
Understanding Programming Language Semantics
For The Sophisticated World

Trong Wu, Member, IAENG

Abstract — Computer is used virtually everywhere everyday in
the world. Before 1990s computer systems are generally used
for mathematics, engineering, and business computations. In
this period, mainly use FOTRAN, COBOL, and PL/1 for
computation on mainframe systems. In the last two decades
scientists found that the natural world is complicated that has
overwhelmed with data that required more sophisticated
computation facilities and better languages for computation
and that created new computing disciplines. This paper
addresses the understanding of programming language
semantics that will help user in selection of programming
language features for various applications needs and that can
help programmers in designing reliable, accurate, efficient, and
user-friendly software systems for the sophisticated word.

Index Terms: user-defined types, exception handling,
multitasking, communication between program units, and user-
defined precision

I. INTRODUCTION

It is a chaotic world, it is a systematic world; it is a confused
age, it is illuminate age; it is disordered society, it is organized
society. Everyday we are struggling in a complex, intricate, and
difficult environment for our life. Computer science can give one
abilities to solve a category of complicated, obscure, and
oppressive problems. We can take the advantage of computer
speed and large volume of storage spaces to add our ability for
solving complex problems in the world. This is a very challenge
task and interesting assignment to youngsters. It attracts many of
them to study computer science.

In October 1962, Purdue University established the first
department of computer science in the United States [8]. Since then
Computer Science education has become an integral discipline in
colleges and universities across the country. Initially, students in
physics, engineering, and mathematics were advised to take one
course in the FORTRAN language while students in the school of
business particularly in Management Information Systems ware
required to take a course in the COBOL language. Students who
majored in Computer Science were required to enrolled in both
FORTRAN, COBOL, and PL/1 courses. It was thought that this
would prepare them potentially to work in industrial firms or
business companies after completion of their degrees.

The author: Trong Wu is a Professor in the Department of Computer
science at Southern Illinois University Edwardsville, Edwardsville, Illinois
62026, U.S.A. His e-mail address: twu@siue.edu; phone: 618-692-4027.

Since then, computer software and its use have spread to
nearly every aspect of peoples’ lives from work to play. Today
almost every one uses computer and software everywhere. Most
of the equipment and devices, which use software are designed and
manufactured by engineers. Some of this hardware is equipped
with embedded computer systems, some are operated by a computer
system, and some are connected to a computer and give output
results to the computer. For these applications, users need not only
robust hardware, but also reliable software.

Today, the most serious problems with software products are
expense, ease of use, and reliability [12]. Computer scientists not
only need to study computer mechanisms and how to increase the
productivity and efficiencies of a computer system, but also need to
design computer systems, write programs, and execute them. The
former is the state of the practice of software engineering and the
latter is the state of the art. Unfortunately, there exists a gap
between the former and the latter. The task for computer scientists
is to eliminate or narrow this gap. To do this, one may apply the
principles of software engineering for software design that will
make systems more efficient, robust, reliable, and friendlier to use.
To implement this, one should thoroughly analyze system
requirements, carefully design the system and programs, and then
perform various tests including unit tests and system tests. Finally
computer scientists need to deliver systems and make sure that they
meet their requirements and fit in their environments [14].

However, computer scientists need a good language tool to
implement these software engineering principles. Human
languages such as English, Chinese, Spanish, Russian, etc. are all
ambiguous languages. None of them can be used to communicate
with a computer system. Therefore, mathematicians, computer
scientists, and linguists must work hard to develop semantically
unambiguous languages, starting by designing grammar rules and
then developing the sentential structures of the language. A
computer program uses such a language to communicate with a
computer system to take a set of input data to the computer system,
reorganize data objects in the computer system, construct new data
objects, and then generate a useful output for the program.

Nevertheless, most engineers have had only one computing
course in FORTRAN or in the C language or both while they were
in college and perhaps they believe that FORTRAN or the C
language is enough for their engineering application needs. In fact,
the FORTRAN language lacks user-defined types that limit its
application domain. Moreover, both the FORTRAN and C
languages do not have predefined accuracy features, friendly
concurrency facilities, and effective exception handling methods.
Today, neither FORTRAN language nor the C language remains
adequate to program in this complex and chaotic world for
designing and implementing more sophisticated and reliable
systems for biological, physical, and other natural related systems.
Therefore, we need understand programming Language semantics
thoroughly so that we can deal with natural world computation.

IAENG International Journal of Computer Science, 36:1, IJCS_36_1_07
__

(Advance online publication: 17 February 2009)

This paper describes some necessary elements in the
understanding programming language semantics that is important
for the computation of the natural world. It requires computation
more accurate, more reliable, more precise, more efficient, and
friendlier. Therefore, we should consider the extends of
application domain, the application of accuracy and efficient
facilities, the use of modularization and communication, the
utilization of parallelism or concurrency, and applying exception
handling and for reliability critical projects in this sophisticated
word.

