
 
 

 

  
Abstract—Typically, before association rules are mined, a 

user needs to determine a support threshold in order to obtain 
only the frequent item sets. Having users to determine a support 
threshold attracts a number of issues. We propose an 
association rule mining framework that does not require a 
pre-set support threshold. The framework is developed based 
on implication of propositional logic. The experiments show 
that our approach is able to identify meaningful association 
rules within an acceptable execution time.  
 

Index Terms—association rule mining, propositional logic, 
implication, threshold free.  
 

I. INTRODUCTION 

Association Rule Mining (ARM) is a learning technique 
that has the advantage of discovering knowledge without the 
need to undergo a training process [1]. It is used to discover 
rules from a dataset, and each rule discovered has its 
importance measured against many interest measures [2] 
such as support and confidence.  

Although ARM technique does not involve model 
selection, it necessitates a cut-off support threshold to be 
predefined to separate frequent patterns from the infrequent 
ones. Two item sets are said to be associated if they occur 
together frequently above a minimum support threshold 
value. There are major disadvantages to having a predefined 
threshold. Firstly, some rules are inevitably lost if the support 
threshold is set inaccurately. In addition, it is usually not 
possible to remove the support threshold in order to find 
infrequent items because ARM relies on a downward closure 
property of support, which necessitates a threshold to search 
for frequent item sets. That is, if an item set passes a 
minimum support requirement then all its subsets also pass 
this requirement. This minimum support threshold value is 
used as the basis for pruning, without which mining rules 
becomes infeasible due to the exponential search space. In 
summary, in traditional association rule mining, a minimum 
support threshold is needed, and should be determined 
accurately in order to produce useful rules for users. 

To overcome the above limitation, we investigate the 
possibility of developing a new association rule mining 
framework that works without having to determine a support 
threshold. We base our framework on the notion of 
implication of propositional logic. We explain our proposed 
model in detail in section 3 after a discussion of previous 
work is presented in section 2. Experiments based on an 
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implementation of the framework and a discussion of the 
results is presented in section 4. Finally, conclusion is made 
in section 5.   

II. PREVIOUS WORK 

Recently, mining infrequent rules start to gain momentum 
as many have begun to accept that rules based on infrequently 
occurring items are also important because it represents 
knowledge not found in frequent rules, and these infrequent 
rules are often interesting [3], [4], [5], [6], [7]. Association 
among infrequent items have been relatively ignored by 
association mining algorithm mainly due to the problem of 
the large search space and the consequent explosion of total 
number of association rules reported [3], [4], [5], [6], [7] , [8] , 
[9]. Some of these reported rules may in fact be based on 
noise in the data. However, there have been some attempts 
towards finding infrequent association rules, such as [10], 
where a generalised association framework using correlation 
is proposed. Correlation is measured by Pearson’s Goodness 
of Fit Chi Square measure. However, this chi-square measure 
suffers from the limitation of measuring the association 
inaccurately at small expected values, if one of the expected 
values is lower than the value five [10]. In practice, this is 
often being observed. This limit the use of a Chi Square based 
framework. In addition, the authors’ algorithm relies on a 
modified support hence, is not really suitable to find 
infrequent rules except the ones that are above a threshold. 
[11] finds independent rules measured by interest (leverage) 
and below a minimum support threshold. Authors in [11] also 
use the measure in [12], which is derived from correlation, 
and necessitates a minimum confidence threshold. Mining 
below a minimum support threshold has the same problem as 
mining above a maximum support threshold in the sense that 
the threshold needs to be accurately pre-set. In addition, the 
measure used in [12] inherits the drawbacks of a correlation 
measure in [10]. [13] filters uninteresting rules using leverage 
as a measure. [14], [15] finds rules using measure such as 
leverage or lift; these can be performed without other 
thresholds in place. Since rules are found independently from 
a minimum support threshold, theoretically all infrequent 
rules may be found. The measure of leverage, however, is 
non directional. A rule found using leverage does not indicate 
an implication that if a rule antecedent has an impact on the 
rule consequence vice versa. It denotes the number of 
co-occurrences of both antecedent and consequence item set 
that is above the case if both are independent to each other 
[16], [17].  
     There is relatively little research on finding association 
rules that are both infrequent and interesting. Two 
fundamental constraints are (i) the selection of the measure 
used and (ii) the use of this measure to search for infrequent 
and interesting rule directly without post-processing the 
found rules. The measure should justify the search time in 
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discovering rules. Such a measure must possess properties 
that can be used to search for infrequent association rules 
directly. Otherwise, the measure might be theoretically 
interesting but of limited practical use.  

III.  COHERENT RULES FRAMEWORK 

The current section discusses the proposed theoretical 
framework for coherent rules. The salient features of the 
framework are, informally, (i) a novel, strong definition of 
association based on the notion of implication from 
propositional logic, (ii) the taking into account of 
frequency-based measures without requiring arbitrary 
thresholds and (iii) the use of mutually reinforcing rule pairs. 
These features are addressed in detail below. 

We study the frequency of occurrences between two item 
sets and rather than relying on a minimum support threshold, 
we propose to compare various support values based on our 
definition of association.  

In our study on the definition of an association, we found 
that association is defined in many ways of which can be 
referred to a number and different types of relationships 
among item sets. A typical definition of association is 
co-occurrence (1). Association can also be generalized into 
correlation (10) or dependence rule [18]. Each definition has 
their merits. For the purpose of our model, we define 
association using implication of propositional logic in that an 
implication must be supported by its inverse 1 . Such 
association rules mined has implications stronger than the 
typical associations based on single co-occurrences.  

