
Two-dimensional Object Recognition Based on
the Method of Moving Frame

Mahmoud Elgamal∗

Abstract— Invariant features play a key role in ob-
ject and pattern recognition studies. Features that
are invariant to geometrical transformations offer suc-
cinct representations of underlying objects so that
they can be reliably identified. In this paper, a family
of novel invariant features is introduced based on Car-
tan’s theory of moving frames. These new features is
called summation invariants. Compared to existing
invariant features, summation invariants are inher-
ently numerically stable, and do not require computa-
tionally complex numerical integrations or analytical
representations of underlying data. A robust methods
for extracting summation invariants from sampled 2D
contours introduced. Then, these new invariant fea-
tures are applied to 2D object recognition and com-
pared to other methods, e.g. wavelet and found to be
more efficient.
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1 Introduction

Object recognition is a major goal of many computer vi-
sion applications, but many unsolved issues characterize
the development of practical recognition systems. A typ-
ical object recognition problem can be described as fol-
low. An object can be observed from a different point
of view, and hence, the appearance of the same object
will vary. For the objects we want to recognize, their
templates, called gallery images, are stored in a data-
base. The task is to match an unknown object observed
from an unknown point of view, called the probe image,
against all the templates in a database. Now, let us dis-
cuss a little bit how an object recognition system works.
Given an image of an object, one wants to use an al-
gorithm that produces a unique feature from the image.
Given another image of the same object, the algorithm
should produce exactly the same feature. To achieve this,
the algorithm has to cancel the effect of shape transfor-
mations which is the result of changing viewing angles.
There are many approaches by which one can deal with
shape transformations between images. An intuitive ap-
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proach is simply to perform every possible transformation
of a template to see whether any of the templates trans-
formed versions match the probe image. For example, if a
probe image and a template differ only by translation [2],
then one can shift the template, pixel by pixel, until the
best match is reached. Obviously, this kind of method
is computationally intensive. Also, for common transfor-
mations in computer vision, such as affine transformation
and projective transformation, the search space becomes
overwhelmingly large. Another method is to store images
of an object from all possible viewing angles in the data-
base. By doing this, one can reduce the computational
complexity significantly, but at the price of increasing the
storage requirement. Once again, for the common trans-
formations in computer vision, this approach is not an
efficient solution and probably not feasible. Due to the
inherent drawbacks of the previous two approaches, it
is necessary to come up with a more practical solution
for real world applications. One can use the concept of
geometric invariance to tackle this challenging problem.
Ideally, the invariant descriptors are independent of view-
points. By using this kind of shape descriptor, one can
match two images directly without any prior knowledge
of the position and the orientation of the camera. There-
fore, the invariant-based method is neither expensive on
computation nor storage. For an invariant descriptor,
another important property is that it should extract all
the distinctive information about a shape. Thus, one can
identify different shapes by using an invariant feature. In
this paper, geometric transformations used in developing
summation invariants, these invariant features are robust
in the presence of noise and quantization error. The pa-
per is organized as follow, in section 2 a brief introduction
is given for geometric invariants, e.g., Lie group, orbit,
invariant functions, jet space, group action prolongation,
and the method of moving frames. In section 3, the dif-
ferential and integral invariants is presented. In section 4,
the summation invariants are addressed, and in section 5,
the error analysis is discussed. In section 6, a simulation
example is demonstrated. In section 7, an application
experiment for the method is conducted.
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2 Preliminaries

a.) A Transformation group acting on a manifold M is a
lie group G which satisfies
e◦x = x, g◦(h◦x) = (g◦h)◦x, ∀x ∈ M, g ∈
G,
where e is an identity element of the Lie group G.

b.) Orbits and invariant functions: Let G be a Lie group
acting on a manifold M . The orbit of a point x ∈ M
is the set of all images of x under group action. To
be precise, the orbit of x is given by:

Ox = {g ◦ x : g ∈ G}.

An invariant for the transformation group is a func-
tion η : M −→ R which satisfies
η(g ◦ x) = η(x),∀g ∈ G, x ∈ M .

c.) Jet spaces and Prolongations[13]: unfortunately, it
is quite common that the dimensions of an orbit is
greater than or equal to the dimension of the man-
ifold. One way to fix this problem is to create a
larger space so that we can find an invariant function
there. For this purpose we will introduce a suitable
space, called jet space. Then define how group ac-
tions are prolonged so that coordinates of jet space
are appropriately transformed. Traditionally, a jet
space is coordinated by independent variables, depen-
dent variables and derivatives of dependent variables.
Hence, it is called the derivative jet space. Consider
a smooth funcion u = f(x) which involves p inde-
pendent variables x = (x1, · · · , xp) and q dependent
variables u = (u1, · · · , uq). This allows us to define
the derivative jet space Jn, whose coordinates consist
of p independent variables, q dependent variables and
all the partial derivatives of order up to n. A point
in the derivative jet space jn is denoted by (x, un),
where un contains dependent variables and partial
derivatives up to order n. This action of group G on
Jn is called the nth prolongation and it is denoted
by prnG. This prolonged group action is defined so
that the derivatives of function u = f(x) are mapped
to corresponding derivatives of transformed function
ū = f̄(x̄). Specifically, for any point (x0, u0(n)) ∈ Jn,
the prolonged group action is defined by

pr (n) ◦ (x0, u
(n)
0 ) = (x̄0, ū

(n)
0 )