II. EXTENDSION OF THE APPLICATIONS TO
A SOPHISTICATED WORD

A department store usually consists of tens’ of thousands
merchandises; it is very difficult to manage them properly,
efficiently, and cost-effectively. One of the most effective ways to
manage such department stores is to partitioning all the
merchandises into departments such as man’s ware, lady’s ware,
house ware, juniors, sports, electronics, hardware, shores, bath
and bed, pharmacy, etc. Any merchandise in a department store
must belong to one and only one department, and department-to-
department are discriminates to each other. No merchandises can
belong to two distinct departments at the same time. If a piece of
merchandise belongs to two departments that must have two stock
numbers, that the item will have two entries on the computer
printed list, and that will increase the operating overhead for
department store. Each department consists of a set of similar or
the same kind merchandises and a set of operation rules and
policies for manage these merchandises. For example, hardware
and electronic departments have different return or refund policies;
some electronic items are not allowed customers to test or to tryout.
Pharmacy department has its operational procedures or rules;
medications are classified into prescription and non-prescription.
For any prescription medication is strictly required a medical
doctor’s signed prescription [26].

In a special season of the year, like Christmas time, most
department stores want to make some additional business for this
splendor season; they create a new department called “Santa;” it is
for children to take pictures with the Santa. Likewise, in the
springtime they create a new department called “Plants” by selling
saplings, flowers, seedling, soils, seeds, fertilizer, rocks, and other
goods for the garden [26].

Today real world projects can be very large and complicated
for applications in newly developed domains. These projects can
include hardware projects, software projects, and firmware
projects. Many engineering projects need to take years or tens’ of
years to complete them such as the Yangtze River Three Gorges
Dam project that was launched in 1993 and the water level in the
reservoir will reach to 175 meters in 2009, when the project is
finally completed [7]; the Airbus A380 project that was started in
2000 for worldwide market campaign and made its maiden flight in
2005 [2]; and the Boeing 777 program was launched in October
1990 and the first 777-300 was delivered to Cathay Pacific Airways
in June 1998 [5]. These projects involved thousands designers,
hundreds subcontractors, and tens of thousands manufactures. To
implement and manage these projects we need to use many large-
scale computer systems to process a massive amount of data and
programs.

A computer system commonly manages a large amount of
data objects. In structure it is similar to a department store, with its

thousands of items of merchandise, or a large engineering project,
with hundreds of subcontractors. Therefore, we need to group
data objects into types. Types are discriminates to each other,
unless a type conversion function is applied that can converts from
one type to another. Data objects in a computer system are
analogous to merchandise in a department store or devices, parts,
and equipment in an engineering project. The association rules
used to manage merchandise, parts, devices, and equipments are
similar to respect operations of types in a computer system. To
create a new department in a department store is to expand its
business; much like creating a new type in a computer system
enlarges its application domain [26] to multidisciplinary areas and
to the control of more complex physical systems. These new types
are called user-defined types.
 Similarly, management of an engineering project requires
subdividing the project into subprojects through subcontracting. In
a computer system, we classify data objects into types. This is a
granulation [27]. Therefore, granulation is an essential feature in
the design of programming languages. It provides predefined basic
types and user-defined types so that the language can extend its
application domain to any desired area.

Programming language likes FORTRAN IV have only basic
types and do not allow users to define their own types. Therefore,
its application domain is so limited. However, the Ada and the
C++ programming languages do provide user-defined type
capability; and their application domain is not limited [26]. Today,
these two languages are considered general purpose programming
languages. Hence, user-defined types are vital for this complex and
chaotic world in computing.

From an engineering viewpoint, we usually subdivide a
complicated problem or system into several sub-problems or
subsystems respectively; this method reduces the difficulty of
solving the problem. In the next section, we will address
subprograms and communications between program units for
synchronization of the world.

III. MODULARIZATION AND COMMUNICATION
IN THE CHAOTIC WORLD

Modularity partitions a complicated problem into sub-

problems, and we implement them as sub-programs. A sub-
program is a unit of a program declared out of line and invoked via
calls. The purposes of a subprogram are many folds:

(1) Result of modular design of program,
(2) Factoring of common logic that occurs several places in a

program,
(3) Parameterized calls allow operating on different objects at

different times, and
(4) Simplifying and easing the complexity of the problem.

In general, there two distinct subprogram types exist in commonly
used programming languages.

(1) Functions. It returns values of a designated type. These are
used anywhere an expression is accepted.

