm, as spec-
ified in Table 3, to select the pivot set. By defining the
distance from an object u to a set of objects P as the
minimum from u to pi ∈ P, the idea can be easily stated
as follows. First initialize the pivot set with a randomly
selected object, then sequentially select the next pivot as
the most separated object from the pivot set.

5 Analysis of Computing Cost

For applications with computationally intensive metric
distances, side computations, other than the distance

Table 3: Incremental pivot selection algorithm.

0 Inputs: U, M ;
1 P ← {p1 ∈ U}; // random select the first pivot
2 for i = 2 to M do

3 di(uj , P) = min
p

k
∈P

d(uj ,pk), for uj ∈ U;

4 pi ← arg max
uj∈X−P

di(uj , P);

5 P ← P ∪ {pi} ;
6 return P; // return the pivot set

computations, are simply ignored for easy evaluation of
the various metric search methods. However, as sug-
gested in [23], the search performance of AESA like algo-
rithms can still be improved by carefully designed search
procedures. Although how to minimize the side computa-
tions is beyond the scope of this paper, in this subsection,
we provide a discussion of the implementation details of
the evaluation of the lower bounds.

As already mentioned, to apply Lemma 1, we have to
know d(u,p) and d(q,p), with d(u,p) stored within
the indexing structure and d(q,p) computed during the
search. The evaluation of the 1D lower bound is costless:
one addition and one fabs() function call are all that are
needed. At each search step,

(
|P||U|

)
lower bounds are

evaluated, where |P| is the number of selected pivots and
|U| the number of remaining objects.

Applying Lemma 3 generally requires more side com-
putations. From (24) we can see that d2

2D
(p,u|o,p)

can be computed from d(u,o), d(u,p), d(q,o), d(q,p),
and d(p,o). For computational efficiency, we evaluate
d2

2D
(p,u|o,p) instead of d2D(p,u|o,p). Accordingly, the

squared inter-object distances are stored in the distance
matrix. We compute d2

2D
(p,u|o,p) in two steps:

t = d2(u,o) − d2(u,p) − d2(q,o) + d2(q,p), (34)

d2

2D
(p,u|o,p) =

0.25

d2(o,p)
t · t. (35)

Hence, to evaluate the 2D lower bound, three additions,
two multiplications, one division, and one assignment are
invoked.

Things become a little more complicated when computing
the squared 3D lower bound. From (32) we have

d2

3D
(q,u|o,p) = uo2 + qo2 −

T1

︷ ︸︸ ︷

2uo · qo cos θ cos γ

− 2uo · qo sin θ sin γ
︸ ︷︷ ︸

T2

. (36)

From the law of cosines, we have

cos θ =
uo2 + op2 − up2

2uo · op
, (37)

cos γ =
qo2 + op2 − qp2

2qo · op
. (38)

For fast evaluation, define two temporary variables

t1 = uo2 + op2 − up2, (39)

t2 = qo2 + op2 − qp2. (40)

So the term T1 in (36) can be computed as

T1 =
0.5

op2
t1 · t2, (41)

and term T2 can be computed as

T2 = 2uo · qo
√

(1 − cos2 θ)(1 − cos2 γ)

= 2uo · qo

√

(1 −
t2
1

4uo2 · op2
)(1 −

t2
2

4qo2 · op2
)

=
0.5

op2

√

(4uo2 · op2 − t2
1
)(4qo2 · op2 − t2

2
). (42)

Substituting (41) and (42) to (36) gives

d2

3D
(q,u|o,p) = uo2 + qo2

−
0.5

op2

(
t1t2 +

(
(4uo2 · op2 − t2

1
)(4qo2 · op2 − t2

2
)
) 1

2

)
. (43)

Hence, to evaluate the 3D lower bound, nine additions,
nine multiplications, one division, two assignments, and
one sqrt() function call will be invoked.

At each search step, PAESA and LPAESA need to eval-
uate

(
1

2
|P|(|P| + 1)|U|

)
lower bounds.