To illustrate our proposed framework, consider table 1 that 
contains relations between a rule antecedent (LHS), A 2 and a 
rule consequence (RHS), C 3 as an association rule. The rule 
antecedent A consists of a combination of items, called an 
antecedent item set X. An antecedent item set X may exist, 
represented by X, or absence, represented by ¬X. Similarly, 
the rule consequence C may contain existence or absence of 
consequence item set Y. They are represented as Y and ¬Y. 
The frequency of occurrence of X and Y is represented by Q1, 
X and ¬Y by Q2, ¬X and Y by Q3, finally, ¬X and ¬Y by Q4.  
The total of occurrence of Y is represented by C1, the 
occurrence of ¬Y is given by C2, where C2 = m-C1. The same 
representation applied to X and ¬X with the statistics A1 and 
A2. 

 
Table 1: Frequency of occurrences among antecedent and 

consequence item set 
 A rule consequence (RHS), C 

Y ¬Y Total 
A rule 

antecedent 
(LHS), A 

X Q1 Q2 A1 
¬X Q3 Q4 A2 

Total C1 C2 m 
 

Association rules,  
i) X⇒Y is mapped to propositional logic implication 

p→q if and only if Q1>Q2, Q1>Q3, and Q1>Q4. 
ii)  X⇒¬Y is mapped to propositional logic 

 
1  Both inverse and contrapositive have the same total number of 

co-occurrences in transaction records. 
2 Non italic 
3 Non italic 

implication p→¬q if and only if Q2>Q1, Q2>Q3, 
and Q2>Q4. 

iii)  ¬X⇒Y is mapped to propositional logic 
implication ¬p→q if and only if Q3>Q1, Q3>Q2, 
and Q3>Q4. 

iv) ¬X⇒¬Y is mapped to propositional logic 
implication ¬p→¬q if and only if Q4>Q1, 
Q4>Q2, and Q4>Q3. 

Having mapped each are called pseudo implication. By 
pseudo implication, we mean that it approximates a real 
implication (according to propositional logic). It is not a real 
implication yet because there are fundamental differences – 
pseudo implication is judged true or false based on 
comparison of supports, which has a range of integer values. 
On the contrary, an implication is based on binary values. 
The former still depends on the frequencies of 
co-occurrences between item sets (supports) in a dataset, 
whereas the latter does not and is based on truth value. We 
again mapped pseudo implication into specific modes of 
implication called equivalents. Each equivalent would follow 
the same truth values of the respective relations in logic. For 
example, in equivalents, the negation and the 
inverse-negation of an implication is always false. That is, to 
map association rules X⇒Y to logic equivalent X≡Y, we need 
to check if the support value on its negation X⇒¬Y and 
inverse-negation ¬X⇒Y are lower than other support values. 

Coherent rules are a pair of antecedent and consequence 
item sets, X and Y represented using a pair of rules following 
the truth table value for equivalents. For example, X⇒Y, 
¬X⇒¬Y, where, 

i) X⇒Y is mapped to logic equivalent p≡q if and 
only if, Q1>Q2, Q1>Q3, Q4>Q2, and Q4>Q3. 

ii)  X⇒¬Y is mapped to logic equivalent p≡¬q if and 
only if, Q2>Q1, Q2>Q4, Q3>Q1, and Q3>Q4. 
¬X⇒Y is mapped to logic equivalent ¬p≡q if and 
only if, Q2>Q1, Q2>Q4, Q3>Q1, and Q3>Q4. 

iii)  ¬X⇒¬Y is mapped to logic equivalent ¬p≡¬q if 
and only if, Q1>Q2, Q1>Q3, Q4>Q2, and 
Q4>Q3. 

(Having mapped, each rule is called pseudo implication of 
equivalent.) 

Suppose, I= {i 1, i2, …, in} be a set of items. And, T= {t1, 
t2 ,…, tm} be a set of transaction records. A task-relevant 
transaction record tj holds a subset of items such that tj ⊆ I. 
Let IX and IY be two sets of items, where, IX ⊂I, IY ⊂I, and IX 
∩IY =∅. And, let X be the antecedent item set of coherent 
rules, where, X⊂ IX and X≠∅, and let Y be the consequence 
item set of coherent rules, where, Y⊂ IY and Y≠∅. Between X 
and Y, there are two coherent rules pairs of either, 

i) X⇒Y, ¬X⇒¬Y, and 
ii)  X⇒¬Y, ¬X⇒Y 

(1) 

 
Each coherent rules pair consists the same antecedent and 
consequence item set, X and Y. We called the first pair, 
positive coherent rules and the latter negative coherent rules 
because it involves absentee of an item set in each pseudo 
implication of equivalent.  

Coherent rules are only represented using two different 
representations following a rule antecedent A, and a rule 
consequence C as follows, 



 
 

 

i) A⇒C, ¬A⇒¬C, and 
ii)  A⇒¬C, ¬A⇒C 

The symbol ‘¬’ comes from the representations, and when 
applied to an item set contained by A or C, it means the item 
is not observed in transaction records. And, since from two 
item sets we can write a coherent rules pair, we distinguish 
between coherent rules and a pair of rules that yet to be 
validated by calling the latter – candidate coherent rules. 
These can be represented differently from coherent rules 
using two item sets X and Y, before they are validated to be 
coherent rules. If the support values on these items met the 
binary condition of coherent rules, then they are written using 
one of the representations. Otherwise, they remain a pair of 
item sets. We use the symbol ‘..’ and a following 
representation to denote this candidate coherent rules pair, 
 

X..Y (2) 
In this paper, we focus on to describe the generation of 

positive coherent rules. 