(2) Procedures. It represents computational segments, and its
results may be passed back via parameters or side effects.
These are used wherever statements are permitted.

 Communication between the main program and subprograms
or from one subprogram to another occurs via parameter passing.
Each programming language defines its own parameter passing

IAENG International Journal of Computer Science, 36:1, IJCS_36_1_07
__

(Advance online publication: 17 February 2009)

mechanisms. There are five parameter-passing mechanisms in
current commonly used programming languages such as parameter
passing by value, by reference, by name, by value-result, and by
copy rules that including copy- in, copy-out, and copy-in out rules
[15, 16].
 Among these five parameter-passing mechanisms, parameter
passing by value, parameter passing by reference, and parameter
passing by name can be defined mathematically below: For a
parameter pass, in evaluating a variable name to get a value by
finding the location associated with the name and extracting the
value from the location. Let names, locations, and values be three
sets, we define two mappings:

 ρ : names → locations, and
 σ : locations → values
Differences in the parameter passing mechanism are defined by
when ρ and σ are applied.

(1) Parameter passing by value
ρ and σ both applied at point of call, argument completely

evaluated at point of call.
(2) Parameter passing by reference (location)
 Location is determined at the point of call and location is

bound as the value of parameter. ρ is applied at point of call
and σ is applied with every reference to the parameter.

(3) Parameter passing by name
At time of call, neither ρ nor the σ is applied. ρ and σ
are applied with every reference to the parameter.

These three parameter-passing mechanisms formed
hierarchical structures; the diagram is given in Fig.3.1. For
parameter passing by value, both ρ and σ are applied at calling
time; for parameter passing by reference, ρ is applied at calling
time and σ is applied at reference time; for parameter passing by
name both ρ and σ are applied with every reference to the
parameter.

 Name

 Reference

Value

Fig. 3.1 Hierarchical structures of parameter passing

The ALGOL, C, C++, and Pascal languages provide
parameter passing by value mechanism; and it is a convenient and
effective method for enforcing write protection. The ALGOL, C,
C++, and Pascal languages also implement parameter passing by
reference. This eliminates duplication of memory. But, there are
disadvantages in the parameter passing by reference. First, it will
likely be slower because one additional level memory addressing is
needed compared to parameter passing by value. Second, if only
one-way communication to the called subprogram is required,
unexpected and erroneous changes may occur in the actual
parameter. Finally, parameter passing by reference can create
aliases, which are harmful to readability and reliability. They also
make program verification difficult.

The ALGOL programming language by default provides
parameter passing by name. When implementing parameter
passing by name, the system will create a run-time subprogram to
evaluate the expression in the calling unit of the program and return
the result to the called unit of the program. Therefore, it requires
some additional overhead to implement such a run-time
subprogram. In the ALGOL programming language, if one wants
parameter passing by value, he or she must declare with the word
“value” for that variable in the actual parameter. ALGOL treats
parameter passing by reference, as a special case of parameter
passing by name; therefore, the programmer does not need to
specify anything. We can define a hierarchical structure for
parameter passing by value, reference, and name in the ALGOL
language.

In the programming language PL/1, for actual parameters with
a single variable, PL/1 uses parameter passing by value. However,
for a constant or an expression as an argument in the calling
statement, PL/1 refers to a dummy formal parameter in the called
subprogram and it implements a default value or parameter passing
by value.

 In most FORTRAN implementations before FORTRAN 77,
parameters were passed by reference. In later implementations
parameter passing by value-result has been used commonly.
 For the Ada language, parameter passing has three modes:
mode in, mode out, and mode in out. These are different from
parameter passing by value and by reference [3, 4, 17, 20]
Mode in
• This is the default mode (i.e., in may be omitted).
• The actual parameter is copied into a local variable. The

actual parameter must have a defined value at the point of call.
• The actual parameter may be an expression of compatible

type.
Mode out
• The result is copied into the actual parameter upon exit.
• The actual parameter may be a variable of compatible type.
• The actual parameter need not have a value upon entry.
Mode in out
• The value of the actual parameter is copied into a local

variable upon entry.
• The value of local parameter is copied into the actual

parameter upon exist.
• The actual parameter must be a variable with a defined value

upon entry.
These parameter-passing mechanisms are serving

communication facilities between main program and its
subprograms or between one subprogram and another. The
purpose of engineering computing is to solve problems in the
complicated world by means of granulation [27, 28], organization,
and causation. Granulation subdivides the problem into a set of
more manageable sub-problems. Granulation is an effective tool to
modularize the original problem and to write it into subprograms.
From a programmer viewpoint, communication between the main
program and subprograms and the communication from one
subprogram to another is the causation within the program. The
structural design and the logical flow reflect the organization of the
problem. Every parameter passing mechanism designed in current
programming languages has its own purpose and application
domain. For the granulation computing, we need to provide all of
these features for selection so that we can solve problems most
flexibly.