6 Experiments

In this section we present the experimental results of the
proposed PAESA and LPAESA algorithms. The numer-
ical results of a series of simulations are reported. The
performance of the indexing structures was measured by
the reduction in the distance calculations. Because AESA
and LAESA, which provide the best effectivity in dis-
tance computation reduction, have long been the baseline
of metric search algorithms, we only compare the pro-
posed algorithms with these two algorithms. Other met-
ric search algorithms—typically with less storage cost—
will generally require more distance computations.

In the experiments, the indexed objects and the query
objects were independently drawn from uniform distribu-
tions in c-dimensional unit hypercubes. The coordinates
of the data points were never used directly and only the
inter-object distances were employed in the algorithms.
We set the number of objects in the datasets to 10,000,
and the number of queries to 100. The reported results
were averaged over 10 runs.

Before discussing the performance evaluation of the algo-
rithms, we first show the results of the pivot selection al-
gorithms for LAESA, LPAESA2D, and LPAESA3D. Fig.

Figure 3: On varying pivot set size in 10D.

Figure 4: Pivot selection results for different dimensions.

3 shows the curves for the number distance calculations
vs. pivot set size for a 10D dataset. Evident saddle points
can be found in all the curves. That is, the number
of distance calculations first drops because the approx-
imation accuracy increases as pivots are added. How-
ever, after a certain threshold, the distance calculations
go up since the computations against the pivots increase
considerably. Experiments show that, for independently
generated datasets with the same distribution, the op-
timal number of pivots is quite stable. It can also be
seen that the curves for LPAESA2D and LPAESA3D are
very close to the dashed line, which stands for the num-
ber of pivots. This is because the distance lower bounds
given by LPAESA2D and LPAESA3D are very tight, so
that most of the non-pivot objects are pruned without
distance computations. Fig. 4 reports the results of
pivot selection for datasets with up to 20 dimensions.
The fig. shows that the number of pivots selected by
LAESA was exponential in the dimension of the dataset.
LPAESA2D and LPAESA3D needed comparable num-
bers of pivots for all the cases. For datasets with over
5 dimensions, the LPAESAs selected considerably fewer
pivots than LAESA. For 10 dimensions, the three algo-
rithms select 44, 15, and 12 Pivots, respectively, and for

20 dimensions, they selected 1002, 132, and 118 pivots,
respectively.

The aim of the second experiment was to compare the
performance of the referenced metric search algorithms
in different dimensions. The algorithms were tested on
datasets with up to 20 dimensions. Fig. 5 shows the
distance calculations for the nearest neighbor queries. It
can be seen that the search difficulty increases exponen-
tially with the number of dimensions because of the so
called curse of dimensionality. The performance compar-
ison is clear enough: for datasets with a lower number
of dimensions, since the selected pivots can produce very
tight lower bounds, the pivot set based methods are more
preferable than the full matrix based methods, especially
when the storage cost is considered. When the search
difficulty increases as the number of dimensions goes up,
sufficiently accurate lower bounds can only be achieved
by the extensive use of pre-stored distances. For up to 8
dimensions, we have the following performance order:

LAESA l AESA l LPAESA2D

lLPAESA3D l PAESA2D l PAESA3D, (44)

where ‘l’ stands for an ascending order in terms of the
saved distance computations. Since lemma 4 produced
tighter lower bounds than lemma 3, PAESA3D needed
slightly fewer distance computations than PAESA2D,
and LPAESA3D needed fewer than LPAESA2D. How-
ever, the differences were not very prominent. If the
computation cost to estimate the distance lower bounds
is also taken into account—note that lemma 4 costs two
or three times more than lemma 3—a better choice can
be made based on the nature of the application. An-
other thing to note is the effectiveness of the application
of pivot sets. With much less storage cost than PAESAs,
LPAESAs needed no more than twice the distance com-
putations of PAESAs. For the most intensive case in 20
dimensions, LPAESAs required about 1% of the space of
PAESAs, with about 50% more distance computations.
So for large scale applications, or for systems short on
storage resources, LPAESAs are better choices.