IV. COHERENT RULES MEASURE OF INTEREST 

A. Interest Measure H based on lambda 

A binary measure for coherent rules trivially follows from 
the definition of coherent rules in the previous section. Such a 
measure takes the value ‘1’, if candidate coherent rules meet 
all the conditions of either coherent rules pair, and ‘0’ 
otherwise. We write this below, ���. . 
�

= 1, �1 > �2, �1 > �3, �4 > �2, �4 > �31, �2 > �1, �2 > �4, �3 > �1, �3 > �40, ��ℎ������ � 
 
 
(3) 

 
The above binary measure, however, does not differentiate 

the different interest of coherent rules. We propose to use an 
interest measure H based on the well-known measure of 
association lambda in statistics [19], [20]. Lambda measures 
the association of two (nominal) variables, based on a 
concept called Proportional Reduction in Error (PRE). 
According to this concept, a variable is used to predict the 
existence of another variable. And, if this prediction performs 
better than guessing the second variable independent of the 
first variable, then these two variables are deemed to be 
related to each other. Otherwise, the second variable can be 
guessed without the need to know the first variable. That is, 
the concept compares two predictions together, between 
knowing a variable and not knowing it. Note that we use the 
term variable in the sense of, e.g. [21] where, informally, 
each variable contains many categories and each category 
corresponds to an item set.   

Lambda quantifies the strength of the association between 
two variables into a value between zero and one and is 
defined in [19], and can be rewrite as, 

� =  !"#$%&$',$(&$)*+ !"#$%,$(*+ !"#$',$)* 
 !"#$%&$',$(&$)*   

 
(4) 

 
For our purposes, the Q1, Q2, Q3, Q4 above are computed 

based on the “categories” rather than the “variables” i.e. 
based on item sets as is traditional in data mining. 

Hence, all coherent rules have an arbitrary strength value 
of lambda but not all associations having positive lambda 

value are coherent; additional conditions following 
propositional logic need to be met.  

 
Based on lambda, we define the interest measure for 

coherent rules H as, ,��. . 
� = -�, ���. . 
� = 10, ���. . 
� = 0�  (5) 

 
It follows from the definition that lambda only takes positive 
value whenever subsets of the coherent rules conditions 
equation (3) are met. These are 

i) Q1>Q2, Q4>Q3 
ii)  Q2>Q1, Q3>Q4 

The above is demonstrated in Appendix A of [22].  

B. Properties of Interest Measure H 

The interest measure H does not inhibit anti-monotone or 
monotone properties. We show this below, 
 
let FV be the arbitrary fixed values used in H such that  
 

FV = min(Q1+Q3, Q2+Q4) (6) 
 
and, δa, δb, δc, and δd the delta change of support values 
given by Q1, Q2, Q3 and Q4. Suppose, the function SV(X..Y) 
finds all the support values of a candidate coherent rules pair 
such that 
 ./��. . 
� = ��1, �2, �3, �4� (7) 
 
Its support values of another candidate coherent rules having 
the supersets of item is, 
 ./��0. . 
� = 1�1 − 34, �2 − 35,�3 + 37, �4 + 38 9,  

 
(8) 

where δa+δb=δc+δd, and δa,δb,δc,δd≥0. 
 
That is, the support values of Q1 and Q2 reduce but Q3 and 
Q4 increase over candidate coherent rules having the 
supersets of item. 

Based on the understanding of the delta changes in support 
values, we now show that coherent rules measure of interest 
does not necessary have anti-monotone or monotone 
properties.  The strength value of coherent rules written 
without its conditions is as follow, 

 

,��. . 
� = :;+ !"#$%,$(*+ !"#$',$)* :;   
 
(9) 

 
If the delta changes in δa,δb=0, then the current strength 

value is at least the strength value as H(XE..Y), which exhibits 
an anti-monotone property. That is, 

 ,��. . 
� ≥ ,��0. . 
� 

= =/ − >�? 1�1,�29 − >�? 1�3 + 37,�4 + 389=/  

 
 
(10) 

If the delta changes in δc,δd=0, then the current strength 
value is at most the strength value as H(XE..Y), which 
exhibits a monotone property. That is, 



 
 

 

 
 ,��. . 
� ≤ ,��0. . 
� 

= =/ − >�? 1�1 − 34,�2 − 35 9 − >�? 1�3,�49=/  

 
 
(11) 

 
However, H(XE..Y) does not necessary have both the 
assumptions of δa,δb=0, and δc,δd=0. Hence, it does not 
necessary inherits both properties. That is, 
 

,��0. . 
� = :;+ !"1$%+AB,$(+AC 9+ !"1$'&AD,$)&AE9:;   
 
(12) 

 
This means, the value H(X..Y) can be higher, lower or the 

same value as H(XE..Y). Hence, we cannot use the measure of 
coherent rules H to avoid generating candidate coherent rules 
exhaustively. 

V. MINING COHERENT RULES 

This section covers algorithms for the generation of coherent 
rules. Initially we show that because H is defined in terms of 
lambda, and lambda is an interval level of measurement,  it is 
necessary to fix the consequent item set while mining for 
rules.  

We explain our search strategies to discover coherent 
rules. 

A. Search Properties of Coherent Rules Based on 
Measure H 

It is important to highlight that the coherent rules measure 
of interest, which is based on lambda is an interval level of 
measurement. It has an arbitrary zero. That is, the positive 
value of the measure H(X..Y) is given in relation to the 
statistics of the consequence item set. As a result, it is 
meaningless to compare the measure values between 
coherent rules that have a different consequence item set. A 
consequence item set must be fixed before the strength value 
between coherent rules that have different antecedent item 
sets can be compared. In this way, we make comparison 
within the same scale. 