IAENG International Journal of Computer Science, 36:1, IJCS_36_1_07
__

(Advance online publication: 17 February 2009)

This paper emphasizes using features of programming
languages for engineering computation. It is worth noting that the
Ada programming language is designed for embedded systems,
safety-critical software, and large projects that require high
portability, reliability, and maintainability. For example, over 99
percent of the aviation software in the Boeing 777 airplane uses the
Ada language [1]. Not surprisingly, the Ada language was the first
object-oriented design programming language to be accepted as an
International Standard.
 Today, we design software systems to meet complex
application requirements. Almost all the activities in human
society, the biological world, physical systems, and engineering
projects are concurrent or parallel; and purely sequential activities
are special cases. Therefore, concurrency reflects the nature of
designing software projects. In the next section, we will address
the multitasking features in the Ada programming language [6, 9].

IV. PARALLEL OR CONCURRENCY IS THE NATURE OF
THE WORLD

Among all commonly used programming languages, the Ada

language has the most complete and best features for multitasking.
Multitasking permits a programmer to partition a big job into
many parallel tasks [8, 20]. Other programming languages like the
C and C++ programming languages can only apply some
predefined functions. Thus, they are lack of flexibility and limit
their applicability. For engineering applications, we should use
these features and include them in the design of programming
languages.

A task is a unit of computation that can be scheduled
independently and in parallel with other such units. An ordinary
Ada program can be thought of as a single task; in fact, it would be
called the main task. Other tasks must be declared in the main
task (as subtasks) or be defined in a package [3, 5, 20, 21].
Several independent tasks are often to be executed simultaneously
in an application. Ada tasks can be executed in true parallelism or
with apparent concurrency simulated by interleaved execution.
Ada tasks can be assigned relative priorities and the underlying
operating system can schedule them accordingly. A task is
terminated when its execution ends. A task can be declared in
packages, subprograms, blocks, or other tasks. All tasks or sub-
tasks must terminate before the declaring subprogram, block, or
task can be terminated.

A task may want to communicate with other tasks. Because
the execution speed of tasks cannot be guaranteed, a method for
synchronization is needed. To do this, the Ada language requires
the user to declare entry and accept statements in two respective
tasks engaged in communication. This mechanism provides for
task interaction and is called a rendezvous in the Ada language
[21].

The Ada language also gives an optional scheduling called a
priority that is associated with a given task. A priority expresses
relative urgency of the task execution. An expression of a priority
is an integer in a given defined range. A numerically smaller value
for priority indicates lower level of urgency. The priority of a
task, if defined, must be static. If two tasks with no priorities or
two tasks of equal priority exist, they will be scheduled in an
arbitrary order. If two tasks of different priorities are both eligible
for execution, they could sensibly be executed on the same
processor. A lower priority task cannot execute while a higher
priority task waits. The Ada language forbids time-sliced execution

scheduling for tasks with explicitly specified priorities. If two tasks
of prescribed priorities are engaged in a rendezvous, the
rendezvous is executed with the higher of the two priorities. If
only one task has a defined priority, the rendezvous is executed at
least at that priority.

A task may delay its own execution or put itself to sleep and
not use processing resources while waiting for an event to occur by
a delay statement. The delay statement is employed for this
purpose. Zero or negative values have no effect. The smallest
delay time is 20 milliseconds or 0.020 seconds. The maximum
delay duration is up to 86400 seconds or 24 hours. The duration
only specifies minimum delay; the task may be executed any time
thereafter, if the processor is available at that time.

The Ada language also provides a select statement. There are
three forms of select statements. Selective wait, conditional entry
call, and timed entry call. A selective wait may include (1) a
terminate alternative, (2) one or more delay alternatives, or (3) an
else part, but only one of these possibilities is legal. A task may
designate a family (an array) of entries by a single name. They can
be declared as:

 Entry request (0..10) (reqcode: integer);
Entry alarm (level); -- where type level

-- must be discrete
An accept statement may name an indexed entry

 Accept request (0) (reqcode: integer) do …
Accept request (1) (reqcode: integer) do …
Accept alarm (level);

An entry family allows an accepting task to select entry calls to the
same function deterministically.

 Today’s compiler technology adequately supports all Ada
features. In a real-time system, the response time for multitasking
features may seem not fast enough. Therefore, speed is an
important factor in choosing an Ada compiler for general and real-
time system applications. Among all commonly used programming
languages, the Ada language is the unique one that provides
multitasking features at the programming level, and it is very
important useful feature for modeling and simulating of real-time
and concurrent events in programming.