In the third experiment, we evaluated the algorithms on
10D datasets with the sample size varying from 1,000 to
13,000. Fig. 6 shows the required distance calculations.
It was interesting to find that for all these algorithms
fewer objects in the dataset did not mean fewer distance
computations were required to retrieve the nearest neigh-
bor. On the contrary, each of the algorithms maintained
a stable number of distance computations as the sample
size varied. Note that for AESA and the PAESAs, there
was no influence from the selected number of pivots. This
property is especially useful for large scale datasets. For
all the cases, the performance order in (44) was preserved.

In the fourth experiment, we extended the algorithms to
find the k nearest neighbors by introducing an ordered list

Figure 5: Experiments on varying dimension.

Figure 6: Experiments on varying sample size.

of the k nearest objects to the query object and updat-
ing it when the distance computation was invoked. The
number of pivots were fixed for LAESA and the LPAE-
SAs. Fig. 7 shows the curves of the distance calculations
against k, which changed from 1 to 100. The experiments
were done on a 10D dataset with 10,000 objects. We
can learn from the figure that as k increased, the search
difficulty increased quickly. For each of the algorithms,
the number of distance calculations was in linear relation
to the retrieved number of nearest neighbors. We have
to note that this linearity in increased distance compu-
tations is only applicable for small k values. Since the
number of pivots were fixed for LAESA and LPAESAs
in the experiments, the results were in favor of PAESA
and AESA. Better results could be produced by LAESA
and LPAESAs if more pivots were selected for large k val-
ues. A more adaptive strategy could be selecting a large
enough pivot set beforehand, and then selectively using
a portion of the pivot set according to the user defined k
parameter.

From the experiments with different dimensions, sample

Figure 7: Experiments on varying sample size.

sizes, and k parameters, we find the following rules. PAE-
SAs have better search efficiency than AESA in all cases
in terms of the reduction of distance computations. Simi-
larly, LPAESAs always need fewer distance computations
than LAESA. Finally, 3D lower bound imposed search al-
gorithms always invoke fewer distance computations than
their 2D lower bound imposed counterparts.

7 Conclusion

In this paper, we proposed two groups of inequalities for
approximating the distances in a metric space. The in-
equalities were derived from the geometrical properties of
the embedding space and are applicable to positive semi-
definite metric space models. They are also adaptable
to generic metric spaces given some appropriate mod-
ification is made to the distances. The proposed dis-
tance lower bounds were incorporated with the AESA
search algorithm. Experiments showed that when the
full distance matrix was employed, the search efficiency
of the proposed PAESAs was much better than AESA,
especially for high dimensional datasets. For better stor-
age efficiency, we also applied the new lower bounds fol-
lowing the idea of LAESA. In these experiments, the
proposed LPAESAs not only showed better performance
than LAESA in reducing distance computations, but also
had lower storage cost in terms of the size of the inter-
pivot distance matrix. When the dimensions exceeded
10, the two types of PAESAs both needed fewer than half
of AESA’s distance computations to retrieve the nearest
neighbor. In a 20-dimensional space, the PAESAs only
needed about 10% of the distance computations of AESA.
The performance comparison between the LPAESAs and
LAESA in terms of the distance computations was similar
to that between AESA and PAESA.

For most of the experiments, we discovered the perfor-
mance order shown in (44). Hence, we can reach the
conclusion that, for applications where the metric dis-

tance computations are the most essential computational
cost, the application of PAESA is the best choice. When
the storage cost is considered, the LPAESAs are better
choices. Whether to apply the 3D lower bound or 2D
lower bound depends on the comparative cost of the side
computations and distance evaluations.

References

[1] T. Ban and Y. Kadobayashi, “New pruning rules
for similarity search,” in The 11th IASTED Interna-
tional Conference on Artificial Intelligence and Soft
Computing, Palma de Mallorca, Spain, 2007.

[2] S. Brin, “Near neighbor search in large metric
spaces,” in The 21st International Conference on
Very Large Data Bases, pp. 574–584, 1995.

[3] W.A. Burkhard and R.M. Keller, “Some approaches
to best-match file searching,” Communications of
the ACM, 16(4):230–236, ACM Press, 1973.