In other words, the transformed derivatives are found
by evaluating the derivatives of transformed function
f̄(x̄) at point x̄0.

d.) Method of moving frames[13]: The invariant function
of a group G acting on a jet space Jn is defined as

follows. An invariant for a group G is a function
η : Jn −→ R such that

η(pr (n)g ◦ (x, u(n))) = η((x, u(n))),
∀pr (n)g ∈ pr (n)G and (x, u(n)) ∈ Jn.

In the next, a systematic way to produce the invari-
ants of a Lie group G acting on a manifold M will be
introduced. The method of moving frames provides a
powerful and algorithmic tool to find invariant func-
tions. But in practical applications, one is forced to
differential invariants by a discrete numerical approx-
imation and thus they are sensitive to noise.

3 Approximation of Differential Invari-
ants

In order to reduce sensitivity to noise, semi-differential
invariants were introduced by Van Gool et al. [4, 10].
In such an approach, a higher order differential is ap-
proximated by a joint invariant depending on lower or-
der derivatives evaluated at several points on a curve.
Thus, the computation of high order derivatives can be
avoided. In [14], a robust differential technique has been
developed. A canonical coordinate system which is inde-
pendent of a given world coordinate system is defined so
that all quantities defined on are invariants. This method
involves smoothing a discretized curve to make the result
reasonably reliable. Human judgments are required to de-
termine appropriate coefficients for smoothing. Calabi et
al. [3] constructed numerical approximations of differen-
tial invariants by using successive points on a curve. They
discussed the cases of planar curves under Euclidean and
affine transformations. Their numerical approximation of
Euclidean curvature depends on Euclidean distance be-
tween successive points and that of affine curvature de-
pends on triangular areas of successive points; it is similar
to avoiding computation of high order derivatives.
In [12], Sato and Cipolla introduce a new framework
of integral invariants under transformation group action
based on invariant parameterization. They work on an
important case in many computer vision problems, affine
transformation acting on R

2. An affine quasi-invariant
parameterization is derived. The idea behind it is to ap-
proximate affine arc-length by using low order derivatives.
It is obvious that the distance and area are unaffected
by Euclidean transformation. Based on this fact, Manay
et al. [9] propose two integral invariants with respect to
Euclidean transformation. Given a curve in R

2, they de-
fine a disk centered at a point on that curve. On the disk,
the integral distance invariant computes distance metrics
and the integral area invariant computes area metrics.
By moving the disk and computing these two invariants
at each point, they can plot the integral invariant signa-
ture. Unlike the method of moving frames, this method
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can not systematically produce invariants. Also, the gen-
eralization of their method to other transformation group
is not trivial.

3.1 Integral Invariant

Hann and Hickman [5] observe that the root of the prob-
lem lies in the derivation of invariants. The traditional
approach prolongs group actions to derivatives and thus
the resulting invariants will depend on derivatives. They
define a new jet space, which is coordinatized by inte-
grals. Thus, the resulting invariants will depend on inte-
grals rather than derivatives and so will not be sensitive
to noise. Compared with the previous two approaches,
their method does not use any derivatives and can gener-
ate invariants systematically. They open a new window
for the equivalence problem of shapes under transforma-
tion group actions. Since their work is particularly im-
portant, it will be discussed in some details.

3.2 Extending a Lie Group Action on R to
Potentials

Consider a Lie group G acting on R defined by

g ◦ (u, x) = (x̄, ū), g ∈ G

The conventional way of deriving invariants is to prolong
the group action to derivative jet spaceJ . For example
J = (x, u, ux, uxx). For integral invariants, the goal is to
extend group action to potentials rather than derivatives.
The definition of potentials and potential jet space are
defined as follow:

Definition 3.2.1 The Potential V ij of order k is given
by

V ij =
∫

xiujdx, where j �= 0 and i + j = k. (1)

Definition 3.2.2 The potential jet space Jn
p is co-

ordinatized by (x1, u1, x0, u0, V
(n)), (x0, u0) and (x1, u1)

denote the initial and end points of a curve,
respectively, V (n) consists of potentials up to
nthorder ( e.g., J1

p = (x1, u1, x0, u0, V
0,1), J2

p =
(x1, u1, x0, u0, V

0,1, V 1,1, V 0,2) ).

3.3 Affine Invariants

Consider the affine group on R
2,

g ◦ (x, u) = (ax + bu + c, dx + eu + f), det
(

a b
d e

)
�= 0

To find invariants, it is first solved for the moving frame,
{a, b, c, d, e, f}, by setting

(x̄1, ū1, x̄0, ū0, V̄
0,1, V̄ 1,1) = (0, 0, 1, 1, 0, 0)

Then, an integral invariant ηintegral can be found by sub-
stituting {a, b, c, d, e, f} into V̄ 0,2.