The goals of computing are reliability, efficiency, accuracy,
and ease of use. From the programming point of view, to provide
reliable computation is to prevent or eliminate overflow, underflow,
and other unexpected conditions so that a program can be executed
safely, completely, and efficiently. Efficient computation requires
an effective computational algorithm for the given problem using
proper programming language features for that computation. For
accurate computation, one should consider problem solving
capability, accuracy features, and parallel computation abilities in a
given programming language. For ease of use, the software
engineer should put himself in the situation of the user. A software
engineer should remember that users have a job to be done, and
they want the computer system to do the job with a minimum of
effort. In the next section, we will discuss issues of accuracy and
efficiency of the Ada language in numerical computation capability
[15].

V. ACCURACY AND EFFICIENCY ARE REQUIRED BY
THIS SOPHICIFICATE WORLD

IAENG International Journal of Computer Science, 36:1, IJCS_36_1_07
__

(Advance online publication: 17 February 2009)

The area of numerical computation is the backbone of
computer science and all engineering disciplines. Numerical
computation is critical to real world engineering applications. For
example, on November 10, 1999, the U.S. National Aeronautics
and Space Administration (NASA) reported that the Mars Climate
Orbiter Team found:

“The ‘root cause’ of the loss of the spacecraft was the
failed translation of English units into metric units in a
segment of ground-based, navigation-related mission
software as NASA previously announced [11].”

This example indicates that numerical computation and software
design are crucial tasks in an engineering project. The goal of
numerical computation is to reach to a sufficient level of accuracy
for a particular application. Designing software for efficient
computation is another challenge.
 For engineering applications, we need to deal with many of
numerical computations. Among most commonly used
programming languages, the Ada language has the best numerical
computation capability. From the precision aspect, the Ada
language allows a user to define his own accuracy requirement.
This section will address the Ada language numerical computation
capability [15]. To deal this, we should consider the following four
criteria: problem solving capability, accuracy of computation,
execution time for solving problems, and the capability of
parallelism
(1) Problem solving capability: The Ada language provides
user-defined types and separate compilation. The former supports
programmers solving a wide range of engineering problems and the
latter permits development of large software systems. The Ada
language provides data abstraction and exception handling that
support information hiding and encapsulation for writing a reliable
program. In the real world, many engineering projects consist of
concurrent or parallel activities in their physical entities. To
properly simulate these systems with a programming language, that
language must provide for logical concurrency regardless of how
the program is actually executed. Ada multitasking meets this
requirement [13, 22]. In fact, multiprocessor computer systems are
now available, thus simulating a truly parallel system becomes
possible.
(2) Precision and accuracy: The Ada language’s real number
types are subdivided into float-point types and fixed-point types.
Float-point type have values are numbers with the format,

ddddd ±×± 10... . Fixed-point types have values with the
formats ,.ddddd± 0.dddd± or ddd00.0± [4, 8, 20].

For the float-point number types, model numbers other than
zero, the numbers that can be represented exactly by a given
computer, are of the form:

 sign × mantissa × (radix × × exponent)

 In this form, sign is either +1 or -1; mantissa is expressed in a
number base given by radix and exponent is an integer. The Ada
language allows the user to specify the number of significant
decimal digits needed. A floating-point type declaration with or
without the optional range constraint is shown:

 type T is digit D [range L .. R];

In addition, most Ada compilers provide the types long_float and
long_long_float (used in package standard) and f_float, d_float,
g_float, and h_float (used in package system) [22]. The size and

the precision of each of the Ada floating-point types are given as
follows:

 Type Size(bits) Precision (digits)
 f_float 32 6
 d_float 64 9
 g_float 64 15
 h_float 128 33

The goal of computation is accuracy. Higher accuracy will
provide more reliability in the real-time environment. Sometimes,
a single precision or a double precision of floating point numbers in
FORTRAN 77 [13] is not enough for solving some critical
problems. In the Ada language one may use the floating point
number type: long_long_float (h_float) by declaring digit 33 to use
128 bits for floating point numbers provided by Vax Ada [18] to
provide a precision of 33 decimal digits accuracy, and the range of

exponent is about from 13410− to 13410+ or −448 to +448 of base
2 [4, 8, 19, 20] for the range. The author has employed this special
accuracy feature in the computation of hypergeometric distribution
function [23, 24].