B. Strategy to Avoid Generating Candidate Coherent 
Rules Exhaustively - I 

We use the statistical conditions (Q1 > Q3) within property 
of coherent rules measure of interest H 4, to prune supersets 
of item, which does not meet the condition. It follows a 
downward closure property of the statistical condition. 
Suppose, X..Y is a candidate coherent rules pair, and XE..Y is 
another candidate coherent rules pair such that the antecedent 
item set X ⊂ XE 5. If either of these conditions is not met by 
X..Y, then further generation of candidate coherent rules 
XE..Y is not necessary. As a result, we avoid exhaustively 
generate all candidate coherent rules and validate them to be 
coherent rules. For example, we have item sets IX  = {a, b, c, 
d, e}, if X={c, d} does not meet the condition, then further 
generating of candidate coherent rules with X={a, c, d} and 
X={b, c, d} can be avoided.  

 
4 Coherent rules measure in itself has no anti-monotone property. 
5 We write the union of item sets � ∪ 0 as �0. 

C. Strategy to Avoid Generating Candidate Coherent 
Rules Exhaustively - II 

In the second strategy, we design two procedures to both 
calculate and estimate the strongest possible strength value of 
the current coherent rules and a group of coherent rules with 
supersets of item. If these strength values are lower than a 
threshold value, then we can avoid generate the subsequent 
coherent rules with supersets of item. We highlight that the 
threshold value being compared to, is not provided by a user. 
It is determined based on a parameter provided by user. We 
show this in the next section, and the opportunities to avoid 
generate candidate coherent rules after it. 

 
1) Minimum Strength Required 

We proposed to mine arbitrary number of coherent rules 
with its strength value within w% from a yet-to-know 
strongest coherent rules strength value (max_s). That is, all 
coherent rules have strength value at least (1-w)×max_s. For 
example, a user wants to find arbitrary number of coherent 
rules that have strength value within top 5% of the strongest 
coherent rules. Let w = 5%, and the strongest coherent rules 
found from transaction records, max_s = 0.8. Hence, all 
coherent rules with strength value between 0.76 and 0.8 are 
reported. In another example, the user continues to find only 
top 5% of the strongest coherent rules, and the transaction 
records contain the strongest coherent rules at only max_s = 
0.1. As a result, all coherent rules with strength value 
between 0.095 and 0.1 are reported. These two examples 
have also shown that a user does not need to understand the 
distributions in transaction records. They only specify the 
needed top w% from the yet-to-know strongest coherent 
rules.  

 
2) Estimating The Strongest Strength Value of A Group 
of Coherent Rules – Part 1 

This section introduces how to calculate the strongest 
possible strength value of coherent rules. This estimate is 
shown to inhibit anti-monotone property. We will use it to 
further avoid search space. Let, the fixed value, 

 
FV = min(Q1+Q3, Q2+Q4) (13) 

 
We re-write interest measure H without the conditions as, 
 

H(X..Y) = (FV – min(Q1,Q2)-min(Q3,Q4)) / FV (14) 
 

H in equation (9) gives the strongest strength value of 
coherent rules if the right hand side holds a minimum value. 
For example, if Q1 or Q2, and Q3 or Q4 holds a zero. The 
support values given by Q1 and Q2 decrease over candidate 
coherent rules that have the supersets of item, following 
anti-monotone. Hence, we could make the estimation on the 
strongest value of H over a candidate coherent rules pair and 
all the candidate coherent rules with the supersets of item. 
There are three ways to estimate the strongest strength value 
of coherent rules. It follows that if the strongest estimated 
value is lower than the arbitrary strength value required, then 
we could avoid generating and validating all these candidate 
coherent rules.  

We now detail the only three ways on how these 
estimations are made. In each of the estimates, the estimated 



 
 

 

support values Q2F is assumed to be zero because following 
anti-monotone, candidate coherent rules that have supersets 
of item will have the same or a decreasing support value. By 
assuming Q2F=0, we estimate the worst support value on the 
candidate coherent rules with supersets of item, hence 
estimate the strongest possible strength value on a group of 
candidate coherent rules. Within a fixed size of transaction 
records, there are three ways on how this value can be passed. 
to the rest of the support values. The strongest strength value 
over a group of candidate coherent rules can be made by 
analysing the support values. These are shown below, 

 
Assume that Q2F=Q2-Q2=0, and its support values is 
transferred to support value Q1F=Q1+Q2. Hence, the 
first possible strongest strength value, H’ a(X..Y), can 
be calculated from support values Q1F, Q2F, Q3, Q4. 

 
 
(15) 

 
Assume that Q2F=0, and its support values is 
transferred to support values Q3F=Q3+Q2. Hence, the 
second possible strongest strength value, H’ b(X..Y), 
can be calculated from support values Q1, Q2F, Q3F, 
Q4. 

 
 
(16) 

 
Assume that Q2F=0, and its support values is 
transferred to support value Q4F=Q4+Q2. Hence, the 
first possible strongest strength value, H’ c(X..Y), can 
be calculated from support values Q1, Q2F, Q3, Q4F. 

 
 
(17) 

   
We show the anti-monotone on the estimates (H’ a(X..Y), 

H’ b(X..Y) and H’ c(X..Y)) in corresponding to the above 
equations. The bracketed [Q2] is the total support value of Q2 
that is transferred into Q3 or Q4 hence its delta change δb=0 
and this not shown. The first shows the estimate has strength 
value at least ‘real’ coherent rules strength value. 