ηintegral = {−3(x1 − x0)V 0,2 + 6(u1 − u0)V 1,1 + 4(V 0,1)2

− 2V 0,1(2x1u1 − 2x0u0 + x0u1 − x1u0)

+ u0u1(x1 − x0)2}/{((x1 − x0)(u1 + u0)

− 2V 0,1)2}
(2)

Given a curve u = f(x) through (x0, u0), ηintegral can be
computed at each point (x, u). Note that if two curves
C and C̄ are related by an affine transformation, a point
(x0, u0) ∈ C must be identified with the corresponding
point (x̄0, ū0) ∈ C̄ to evaluate ηintegral. Integral invari-
ants are different from differential invariants in the sense
that differential invariants are defined locally. They are
also different from the moment invariants [6], which are
defined globally. Integral invariants are defined semi-
locally because the range of integration can be specified
by varying (x0, u0) and (x1, u1). In other words, integral
invariants can extract local characteristics like differen-
tial invariants do. Meanwhile, unlike moment invariants,
they do not suffer from occlusion problems. This prop-
erty gives us more flexibility in dealing with practical
problems. In practical object recognition problems, we
are usually given sets of discrete points. Each set of dis-
crete points represents a shape and we want to classify
these shapes. From Hann and Hickmans point of view,
they assume there are continuous shapes behind the dis-
crete data, which allows them to compute the integral
invariants. Their idea has one obvious drawback. It will
highly depend on the sampling resolution. The higher
the sampling rate is, the more accurate the integral will
be.

4 Summation Invariants

A reliable scheme developed here to find invariants,
which are based on the summation operation of dis-
crete data, called Summation invariants. They are in-
dependent of sampling rate and maintain all the nice
properties of integral invariants, such as systematic pro-
duction of invariants and high noise immunity. The
transformation groups used to illustrate these novel tech-
niques are Euclidean and affine groups, with emphasize
on the cases of curves and surfaces in two and three-
dimensional space. In the next section definitions of po-
tential andpotential jet space are given. Then, summation
invariants for curves in R

2 and for the surfaces in R
3 are
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explicitly derived. Also a variety of fundamental geomet-
ric transformations are discussed in detail.

4.1 Summation Invariants for Curves in R
2

Suppose that the boundary of a planar object is given,
which is parameterized as {(xn, yn) : n = 1, 2, · · · , N}.
Note that the parameterization is not necessarily equally
spaced. Consider the transformation group G acting on
R

2 defined by

g ◦ (xn, yn) = (x̄n, ȳn), g ∈ G

The potential and potential jet space are defined as fol-
lows.

Definition 4.1.1 The potential Pi,j of order k is given
by

Pi,j =
N∑

n=1

xi
n.yj

n, where i + j = k

Definition 4.1.2 The potential jet space Jk is the
Euclidean space with coordinates

(x1, y1, xN , yn, P(k))

where P(k) consists of potentials up to kthoredr.

For example,

J1 = (x1, y1, xN , yN ,
N∑

n=1

xn,
N∑

n=1

yn)

In the following two sections, we will address two impor-
tant transformation groups in computer vision, namely
Euclidean and affine transformations, and derive their
summation invariants.

4.2 Euclidean Summation Invariant of
Curves

Given the sampled points on a curve {(xn, yn) : n =
1, 2, · · · , N}, let (x̄n, ȳn) denote that they are trans-
formed by Euclidean transformation.

[
x̄n

ȳn

]
=

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
xn

yn

]
+

[
a
b

]
(3)

where a, b, θ ∈ R. One can construct a family of invariant
functions ηij by applying a moving frame to potentials
Pij . For example, a moving frame can be found by solving
the following equations,

(x̄1, ȳ1, ȳN ) = (0, 0, 0) (4)

The equations above are called the normalization equa-
tions. Note that we are free to specify normalization
equations as long as they can be solved, i.e. a moving
frame can be found. Here, we specify the normalization
equations so that the corresponding moving frame can be
easily solved. Let P̄ij be the potentials transformed by a
moving frame,

P̄ij =
N∑

n=1

x̄i
nȳj

n (5)

where x̄ and ȳ denote the x and y coordinates trans-
formed by a moving frame. The P̄ij are invariant func-
tions under Euclidean transformation acting on R

2 [8],
i.e., ηij = P̄ij . The first and second invariant functions,
i + j = 1 or 2, were explicitly derived as shown below

η1,0 = P1,0(xN − x1) + P0,1(yN − y1)
+ Nx1(x1 − xN ) + Ny1(y1 − yN )

(6)

η0,1 = P0,1(yN − y1) + P0,1(x1 − xN )
+ N(xNy1 − x1yN )

(7)

η2,0 = −2P1,0(x1 − xN )(x2
1 − x1xN + y2

1 − y1yN )

− 2P0,1(y1 − yN )(y2
1 − y1yN + x2

1 − x1xN ))

+ P2,0(x1 − xN )2 + P0,2(y1 − yN )2

+ 2P1,1(x1 − xN )(y1 − yN )