For the fixed-point types, the model numbers are in this form:

 sign × mantissa × small

The sign is either +1 or −1; mantissa is a positive integer; small is a
certain positive real number. Model numbers are defined by a
fixed-point constraint, the number small is chosen as the largest
power of two that is not greater than the delta of a fixed accuracy
definition. The Ada language permits the user to determine a
possible range and an error bound which is called delta for
computational needs. Examples are the follows:

Overhead has a delta of 0.01;
Overhead has a range −10E5 .. 1.0E5;

These indicate small is 0.0078125 which is 72− and model
numbers are –12800000 × small to +12800000 × small. The
predetermined range provides a reliable programming environment.
The user assigned error bound delta guarantees an accurate
computation. These floating-point number and fixed-point
number types not only provide good features for real-time critical
computations, but also give extra reliability and accuracy for
general numerical computations.
(3) The Ada for parallel computation: The author has used
exception handlings and tasks [6, 21] for computation of a division
of a product of factorials and another product of factorials in the
computation of the hypergeometric distribution function [24, 25].
Exception handling is used to prevent an overflow or underflow of
multiplications and divisions, respectively. The tasks are used to
compute the numerator and denominator concurrently. In addition,
tasks and exception handling working together can minimize the
number of divisions and maximize the number of integer
multiplications in both of the numerator and denominator, reduce
round off errors, and obtain the maximum accuracy. In the actual
implementation, we used three tasks: task one and task two are
employed to perform the multiplications in the numerator and
denominator parallels and task three is used to perform a division.
When both products in the numerator and denominator have
reached a maximum before an overflow occurs, both task one and
task two stop temporarily and invoke task three to perform a
division of the products that have been obtained in the numerator
and denominator before an overflow occurs. After task three
completes its job, task one and task two resume their computation

IAENG International Journal of Computer Science, 36:1, IJCS_36_1_07
__

(Advance online publication: 17 February 2009)

and repeat this procedure until the final result is obtained. These
tasks work together and guarantee that the result of this
computation will be the most accurate and the time for the
computation is reasonable. The author has performed these
computations on a single processor machine, so the parallelism is a
logical parallelism. If one has a multiprocessor machine, he can
perform an actual parallelism, tasking and exception handling can
easily be employed in the computation of the hypergeometric
distribution function and some computation results and required
time for this problem are given in [21], along with those for the
computation of the multinomial distribution function, multivariate
hypergeometric distribution function, and other comparable
functions. We conclude here that it is not possible to carry out the
computation without using these Ada special features.
(4) Execution time: In the 1990s, compiler technology was
inadequate to support many Ada features. In a real-time system,
the response time for multitasking features was seemed not fast
enough. Therefore, speed was an important criterion for choosing
an Ada compiler for real-time applications. However, the second
generation of Ada compilers has doubled the speed of the first
generation compilers. Today, compilers are fast enough to support
all Ada features. Currently, Ada compilers are available for
supercomputers, mainframe computers, minicomputers, and
personal computers at reasonable prices.

In running an application, a program crash is a disaster. When
the programmer designs his program, he must consider all such
unexpected situations and find a means to prevent from happening.
If it is not possible to prevent a crash from occurring, the
programmer should provide some mechanisms to handle it, to
eliminate it, or to minimize its damage. In the next section, we will
address exception-handling features for these purposes.

VI. EXCEPTION HANDLING IS THE SAFE GUARD IN THE
DANGEROUS WORLD

An exception is an out-of-the-ordinary condition, usually
representing a fault state that can cause a program crash. The Ada
language provides for detection and handling of such conditions [4,
8, 23]. It is raised implicitly from an operation of integer overflow
during the evaluation of an expression, or assigning a negative
value to a type with positive data item. It is also raised explicitly as
a result of checking when a determinant is found to be zero during
matrix inversion or a stack is found to be empty during “pop”
operation. It is not always possible or practical to avoid all
exceptions. Allowing exceptions to occur without providing a
means to handle the condition could lead to an unreliable program
or a crash, however. Therefore, exception handling is very
important in designing a programming language [17, 23]. The Ada
language provides five predefined exceptions. They are:

Constraint_error

• It possibly the most frequently used exception in Ada
programs.

• Constraint_error is raised when a range constraint is violated
during assignment or a discriminant value is altered for a
constrained type.

Numeric_error
• When an arithmetic operation cannot deliver the correct result.
• Overflow or underflow condition occurs.

Storage_error

• It is raised if out of memory during the elaboration of a data
object.

• During a subprogram execution, creation of a new-access type
object,

Tasking_error
• It is raised during inter-tasking communication.

Program_error
• A program attempts to enter an unelaborated procedure, e.g. a

forward is not declared.