 

,BG ��. . 
� = H:;– !"1 $%&J$(K,J$(K+J$(K9
– !"#$',$)* L

:;   

                 = :;– !"#$',$)* :;  

                 ≥ :;+ !"1$'&AD,$)&AE9 :;   

                 ≥ ,BG ��0. . 
�           

                 ≥ H:;– !"#$%,$(*
– !"#$',$)* L 

:;   

                 ≥ ,��. . 
� 

 
 
 
(18) 

 
The second shows the second estimate has strength value at 
least candidate coherent rules with supersets of item. 
 

,CG ��. . 
� = H:;– !"1 $%,J$(K+J$(K9
– !"1$'&J$(K,$) 9 L

:;   

                 = �:;– !"1$'&J$(K,$) 9� :;    

                 ≥ :;– !"1$'&J$(K&AD,$)&AE 9 :;         

                 ≥ ,CG ��0. . 
� 

 
 
 
 
 
(19) 

                 ≥ H:;– !"#$%,$(*
– !"#$',$)* L 

:;   

                 ≥ ,��. . 
� 
 
Similarly, the third estimate has strength value at least 
candidate coherent rules with supersets of item. 
 

,DG��. . 
� = H:;– !"1 $%,J$(K+J$(K9
– !"1 $',$)&J$(K9 L

:;   

                 = M:;– !"1 $',$)&J$(K9N 
:;                

                 ≥ �:;– !"1 $'&AD,$)&J$(K&AE9� :;  
                 ≥ ,DG��0. . 
� 
                 ≥ H:;– !"#$%,$(*

– !"#$',$)* L 
:;   

                 ≥ ,��. . 
� 

 
 
 
 
 
(20) 

 
The strongest possible strength value is the maximum of all 
these estimates because we do not know exactly how the 
support values Q2 decreases over the candidate coherent 
rules with the supersets of item but we know that in the worse 
case, it has a minimum value of zero. Hence, we can calculate 
the strongest possible strength value of a group of coherent 
rules with supersets of item, 
 >4OP����5Q�_���. . 
� =max �,BG ��. . 
�, ,CG ��. . 
�, ,DG��. . 
��  

(21) 

 
Extending from the anti-monotone properties of the 

strongest possible strength value of candidate coherent rules 
maxPossible_s(X..Y), we proposed an extended approach to 
estimate the strongest coherent rules value. This approach 
complements the first approach and uses more estimates on 
the support values. This is explained in the next section. 
 

3) Estimating The Strongest Strength Value of A Group 
of Coherent Rules – Part 2 

Previously, there are three considerations to zero the 
estimated support value of Q2F. In each consideration, it still 
requires scans for another two support values as shown in 
equations 20, 21, and 22. In the current approach, we estimate 
all the support values Q1, Q2, Q3, Q4. And, the estimated 
strongest possible strength value of coherent rules is 
calculated based on estimated support values, Q1F, Q2F, 
Q3F, and Q4F without scanning for each real support value. 
The estimated support value Q1F is the total number of 
occurrence of an antecedent item set in the overall transaction 
records. The estimated support value Q2F is zero. The 
estimated support value Q3F is calculated as C1-Q1F, and 
Q4F=m-C1. This saves time to scan for real support values, 
and we can estimate the strongest possible strength value of 
coherent rules, which also inhibits anti-monotone. It follows, 
if the strength value is lower than the strength value needed, 
we can avoid generate candidate coherent rules with its 
supersets of item before scanning for support values. Since 



 
 

 

this estimate consists of only the estimated support values, 
this estimated strongest possible strength value is lower than 
the calculated strongest possible strength value using some of 
the actual support values in equation 23. Hence, this estimate 
is suitable to be used as the first check to stop generating 
candidate coherent rules before using the calculated one in 
equation 23. 

We show the procedures how to estimate the support 
values. 

 
Suppose, Q2F=0 and its current support value is 
transferred to support value Q1F=Q1+Q2. The 
estimated support value SQF3(X..Y)=C1-Q1F. And, the 
remaining support values out of total transaction 
records, m gives 
SQF4(X..Y)=m-SQF1(X..Y)-SQF3(X..Y). 

 
 
(22) 

 
None of the estimated support values requires a scan for 

individual support value Q[Z] . The value of Q1F is obtained 
via a scan through the transaction records for the occurrence 
of antecedent item set X alone. Such scan is less expensive 
than individual scan for Q1, and Q2. The estimate Q3F, 
however, can give negative values on its support value 
(whenever, Q1F>C1). We need to make further adjustment. 
Whenever SQF1(X..Y) has value larger than C1, we zero the 
estimate support value, SQF3(X..Y)=0, and transfer the 
differences to Q4. We show this below, 

 
Let Diff=C1-Q1F 
If (Diff <0) 
 Q3F=0 
 Q4F=m-Q1F- Diff 
Else 
 Q3F= Diff 
 Q4F=m-Q1F-Q3F 

 End 

 
 
(23) 

 
Based on these estimates, we can now calculate the strongest 
possible strength value of coherent rules without scanning the 
individual support values. We show the anti-monotone of this 
new estimate, 
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(24) 

We use both the calculated and the estimated strongest 

possible strength values (maxPossible_s and 
maxEstPossible_s) and the percentage w, to avoid generating 
and validating some of the candidate coherent rules that does 
not meet the property. That is, if an item set does not have the 
estimated strongest strength value at least (1-w)× max_s, then 
all the subsequent candidate coherent rules with supersets of 
item will also not.  