+ N(x1(x1 − xN ) + y1(y1 − yN ))2

(8)

η1,1 = P1,1((x1 − xN )2 − (y1 − yN )2)

+ P1,0(y3
1 + 2x1xNyN − 2yNx2

1

+ x2
1y1 − 2y2

1yN + y1y
2
N − x2

Ny1)

− P0,1(x3
1 + 2y1yNxN − 2xNy2

1

+ y2
1x1 − 2x2

1xN + x1x
2
N − y2

Nx1)
+ (P0,2 − P2,0)(x1 − xN )(y1 − yN )
+ N(xNy1 − x1yN )(x1(xN − x1) + y1(yN − y1))

(9)

η0,2 = 2(xNy1 − x1yN )(P1,0(yN − y1) − P0,1(xN − x1))

+ P2,0(y1 − yN )2 + P0,2(x1 − xN )2

− 2P1,1(x1 − xN )(y1 − yN ) + N(x1yN − xNy1)2

(10)

4.3 Affine Summation Invariant of Curves

Affine Transformation can be used to approximate the
perspective projection of 3D objects on the image plane.
Therefore, invariants of affine transformation have signif-
icant importance in computer vision. In this section, we
explicitly derive the summation invariants of affine trans-
formations. Consider the affine transformation group G
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acting on R
2 given by[

x̄
ȳ

]
=

[
a b
d e

] [
x
y

]
+

[
c
f

]
(11)

where det
[
a b
d e

]
�= 0 Again, we prolong group action to

potentials. The affine-transformed potentials are shown
below

P̄1,0 =
N∑

n=1

(axn + byn + c) = a.P1,0 + b.P0,1 + c.N (12)

P̄0,1 =
N∑

n=1

(dxn + eyn + f) = d.P1,0 + e.P0,1 + f.N (13)

Next, moving frame {a, b, c, d, e, f} can be found by solv-
ing the normalization equations. In this case, the nor-
malization equations specified as follows

(x̄1, ȳ1, x̄N , ȳN , P̄1,0, P̄0,1) = (0, 0, 1, 1, 0, 0) (14)

By applying the moving frame {a, b, c, d, e, f} to higher
order potentials, it will yield the summation invariants
under affine group actions. The second order potentials
are shown below

P2,0 =
N∑

n=1

x2
n (15)

P1,1 =
N∑

n=1

xnyn (16)

P0,2 =
N∑

n=1

y2
n (17)

They are transformed by affine group action as follows

P̄2,0 = a2P2,0 + 2abP1,1 + 2acP1,0 + 2bcP0,1

+ b2P0,2 + c2N (18)

P̄1,1 = adP2,0 + (ae + bd)P1,1 + (af + cd)P1,0

+ (bf + ce)P0,1 + beP0,2 + cfN (19)

P̄0,2 = d2P2,0 + 2deP1,1 + 2dfP1,0 + 2efP0,1

+ e2P0,2 + f2N (20)

Then, we apply moving frame {a, b, c, d, e, f} solved from
equation (14) to P̄2,0. The resulting affine transformation
invariant ξ2,0 is given by

ξ2,0 = {P2,0(Ny1 − P0,1)2 + P0,2(Nx1 − P1,0)2

− 2P1,1(Nx1 − P1,0)(Ny1 − P0,1)

− N(y1P1,0 − x1P0,1)2}/{(N(xNy1 − x1yN )

+ (yN − y1)P1,0 − (xN − x1)P0,1)2} (21)

Note that one can find infinitely many affine invariant
functions by substituting solved values of {a, b, c, d, e, f}
into higher order transformed potentials. Furthermore,
one can show that

g◦denominator(ξ2,0) = (ae−bd)2denominator(ξ2,0) (22)

g ◦ numerator(ξ2,0) = (ae − bd)2numerator(ξ2,0) (23)

In other words, both denominator and numerator of ξ2,0

are relative invariants under affine transformation. Form
an application point of view, relative invariants provide
enough information for object recognition and there is no
need to worry about the situation where the denominator
vanishes.

5 Robustness in the Presence of Noise

Without the presence of noise, invariant functions ob-
tained by different approaches all exhibit perfect invari-
ance properties. However, it is always the case in prac-
tical situations that the invariance properties will not be
exactly maintained and one can only compute invariant
features with limited precision. Thus, it is of great im-
portance to analyze the robustness to noise for differ-
ent kinds of invariant functions. In this section, we will
compare the summation invariants and the integral in-
variants in terms of their numerical robustness. In par-
ticular, theoretical analysis relating second-order statis-
tics are derived to evaluate the impact of noise. Suppose
one wants to evaluate a function f of several variables
X1, X2, · · · , Xn. The variables X1, X2, · · · , Xn are only
available in quantized form, i.e., we only have access to
q(X1), q(X2), · · · , q(Xn) where the quantized function is
defined by

q(x) = kΔq, if (k − 0.5)Δq ≤ x ≤ (k + 0.5)Δq (24)