[4] B. Bustos, G. Navarro, and E. Chávez, “Pivot se-
lection techniques for proximity searching in metric
spaces,” Pattern Recognition Letters, 24:2357–2366,
2003.

[5] E. Chávez, G. Navarro, and J.L. Marroqúın,
“Searching in Metric Spaces,” ACM Computing Sur-
veys, 33(3):273–321, 2001.

[6] F. Cailliez, “The analytical solution of the addi-
tive constant problem,” Psychometrika, 48:305–308,
1983.

[7] P. Ciaccia, M. Patella, and P. Zezula, “M-tree: an
efficient access method for similarity search in met-
ric spaces,” in Proceedings of the 23rd International
Conference on Very Large Data Bases, pp. 426–435,
1997.

[8] V. Dohnal, C. Gennaro, P. Savino, and P. Zezula,
“D-Index: distance searching index for metric data
sets,” Multimedia Tools and Applications, 21(1):9–
33, 2003.

[9] K. Figueroa, E. Chávez, G. Navarro, and G. Paredes,
“On the least cost for proximity searching in metric
spaces,” in Workshop on Experimental and Efficient
Algorithms, pp. 279–290, 2006.

[10] K. Fredriksson, “Engineering efficient metric in-
dexes,” Pattern Recognition Letters, 28(1):75–84,
2007.

[11] L. Fukunaga and P.M. Narendra, “A branch and
bound algorithm for computing k-nearest neigh-
bors,” IEEE Transactions on Computers, 24(7):750–
753, 1975.

[12] H.R. Gisli, and H. Samet, “Index-driven similar-
ity search in metric spaces,” ACM Transactions on
Database Systems, 28:517–580, 2003.

[13] J.C. Lingoes, “Some boundary conditions for a
monotone analysis of symmetric matrices,” Psy-
chometrika, 36:406–407, 1971.

[14] K.V. Mardia, J.T. Kent, and J.M. Bibby, Multivari-
ate Analysis, London: Academic Press, 1979.

[15] M.L. Micó, J. Oncina, and E. Vidal, “A new version
of the nearest-neighbor approximating and eliminat-
ing search algorithm (AESA) with linear preprocess-
ing time and memory requirements,” Pattern Recog-
nition Letters, 15(1):9–17, 1994.

[16] M.L. Micó, J. Oncina, and R.C. Carrasco, “A fast
branch & bound nearest neighbour classifier in met-
ric spaces,” Pattern Recognition Letters, 17(7):731–
739, 1996.

[17] G. Navarro, R. Paredes, and E. Chávez, “t-spanners
as a data structure for metric space searching,”
LNCS 2476, pp. 298–309, 2002.

[18] H. Samet, Foundations of Multidimensional and
Metric Data Structures, Morgan Kaufmann Publish-
ers Inc., San Francisco, CA, USA, 2005.

[19] J. Shawe-Taylor and N. Cristianini, Kernel Methods
for Pattern Analysis, Cambridge University Press,
Cambridge, England, 2004.

[20] J.K. Uhlmann, “Satisfying general proxim-
ity/similarity queries with metric trees,” Infor-
mation Processing Letters, 40(4):175–179, 1991.

[21] E. Vidal, “An algorithm for finding nearest neigh-
bors in (approximately) constant average time,”
Pattern Recognition Letters, 4:145–157, 1986.

[22] E. Vidal, “New formulation and improvements of
the nearest-neighbor approximating and eliminating
search algorithm (AESA),” Pattern Recognition Let-
ters, 15(1):1–7, 1994.

[23] J. Vilar, “Reducing the overhead of the AESA
metric-space nearest neighbor searching algorithm,”
Information Processing Letters, 56:256–271, 1995.

[24] P.N. Yianilos, “Data structures and algorithms for
nearest neighbor search in general metric spaces,”
ACM-SIAM Symposium on Discrete Algorithms, pp.
311–321, 1993.

[25] P. Zezula, G. Amato, V. Dohnal, and M. Batko,
Similarity Search—The Metric Space Approach,
Springer, 2006.