The percentage value (w) is provided by user, and can be 
preset to be arbitrarily small. During the generation and 
validation process, we can maintain the strongest coherent 
rules strength value found so far from a given transaction 
records. Hence, the decision to further generate candidate 
coherent rules depends on this momentary strength max_s. 
And, coherent rules found are kept in a buffer before the 
entire search ended. As this momentary strongest strength 
values increases, some coherent rules included in a buffer 
earlier (based on a lower strongest strength values) are 
discarded based on the new minimum strength value 
required, (1-w)× max_s. This process repeats itself, and 
finally coherent rules with strength value within the top w of 
the strongest coherent rules can be discovered. 

The search for coherent rules hence does not require a user 
to specify the minimum strength value for coherent rules. The 
percentage value w supplied by a user should be 
distinguished from a minimum strength value required for 
coherent rules. Setting the latter too high or too low has 
adverse effect discussed in Section II. The exact and needed 
minimum value varies across given transaction records, and 
is typically unknown. Whereas, the former is a delta range of 
strength value from the arbitrary strongest strength value in 
given transaction records.  

VI. COHERENT RULES SEARCH ALGORITHM 

In this section, we present the internal details of the proposed 
algorithm to generate coherent rules. The algorithm does not 
require a minimum support threshold in advance. The only 
user-specified parameter is w, which is a percentage such that 
rules generated will have strength value within the top w% of 
the strongest strength value of coherent rules found. 
Typically, we are interested in a small subset of all possible 
rules which have the highest strength values of those that 
exist. We argue that nominating a desired percentage as 
above is much more conceptually appealing than requiring 
the user to nominate a support threshold. The disadvantages 
of pre-setting a support threshold have been highlighted in 
Section I.   

The algorithm, called generateNextCR, is presented as 
Algorithm 1. This is a recursive algorithm that is invoked 
after initially setting R to null, IY to the complete item set 
except for the consequent, PVX1 and PVX2 to zero, PVY to the 
index of the consequence item set, and PVMax to the 
cardinality of IY, T to the transaction records, RA to null, and a 
set of coherent rules found CR to null. The indexes PVX1, 
PVX2 and the buffer for indexes RA are used to refer to an 
antecedent item set of coherent rules. The index PVY refers to 
the index of consequence item set that is of cardinality ‘1’. 
The index PVMax sets the termination criteria for the 
recursion, i.e. if the index PVX1 equals to PVMax. Support 
values are scanned from transaction records T, with coherent 
rules found are kept in CR.  

The algorithm proceeds to systematically explore the 



 
 

 

powerset of IY, but does not need to generate the complete 
powerset as that would be infeasible. The feasibility of the 
algorithm is ensured in two ways. Firstly, if a candidate 
coherent rule pair does not meet the anti-monotone 
properties, then coherent rules containing a superset of its 
item set are not generated (see Lines 4.15 – 4.15.4 in 
Algorithm 1). Secondly, as a logical consequence, if the 
cardinality of the antecedent item set of a candidate coherent 
rule pair that does not meet the anti-monotone property 
consists only of a single item, then this item can be removed 
from IY ( see Lines 4.1.5.3.2 and 4.1.6.2 ). Clearly, such a 
removal cuts down the cardinality of the power set being 
explored by a factor of 2. 

The algorithm also articulates subset of all possible 
coherent rules, which have the highest w% strength values 
within those that exist (see Lines 4.1.5.2.3 and 4.1.5.2.4). 
Interestingly, it does not have to calculate the strength values 
of all possible coherent rules in order to find the highest w% 
strength values. The algorithm calculates and estimates the 
strongest possible strength value for a group of candidate 
coherent rules with supersets, if they are coherent rules (see 
Lines 4.1.4 and 4.1.5.1). Since the strength values of coherent 
rules with supersets are lower than the strongest possible 
strength values, maxPossible_s, and maxEstPossible_s, if 
either one is lower than the required strength value, then we 
do not have to generate these candidate coherent rules. 
Finally, strength values are computed for those candidate 
coherent rules that pass the conditions (see Line 5.1.5.2.1). 
Based on the real strength values, the top w% of coherent 
rules is maintained in line 4.1.5.2.2.  

VII.  EXPERIMENTS AND DISCUSSIONS 

We have conducted a number of experiments. In this paper, 
we report the results of three main categories of experiment. 
In the first category, we want to show that our association 
rule mining framework can find infrequent association that 
may be difficult to find in traditional association rule mining. 
The zoo data set is used in this experiment. The second 
experiment shows that our proposed framework requires less 
post-processing in generating the rule compared to the 
traditional association mining algorithm. That is, instead of 
finding too many rules, our algorithm finds smaller number 
of rules. The experiment for this purpose is conducted in the 
mushroom data set. Lastly, we measure the performance of 
our framework by testing its scalability. For this performance 
test, we created three sparse artificial datasets, and another 
three dense artificial datasets. In both zoo and mushroom 
dataset, we use the classes as the consequences in order to 
find association rules directly from data. On artificially 
generated datasets we use the last items as consequences.  

A. Zoo dataset 

Zoo dataset [23] is a collection of animal characteristics 
and their categories in a zoo. This dataset is chosen because 
animal characteristics in each category are very well known. 
As a result, it is easier to verify the correctness and 
interestingness of rules mined. Zoo dataset contains seven 
categories of animals including mammalia and amphibian. 
While mammalia type of animal such as elephants, buffalos, 
and goats are frequently observed in this zoo, amphibian type 
of animal such as frog and toad are relatively rare. 