Thus, we are only concerned with the error due to quan-
tization of the value of variables and are not concerned
with error due to computation or evaluation of functions.
In principle, we can compute the moments od Δf if the
joint probability distribution of X1, X2, · · · , Xn is known.
Specifically, the nth moment of Δf is given by

Mn =

∫
· · ·

∫
(Δf)nhx1,x2,··· ,xn(x1, x2, · · ·

, xn).dx1dx2 · · · dxn

where hx1,x2,··· ,xn is the joint probability density func-
tion of X1, X2, · · · , Xn. However, in practice we will see
that f can be linear or non linear function of its variables
and an analytical evaluation of quantization error can be
difficult. Some assumptions is usually made to simplify
the error analysis. The error analysis of summation in-
variants and integral invariants will be presented in the
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following two sections. For each, its robustness is charac-
terized in terms of the variance of error in the computed
value, as described by equation (24).

5.1 Error Analysis on Summation Invari-
ants

In this section, we will give the analytic derivation of
the expected squared error for two simple cases, namely
η0,1 and η1,0. This serves to give an idea of the math-
ematics involved. For other summation invariants, their
error analysis can be done in the same way. The focus
is placed on η0,1 and η1,0 because they are composed of
second order monomials. In the following section, the in-
tegral invariants will be composed of second order mono-
mials, too. This leads to a fair comparison between them
in term of their numerical stability. First, it is assumed
without loss of generality that the quantization errors are
independent identically distributed random variables. In
order to simplify the analysis, it is further assumed that
the mean of x coordinates and the mean of y coordinates
are not zero, i.e.

mx =
1
N

N∑
n=1

xn �= 0 (25)

my =
1
N

N∑
n=1

yn �= 0 (26)

Then,

∑N
n=1 q(xn)∑N

n=1 xn

=
∑N

n=1 xn + εxn∑N
n=1 xn

= 1 +
∑N

n=1 εxn∑N
n=1 xn

= 1 +
∑N

n=1 εxn

Nmx

(27)

where ε is the quantization error associated with xn. It
can be readily shown that

lim
N−→∞

∑N
n=1 q(xn)∑N

n=1 xn

= 1 (28)

Based on this, we can assume N is large enough so that
the potential P0,1 and P1,0 are relatively insensitive to
the quantization error, i.e.

N∑
n=1

q(xn) ≈
N∑

n=1

xn (29)

N∑
n=1

q(yn) ≈
N∑

n=1

yn (30)

Therefore, the error in the estimate η̄0,1 is given by

Δη0,1 = η̄0,1 − η0,1

≈ −(yN − y1)
N−1∑
n=0

εxn − (εyN
− εy1)

N−1∑
n=0

xn

+ (xN − x1)
N−1∑
n=0

εyn
+ (εxN

− εx1)
N−1∑
n=0

yn

− N{xN εy1 + y1εxN
− x1εyN

− yN εx1}
(31)

One can compute the expected value and the variance of
Δη0,1

E[Δη0,1] = 0 (32)

var [Δη0,1] ≈ σ2{(
N∑

n=1

yn − NyN )2 + (
N∑

n=1

yn − Ny1)2

+ (
N∑

n=1

xn − NxN )2 + (
N∑

n=1

xn − Nx1)2

+ N(yN − y1)2 + N(xN − x1)2}
(33)

Here, the observations are the following. First, the quan-
tization error does not introduce bias in the estimate η̄0,1.
Second, the variance of the estimate η̄0,1 is proportional
to N2. Similarly, the error in the estimate of η1,0 is given
by

Δη1,0 = η̄1,0 − η1,0

≈ −(εxN
− εx1)P1,0 − (εyN

− εy1)P0,1

− N [−x1εxN
+ εx1(2x1 − xN ) − y1εyN

+ εy1(2y1 − yN )] (34)

where the products of the quantization errors are re-
garded as negligible. The mean and variance of Δη0,1

are given by

E[Δη1,0] = 0

var [Δη1,0] ≈ σ2{(−P1,0 +N(2x1−xN ))2 +(P1,0−Nx1)2

+ (−P0,1 + N(2y1 − yN ))2 + (P0,1 − Ny1)2} (35)

Here, the observation are the same as the previous case,
i.e., quantization error does not introduce bias and the
variance is proportional to N2.

5.2 Error Analysis on Integral Invariants

Hann and Hickman [5] introduced the integral invariants
and explicitly derive the affine integral invariant equa-
tion (2). Unfortunately, it is not easy to give an analyti-
cal error analysis on equation (2). Instead we consider
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a simpler case, Euclidean/rigid transformation group,
and derive the corresponding integral invariants. Then,
the mean and variance of the estimate of the Euclid-
ean/rigid integral invariants can be derived analytically.
Let {(x, y) : y = f(x), x ∈ [xa, xb]} be a curve parameter-
ized by x. In order to find integral invariants, one need
to first define a jet space J . For Euclidean group acting
on R

2, the jet space is given by

J = {(xa, ya, yb) : ya = f(xa), yb = f(xb)} (36)

Then, one can specify normalization equations and find
the corresponding moving frame. To make the algebraic
manipulation as easy as possible, we choose the normal-
ization equations to be

(x̄a, ȳa, ȳb) = (0, 0, 0)} (37)

where (x̄a, ȳa, ȳb) denotes the results of applying an
Euclidean transformation to (xa, ya, yb). After solving
the normalization equations, integral invariants can then
be obtained by applying the moving frame to potentials.
Recall that the potentials defined by Hann and Hick-
man [5] are shown in definition (3.2.1). Thus, V 0,1 is
an order 1 monomial potential and V 1,1, V 0,2 are order 2
monomial potentials. The integral invariants shown be-
low is obtained by applying the moving frame to V 0,1.