The Ada language encourages its user to define and raise his
exceptions in order to meet the specific purposes needed. The
language allows the exception handling mechanism to be invoked
for unusual conditions that are detected by the user’s program. An
exception handler is a segment of subprogram or block that is
entered when the exception is raised. It is declared at the end of a
block or subprogram body. If an exception is raised and there is no
handler for it in the unit, then the execution of the unit is
abandoned and the exception is propagated dynamically, as
follows:

• If the unit is a block, the exception is raised at the end of the
block in the containing unit.

• If the unit is a subprogram, the exception is raised at the point
of call rather than the statically surrounding units; hence the
term dynamic is applied to the propagation rule.

• If the unit is the main program, program execution is
terminated with an appropriate (and nasty) diagnostic message
from the run time support environment.

The Ada language strongly encourages its user to define and
use his own exceptions even if they manifest in the form of
predefined exceptions at the outset, rather than depend on
predefined ones; it is generally difficult to be sure exactly what
caused the original exception. The user should not depend on
proper values for out or in out parameters from units that neither
propagate an exception nor assume a predefined exception occurs
at some known point even if there is only one point where it could
occur. The following is an example that shows the exception,
handler, and propagation working together for the computation of
factorial function.

Function Power (n, k: natural) return natural is
Function Power (n, k: natural) return natural is

 begin -- inner
 if k < 1 then

return 1;
else

return n * Power(n, k-1);
 end if;
 end Power; -- inner

begin -- outer
 return Power(n, k);
 Exception
 when numeric_error =>
 return natural'last;

end Power; -- outer

The advantage of this segment of code is that when an overflow
condition occurs, the inner Power function will exit. Once the
outer function returns the natural’last, it is not possible to get back
to the exact point of the exception.

If the function had been written as on the next page, each
execution of the function would encounter an exception when an
overflow occurs. An undesired example is given as follows for

IAENG International Journal of Computer Science, 36:1, IJCS_36_1_07
__

(Advance online publication: 17 February 2009)

comparison. This function will continuously raise exceptions when
the first overflow is detected and at the end of all the recursive
calls.

Function Power (n, k: natural) return natural is
begin

if k < 1 then
return 1;

else
 return n * Power(n, k-1);
 end if;
 Exception
 when numeric_error =>
 return natural'last;

end Power;
Designing a programming language for application to all

human activities and their needs is not an easy task. However, the
language we want for engineering computation must be a reliable
one. The Ada language is a language that provides complete
exception-handling facilities. For a program to be considered
reliable, it must be operate sensibly even when presented with
improper input data as well as a software or hardware malfunction.
A wide range of issues pertains to the design and implementation of
software, which will operate successfully within specifications
during specified time periods. Of cause a greater precaution is to
avoid possible errors in the program itself. To do this, we must
take account of such possible errors in the program design. A truly
reliable program must monitor itself during execution and take
some appropriate actions when a computation is entering an
unexpected state. This is the purpose of an exception handler.

VII. CONCLUSION

In this paper we have discussed the goal of engineering
computing as accuracy, efficiency, reliability, and ease of use. To
accomplish the goals of engineering computation is not easy; it
involves human intelligence, knowledge of variety of programming
languages, and various programming facilities. In this paper, we
have examined many programming language features that are
critically important for engineering applications. Some of these
features such as subprograms, user-defined types, and basic
numerical computation facilities are provided by most commonly
used languages like FORTRAN 90, the C, the C++, Pascal, and
Ada languages. This paper has highlighted the use of the Ada
programming language's strong typed feature, predefined exception
handling, user defined exception handling, and user-defined types
for developing reliable programs. All of these good features in the
Ada programming languages are unique among all commonly used
programming languages. In particular, the use of the Ada
language's delta, digits, and model numbers for designing
engineering projects, which require accurate critical numerical
computation, are very important. For the Ada language, most of
their compilers allow users to have a 128-bit floating-point number
or 33 significant digits for numerical computation. Programmers
may specify required accuracies through digits and delta clauses
for floating-point numbers and fixed-point numbers, respectively.
In addition, Ada’s exception handling can prevent overflow or
underflow during the execution of programs and multitasking can
perform parallel computations. Therefore, from the software
reliability point of view, the Ada language is better than
FORTRAN, the C, the C++ and languages in numerical
computation for engineering applications.

Today, most engineers have only FORTRAN or the C/C++
programming languages for computing. Perhaps some of them

have used Mathematica, Mathlab, or Maple for computation. All
these mathematical packages have one or more of following
drawbacks. Each mathematical software package has its own input
and output formats; these formats might not compatible with an
engineering project. Each of these software packages has its
predefined accuracy, which might not meet the needs of
engineering projects. All of these mathematical packages are
designed for classroom teaching or laboratory research
computations; efficiency is not critically important for these
purposes. Moreover, these mathematical packages are not for real-
time or embedded systems applications; they lack exception-handling
capabilities. Therefore, engineers need to learn how to build their own
computational capabilities.