Algorithm generateNextCR(candidateCoherentRules R, 
items  IY, itemIndex  PVX1, itemIndex  PVX2, itemIndex  PVY, 
itemIndex  PVMax, subItems  T, orderedSet<index>  RA, 
RuleSet CR) 
//Initial// 

1. If  PVX1 > 1 
1.1 PVX2 := PVX1, PVX1 := 1 

2. Else 
2.1 PVX2 := PVMax 

3. End if 

//Generating candidate coherent rules by enumerating 
antecedent item set X// 

4. While (PVX1 < PVX2) 
4.1 If (PVX1 != PVY) 

4.1.1 RA � concatenate(PVX1, RA) 
4.1.2 X � { iL:L∈RA} 
4.1.3 Let Y be the set of candidate coherent rules 

corresponding to (X, Y) such that R=(X⇒Y, 
¬X⇒¬Y) 

//START of Conditions for Efficient Generations// 

4.1.4 Compute maxEstPossible_s, Q1F, Q3F based on 
single scan  

4.1.5 If  (Q1F>Q3F) And (maxEstPossible_s ≥ min_s)  
4.1.5.1 Compute maxPossible_s, Q1, Q2, Q3, Q4 using 

another scan  
4.1.5.2 If  (Q1>Q3) And (maxPossible_s ≥ min_s) 

4.1.5.2.1 ∀� ∈ Y compute Hr and store it 
4.1.5.2.2 Update >�?_� based on user-specified � 

and the strongest ,[ found  
4.1.5.2.3 If (Hr ≥ min_s)  

4.1.5.2.3.1 \Y = \Y ∪ Y 
4.1.5.2.3.2 toRemove = { 7�: 7� ∈ \Y and Hcr < 

min_s } 
4.1.5.2.3.3 CR = CR – toRemove 

4.1.5.2.4 End 
4.1.5.3 Else 

4.1.5.3.1 itemToRemove = {X: X is the antecedent 
item set of some � ∈ Y and |�| = 1 } 

4.1.5.3.2 _ = _ −itemToRemove 
4.1.5.4 End 

4.1.6 Else  
4.1.6.1 itemToRemove = {X: X is the antecedent item 

set of some � ∈ Y and |�| = 1 } 
4.1.6.2 _ = _ −itemToRemove 

4.1.7 End 

//End of Conditions for Efficient Generations// 

4.1.8 If (P/̀ % > 1) 
4.1.8.1 �Y, _, P/̀ %, P/̀ (, P/a, P/bBc, Yd� = 

generateNextCR�Y, _, P/̀ %, P/̀ (, P/a, P/bBc, Yd� 
4.1.9 End 
4.1.10 Yd � (Yd − P/̀ %) //remove an item from the 

buffer of ant. item set// 
4.2 End 
4.3 P/̀ % ≔ P/̀ % + 1 //increase the first pointer value// 

5. End 

Algorithm 1: Generate Coherent Rules 
 
 



 
 

 

We run our search algorithm without setting a minimum 
support threshold to obtain all rules within a window of a top 
5%, and each rule contains not more than five items. We 
report the results as follows, 

A total of 16 rules are found on mammalia type of animals. 
All rules have strength of 1.0 out of 1.0. We verify the 
correctness of these rules based on known knowledge on this 
category of animal. For example, all mammalia such as goat 
has no feather but has milk and backbone therefore 
feather(0), milk(1), and backbone(1) are reported associated 
with mammalia(1). We list all rules contains not more than 
four items (due to length of paper) in table 2.  

 
Table 2: Rules describe mammalia 
Antecedent 

Item Set 
 Conseq. 

Item Set 
milk(1) ⇒ mam.(1) 

feathers(0),milk(1) ⇒ mam.(1) 

milk(1),backbone(1) ⇒ mam.(1) 

feathers(0),milk(1),backbone(1) ⇒ mam.(1) 

milk(1),breathes(1) ⇒ mam.(1) 

feathers(0),milk(1),breathes(1) ⇒ mam.(1) 

milk(1),backbone(1),breathes(1) ⇒ mam.(1) 

milk(1),venomous(0) ⇒ mam.(1) 

feathers(0),milk(1),venomous(0) ⇒ mam.(1) 

milk(1),backbone(1),venomous(0) ⇒ mam.(1) 

milk(1),breathes(1),venomous(0) ⇒ mam.(1) 
 
We found these rules describe mammalia correctly. In fact, 

the first and the shortest rule  >�Qf ⇒ >4>>4Q�4  describe a fundamental characteristic 
of a mammalia explicitly. From literature review, the second 
rule may be deemed redundant in comparison with the first 
rule because inclusion of an additional item set, feather(0), 
which cannot further increase the strength of rule. The 
strength of the first rule is already at its maximum at 1.0; any 
further inclusion of items may be redundant. Such a 
consideration however is application dependent. We could 
use both items, feathers(0) and milk(1) to describe mammalia 
more comprehensively at the same strength of 1.0. That is, an 
animal of mammalia does not have feather but milk. If we 
discard feather(0), we loss this item as a descriptive. 

We run the search for amphibian, and found a total of 136 
rules. Again, we could not find any incorrect rules. These 
rules have strength 1.0. While studying at these rules, we are 
surprised by the fact that amphibian like frog is toothed! We 
confirm this via answer.com, and this is indeed correct. That 
is, frog in this zoo is toothed. 