μ0,1 = V 0,1 − (xb − xa)(yb + ya)
2

(38)

The most straightforward methods for numerical inte-
grations are the left and right Riemann sums. Here,
the trapezoidal sums as a numerical approximation used.
The trapezoid approximation of V 0,1 associated with the
partition xa = x0 < x1 < · · · < xN−1 = xb is given by

V̄ 0,1 =
1
2

N−2∑
n=0

(yn+1 + yn)(xn+1 − xn) (39)

The estimate μ̄0,1 is calculated by replacing V 0,1 in μ0,1

with V̄ 0,1. Note that the estimate μ̄0,1 itself is also an
invariant function, i.e.,

μ̄0,1(x, y) = μ̄0,1(x̄, ȳ) (40)

where (x̄, ȳ) denotes a curve under arbitrary Euclid-
ean/rigid transformations. Put

ν0,1 = −2.μ̄0,1 (41)

and it can be easily shown that

ν0,1 =
N−1∑
n=0

(xnyn+1 − xn+1yn) (42)

where the indices of x, y are given modulo N . Following
equation (42) and equation (24),the error in the integral

invariants ν0,1 due to the quantization in x and y coordi-
nates is given by

Δν0,1 =
N−1∑
n=0

xnyn+1 − xn+1yn

−
N−1∑
n=0

q(xn)q(yn+1) − q(xn+1)q(yn)

=
N−1∑
n=0

xnyn+1 − xn+1yn −
N−1∑
n=0

(xn + εxn
)

(yn+1 + εyn+1) − (xn+1 + εxn+1)(yn + εyn
) (43)

It is assumed without loss of generality that the εxn
,

εyn
are independent and identically distributed, with zero

mean and variance σ2. Since the products of εxn
, εyn

are
relatively small, the quantization error Δν0,1 is approxi-
mated by its first-order errors, i.e.

Δν0,1 ≈
N−1∑
n=0

xnεyn+k
+yn+kεxn−xn+kεyn−ynεxn+k

(44)

Thus, the expected value and the variance of Δν0,1 are
given by

E[Δν1,0] = 0 (45)

var [Δν1,0] = σ2
(N−1∑

n=0

(xn − xn+2k)2 + (yn − yn+2k)2
)

(46)

According to equation (44), the quantization error does
not introduce bias in the estimate ν̄0,1. Also, the vari-
ance of the estimate ν̄0,1 is proportional to N and the
quantization error σ.

6 Simulation

A numerical simulation is conducted to evaluate the accu-
racy of the derived first and second order statistics. The
simulation consists of the following steps:
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Figure 1: a) Semi-circle with radius 100.
b) Approximation of the semi-circle by 200

points.
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1.) Generate a semi-circle with radius 100 and perform
sampling uniformly along its arc length. The number
of sampling points is 200 (figure (1)).

2.) Pick up the first N points of the semi-circle and com-
pute its invariants. The initial value of N is 30.

3.) The curve with N points is subject to arbitrary
Euclidean transformations and then quantization.
The parameters of Euclidean transformation are ran-
domly generated. During the quantization, x and y
coordinates are rounded to the nearest integer. Then,
the invariants computed from the quantized curve.
This step is repeated 1000 times.

4.) Increase N by 10 and repeat steps 2 and 3.

In practical applications, shapes are always given in quan-
tized format. Hence, there is no way for a user to control
the quantization granularity. Reflecting on this fact, the
quantization granularity is a fixed value in the simulation.
It is also to be pointed out that the value of an invari-
ant feature depends on the shape of an object. Here, the
analysis is limited to the cases where quantization errors
are relatively small, i.e., η >> Δη. For the shapes not
satisfying this condition, the computed invariant values
are not reliable and hence have little practical value.
The variance of Δν0,1 equation(46) was computed for the
sampled points on the semi-circle Theoretical estimate
and for the points generated using Euclidean transforma-
tion Numerical approximation. Figure (2) shows the re-
sult. It is observed that the results of simulation are very
close to that of the theoretical analysis. Also, the vari-
ance is proportional to N as predicted by equation (46).
The variance of Δη0,1 are shown in figure (3). Again, the
result of the simulation are very close to the theoretical
predictions. However, it is also to be pointed out that
choosing a large N has an undesirable consequence. In
particular, the local characteristics of a shape will be av-
eraged by using a large N . the rule of thumb is to keep
N as small as possible while maintaining an acceptable
accuracy. According to figure (4), η0,1 and ν0,1 achieve
similar accuracy in the range where N is relatively small.
Thus, one may conclude that %1 mean squared relative
error can be achieved for curve segments with 30 points
by using either η0,1 or ν0,1. Figure (4) shows the variance
of relative errors which is a more descriptive quantity in
assessing the precision of an estimate. It is immediately
clear that relative error is inversely proportional to N .
So, one can increase the accuracy of summation or inte-
gral invariants by increasing N . According to the error
analysis in the previous section, the variances of Δν0,1