To do this, each engineering student needs to take at least two
courses in computing, one is to learn the basic computation
capabilities, a FORTRAN or the C/C++ course will serve for this
purpose, the other is to study how to build efficient, accurate,
reliable, and ease of use software systems to satisfy all engineering
domain needs. However, the instructor must have knowledge
about engineering experiences in real world, and backgrounds in
inter-disciplinary applications in order to qualify for this purpose
and lead students to design, implement, and handle engineering
projects for the challenges of the sophisticated word.

REFERENCES

1. Ada information clearance house, the web site:
www.adaic.org/atwork/boeing.html

2. The Aviation Book, A visual encycilopedia of the history of
aircraft, www. ChronicaleBooks.com.

3. Barnes, J. G. P. Programming in Ada, Third edition, Addison-
Wesley Publishing, Reading Massachusetts, 1989.

4. Barnes, J. Programming in Ada 95, Addison-Wesley
Publishing, Reading Massachusetts, 1995.

5. Boeing 777,
globalsecurity.org/military/systems/ aircraft/b777.html.

6. Booch, G. Software engineering with Ada, Second
edition, Benjamin/Cummings Publishing, Reading
Massachusetts, 1987.

7. China Daily, CHINAdaily.com.cn, October 28, 2006.
8. Demillo, R. and Rice, J. eds, Studies in Computer Science: In

Honor of Samuel D. Conte, Plenum Publishing, 1994.
9. Habermann, A. N. and Perry D. E. Ada for Experienced

Programmers, Addison-Wesley Publishing, Reading,
Massachusetts, 1983.

10. Joint Task Force for Computing Curricula 2004, Overview
Report. ACM and IEEE-CS. 2004.

11. Mas project http://mars.jpl.nasa.
12. Myers, G. J., Software Reliability, John Wiley & Sons, 1976.
13. Parnas, D. L. Is Ada Too Big?'' (letter) Communications of

ACM 29, pp. 1155-1155, 1984.
14. Pfleeger, S. L. Software Engineering, the Production of

Quality Software, 2nd edition, Macmillam, 1991.
15. Pratt, T. W., Zelkowitz, M.V. Programming Languages,

Design and implementation, third edition, Prentice-Hall,
Englewood Cliffs, New Jersey, 1996.

16. Sebesta, R. W. Concepts of Programming Languages, sixth
edition, Addison-Wesley Publishing, Reading Massachusetts,
2003.

17. Smedema, C. H., et al., The Programming languages Pascal,
Modula, Chill, and Ada, Prentice-Hall, Englewood Cliffs,
New Jersey,1983.

IAENG International Journal of Computer Science, 36:1, IJCS_36_1_07
__

(Advance online publication: 17 February 2009)

18. Struble, G. Assembler Language Programming, The IBM
System/370 Family, Addison-Wesley Publishing, Reading,
Massachusetts 1984.

19. Vax Ada Language Reference Manual, Digital Equipment
Corporation, Maynard, Mass., 1985.

20. Watt, D. A., et al. Ada Language and Methodology, Prentice-
Hall, Englewood Cliffs, New Jersey, 1987.

21. Welsh, J. and Lister, A. A Comparative Study of Task
Communication in Ada, Software Practice and Experience.
11, pp. 257-290, 1981.

22. Wichmann, B. A. Is Ada Too Big? A Designer Answers the
Critics, Communications of ACM, 29, pp. 1155-1156, 1984.

23. Wu, T. Built-in reliability in the Ada programming language,
Proc. of IEEE 1990 National Aerospace and Electronics
Conference, pp. 599-602, 1990.

24. Wu, T. An Accurate Computation of the Hypergeometric
Distribution Function, ACM Transactions on Mathematical
Software, V.19, No. 1, pp. 33-43, 1993.

25. Wu, T. Ada programming language for Numerical
Computation, Proc. of IEEE 1995 National Aerospace and
Electronics Conference, pp. 853-859, 1995

26. Wu, T. Some tips in computer science, a talk given at
University of Illinois at Springfield, Dec. 2, 2004.

27. Zadeh, L. A. Fuzzy sets and information granularity, In M. M.
Gupta, P. K. Ragade, R. R.Yager, eds, Advances in Fuzzy Set
Theory and Applications, North Holland, Amsterdam, pp. 3-
18, 1979.

28. Zadeh, L. A. Towards a theory of fuzzy information
granulation and its centrality in human reasoning and fuzzy
logic, Fuzzy Sets and Systems V. 19, pp.111-117, 1997.

IAENG International Journal of Computer Science, 36:1, IJCS_36_1_07
__

(Advance online publication: 17 February 2009)