Comparing the two experiments, there is a large difference 
in their total number of occurrence in the overall transaction 
records. 41% of transaction records contain mammalia, in 
comparison, only 4% of transaction records contains 
amphibian. That is, search for amphibian is a search for 
infrequent association rules, which is often missed by most 
association rule mining technique that demands a minimum 
support threshold. If we set minimum support threshold to be 
higher than 4% and use a typical association rule mining 
technique, we loss rules describing amphibian. In 
comparison, our technique does not necessitate a minimum 

support threshold, it finds all necessary rules.  
On execution time wise, each running time takes less than 

3 seconds on a notebook computer Pentium Centrino 1GHz 
with 1.5G of main memory and running Windows XP Home 
Edition. Zoo dataset contains 101 transactions and 43 item 
sets. The search space on a target is 22(n-1)  -  ( 2(n-1) - 1 ) where 
22(n-1)  is the total number of both positive and negative rules, 
and ( 2(n-1) - 1 ) is the total number of positive rules using a 
single consequence item set as a target. In this case, zoo 
dataset contains 2E+25 combinations of item sets. We use an 
optimistic assumption to grasp the size of the search space; 
we assume only one computation cycle time (1 / 1GHz) is 
needed to form and to validate a combination of item set in a 
single transaction. Based on this optimistic assumption, it 
follows that a search without pruning would require at least 
6E+10 years to complete. In comparison, our search time is 
feasible. From these two experiments, we conclude that 
association rule pairs are useful to discover knowledge (both 
frequent and infrequent) from dataset.  

B. Mushroom dataset 

In our next experiment, we run our search algorithm on 
mushroom dataset [24] which contains 8124 transactions and 
119 items. To grasp the search space, if one computation 
cycle time is needed to form a combination, it takes at least 
3E+58 years to complete. Our search for both poisonous and 
edible mushrooms is completed within 17 seconds with 6 
rules found. We list these rules in Table 3(a) and Table 3(b).  

 
Table 3(a): Rules describe edible mushroom 

Antecedent 
Item Set 

 Conseq. 
Item Set 

odor.almond ⇒ Edible 

odor.almond, 

stalk-color-below-ring.orange 

⇒ Edible 

 
Table 3(b): Rules describe poisonous mushroom 

Antecedent 
Item Set 

 Conseq. 
Item Set 

cap-color.green, 

odor.spicy, 

gill-attachment.free 

⇒ Poisonous 

cap-color.green,  

odor.spicy, 

gill-attachment.free, 

stalk-color-below-ring.orange 

⇒ Poisonous 

cap-color.green, 

gill-attachment.free, 

stalk-color-below-ring.cinnamon 

⇒ Poisonous 

cap-color.green, 

gill-attachment.free, 

stalk-color-below-ring.orange,

 stalk-color-below-ring.cinnamon 

⇒ Poisonous 

 
We leave the correctness of these results to domain experts 

since we are no expert. The strengths of these rules are 
around 0.77 out of 1.0, this suggests that there may exist 
some exceptional cases besides these strongest rules.  

In comparison, a typical association rule mining technique 



 
 

 

such as apriori reports more than 100 thousands of rules with 
confidence value at 100%. Some of these rules are not 
interesting, and one way to filter these are to select high 
confidence rules with positive leverage values. Rules with 
positive leverage are rules that are dependent to each other. 
However, after filtering high confident rules with positive 
leverage, it still left us more than 100 thousands of rules for 
this dataset. Among these rules, it contains our six rules. We 
conclude from these observations that our approach produces 
rules that are concise and easier to apply. 

C. Artificial datasets 

We follow to generate a following three dense artificial 
datasets with an increase in complexity using the IBM 
synthetic data generator [25]. The symbols used in 
representing a dataset are explained below,  

D: number of transactions in 000s 
T: average items per transaction 
N: number of items 
L: number of patterns 
I: average length of maxima pattern 
 
The dense datasets have an average length of maxima 

pattern (I) close to average items per transaction (T), besides 
having a low number of patterns (L). These dense datasets 
have an increase number of items as follows, 

i) D100T10N100L50I9,    
ii)  D100T10N500L50I9,  
iii)  D100T10N1000L50I9 

 
We generate also sparse dataset with an increase in its 

number of items hence complexity,  
i) D100T10N100L10000I4,  
ii)  D100T10N500L10000I4,  
iii)  D100T10N1000L10000I4 

 
The results from experiments suggest that our search for 

association rule pairs is feasible within a linear or polynomial 
search time over an increase of complexity or items. 

 

 
Fig 1: Search time on an increase complexity on dense and 

sparse dataset 

VIII.  CONCLUSION 

We have presented a framework to mine association rules 
without minimum support threshold. The framework 
employs a novel, strong definition of association based on 
logical equivalence from propositional logic to avoid using a 
cut-off support threshold. The experimental results show that 

implication of propositional logic is a good alternative for the 
definition on association. 

The stronger definition of association also results in the 
discovery of knowledge that is vital from transaction records 
represented by coherent rules. These are a pair of rules that 
can be mapped to a pair of logical equivalents of the 
propositional logic, which means that the rules reinforce each 
other. While coherent rules found are important, the interest 
of these rule pairs is further quantified using coherent rules 
measure of interest. Coherent rules have positive values for 
the interest measure and imply that the antecedent item set of 
a coherent rule pair is needed in predicting its consequence 
item set, and is better than a guess without the former. 

Rules based on this definition may be searched and 
discovered within feasible time. This can be done by our 
proposed strategy of finding the strongest possible strength 
value of a group of candidate coherent rules and comparing it 
to the minimum strength value required, which is constantly 
updated based on a parameter specified by a user. The 
experimental results show that it is feasible to search for 
coherent rules when the size of transaction records increases.   
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