and Δη0,1 are proportional to N and N2 respectively.
Hence, the variance of the relative error Δν0,1/ν0,1 is ex-
pected to drop faster than that of Δη0,1/η0,1. This phe-

nomenon is observed in the results of the simulation. It
indicates that ν0,1 can reduce error more efficiently than
η0,1 does.
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Figure 2: The variance of the quantization error Δν0,1

(◦ ≡ Theo.est.(points sampled on the semi circle) and

+ ≡ Num. Approx.(points sampled on the Euclidean transformed curve)).
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Figure 3: The variance of the quantization error Δη0,1

(◦ ≡ Theo.est.(points sampled on the semi circle) and

+ ≡ Num. Approx.(points sampled on the Euclidean transformed curve)).
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Figure 4: The variance of relative error Δη0,1/η0,1 and
Δν0,1/ν0,1 (◦ ≡ Δη0,1 and + ≡ Δν0,1.)

7 Two-dimensional Shape Matching

In this section, a shape matching experimentation in 2D
using summation invariants will be presented. As an ap-
plication of the technique two dimensional affine sum-
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mation invariants are utilized for recognizing computer-
generated shape contours, i.e. closed curves. Finally, a
comparison with other methods will be given.

7.1 Summation Invariants Representation
of Curves

Given a set of sample points on a curve, one can compute
summation globally, i.e. the resulting invariant feature is
a scalar number. However, it will be very difficult to
perform accurate classification in such a low-dimensional
feature space since it does not adequately capture lo-
cal variations of the underlying objects. To address this
problem, a semi-local summation invariant feature that
computes the summation invariant over a local interval
of a curve is used rather than the entire curve. An im-
portant observation is that the lower and upper limits in
the definition of the potentials are not functions of group
operations. As such, these limits can be changed from all
the points in the objects to a local subset of points. Let
us use the affine invariants as an example to illustrate
this method. For a curve (xn, yn), n ∈ {1, 2, · · · , N}, the
mth semi-local summation affine invariant is given by [8]:

λaffine[m] =
(
M(xmM

ym1−xm1ymM
)+P1,0(ymM

−ym1)

− P0,1(xmM
− xm1)

)2

(47)

here ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P1,0 =
m+M−1∑

n=m
x[mod(n, N)]

P0,1 =
m+M−1∑

n=m
y[mod(n, N)]

m1 = m

mM = mod(m + M − 1, N)]

Given N sampled points on a curve, one can compute
semi-local summation invariants with non-overlapping or
overlapping intervals. Obviously, using overlapping inter-
vals will yield high dimensional features. For simplicity,
we will use overlapping intervals. In the following exper-
iment, the semi local summation invariant is computed
from a local interval surrounding each sample point so
that the resulting representation of a curve is a vector
with dimension N . The length of the the local interval,
M , which can be adjusted according to the specific ap-
plication, is empirically determined.

7.2 Shape Matching Application Using Syn-
thesized Data

A synthesized data set of computer-generated
shapes(CG-shapes) by using Legendre polynomials

is created for shape matching experiment. These CG-
shapes contours are depicted in Figure(5) and are called
CG-shapes prototypes. Twenty deformations are gener-
ated for each prototype using affine transformations, for
example, contour deformation of the first image is shown
in figure (6).
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Figure 5: Database contains 100 prototype of CG-shapes
contours. Each prototype represents one distinct type of
CG-shapes.
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Figure 6: Contour deformations are generated by apply-
ing affine transformations on a the first CG-image proto-
type. Twenty deformations are produced for each proto-
type.

The affine transform parameters {a, b, c, d, e, f} are ran-
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domly generated for each deformation.
[
x̄
ȳ

]
=

[
a b
d e

] [
x
y

]
+

[
c
f

]
(48)

The affine transformed coordinates [x̄, ȳ]T will be quan-
tized into integer values. If different points on the orig-
inal contour are mapped onto the same coordinate after
the affine transformation and quantization, the duplicate
points are eliminated. Linear interpolation to re-sample
each transformed contour is applied so that all re-sampled
contours have the same number of sample points. In
this experiment, the number of sample points on each
re-sampled contour is chosen to be N0 = 512. The re-
lationship between affine-transformed contour x̄[n] and
re-sampled contour x̄′[n] described as [8]:

x̄′[n] =

⎧⎪⎨
⎪⎩

x̄[0] if n = 0;
x̄[	Nn

N0

](�Nn

N0
� − Nn

N0
) + x̄[�Nn

N0
�]

(Nn
N0

− 	Nn
N0


) if n = 1, 2, · · · , (N0 − 1).
(49)

where N is the total number of sample points on an
affine-transformed contour x̄[n]. To evaluate the semi-
local summation invariant features, we choose M = 51
as the range of local summation. The resulting represen-
tation of the CG-shapes contour is a N0 × 1 feature vec-
tor. Each entry of this vector corresponds to λaffine[m],
equation(47), calculated from a 51-point shape segment.

7.3 Simulation and Result

This experiment is conducted to evaluate the shape
matching performance of the summation invariants. De-
tails of this experiment is as follow:

i.) A set of 100 images of CG-shapes are used as pro-
totypes. For each prototype, 20 deformations are
generated by applying affine transformations on the
prototype. Hence, a data set containing 2000 shapes
of the images is created.

ii.) The dataset is divided into 5 equal-sized partitions.
In each partition, there are 100 prototypes and 4 de-
formations associated with each prototype. In other
words, each partition will contain 400 shapes that
correspond to four variations of each of the 100 CG-
shape prototypes.

iii.) In one shape matching experiment, one partition
will be used as gallery set and the others will be
used as probe set. Since the gallery set and the
probe set are mutually exclusive, one could evalu-
ate how well a shape matching algorithm could be
generalized to shapes it has never seen before. More
specifically, a probe shape will be matched against

all of the gallery shapes. Then, we can pick up the
pair of shapes with highest matching score. If these
two shapes belong to the same prototype, we treat it
as a correct matching result. If these two shapes do
not belong to the same prototype, it is regarded as
an incorrect match. In this experiments, the match-
ing score, or,similarity score, between two shapes is
given by [8]:

ρ =

N−1∑
n=0

vgallery[n].vprobe[n]

√√√√N−1∑
n=0

v2
gallery[n].

N−1∑
n=0

v2
probe[n]

(50)

iv.) In a M -way cross-validation method (M = 5 in this
experiment), one can perform M experiments. In
the first experiment, the first partition will be used
as gallery set and the others will be used as probe
sets. Similarly, in the second experiment, the second
partition will be used as gallery set and the others
will be used as probe sets. Therefore, given M par-
titions of the whole data set, one could conduct a
total of M experiments. This way, each partition
will be used as the gallery set exactly once in a M -
way cross-validation.

v.) For each experiment, the shape matching results are
reported by a 100× 100 confusion matrix C. cij de-
notes the (i, j)th element of C and is the number
of probe shapes that actually belong to prototype i,
but are considered as prototype j by a shape match-
ing algorithm. The confusion matrices of all M
shape matching experiments will be added together
to form the final confusion matrix, from which one
can perform different kinds of statistical analysis.

a.) Circularly shift the feature vector from the probe
set by one and compute the corresponding similar-
ity score ρ with the one from the gallery set.

b.) Circularly shift the feature vector from the probe
set by one and compute the corresponding similar-
ity score ρ with the one from the gallery set.

c.) Repeat the previous step N times, where N is the
number of points on a probe shape. Choose the max-
imum as the final similarity score between two shapes.

7.4 Comparison with Other Methods

It is important to know how the summation invariant
performs compared with the integral invariant[5]. Like
semi-local summation invariant, each CG-shape contour
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Table 1: An error based comparison between the three
methods of 2D shape matching.

Method Error prob. of error Ratio(%)
Summ. invariant 190 190/8000 2.375%
Integral invariant 1195 1195/8000 14.9375%
Wavelet invariant 711 711/8000 8.8875%

is represented by a 512 × 1 feature vector. Each ele-
ment of this feature vector is calculated by using the
denominator of ηintegral, equation (2). The integration,
V 0,1, is approximated by numerical integration over a
shape segment with 51 points. Its also important to
know how it performs compared with the state-of-the-
art methods. In[7], wavelet-based invariant functions
were demonstrated to have superior discrimination power
compared to some traditional methods, namely the mo-
ment invariant[11] and Fourier descriptor method[1]. We
calculate η3,4,5,6,7,8[n], n = 1, · · · , 512 using Daubechies
wavelet of length 4. According to the authors suggestion
in[7], only the coarsest scale levels (3, · · · , 8) are used to
calculate the affine invariant function. The finest scale
levels have been dropped because they are sensitive to
noise. As a result, each CG-shape contour is represented
by a 512 × 1 feature vector. In table(1), a comparison of
the probability of incorrect matching(error), between the
methods are shown with the error ratio in every case.

8 Conclusion

In this paper, the performance of the proposed 2D con-
tour summation invariant features was compared with
that of integral invariant features. A performance en-
hancement achieved by the new summation invariant fea-
tures was marked. To conclude, a systematic approach
for constructing robust geometrically invariant features
was introduced. The proposed features provide improved
accuracy and are applicable to a wide range of pattern
recognition applications. These are versatile features that
can be adapted to an engineers choice of transformation
group, such as rigid, affine, or similarity transformation
group, to mention a few. The invariant features discussed
in this paper can be extended to 3D shape recognition ap-
plication in the future work.
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