

Abstract—This paper presents an approach to speedup the

computation of co-occurrence matrices and Haralick texture

features, as used for analyzing microscopy images of cells, by

general-purpose graphics processing units (GPUs). The

sequence of computation steps for the features is analyzed based

on a graph and an optimized version of the software is derived.

Afterwards, a massive parallel software version for GPUs is

designed and implemented. On a single node of a cluster, a

speedup of a factor of 360 was obtained compared to the original

software version, and a speedup of a factor of 32 was achieved

compared to the optimized software version.

Index Terms— Co-occurrence matrix, Graphics Processing

Units, GPGPU, Haralick Texture Features extraction

I. INTRODUCTION

In 1973 Haralick introduced the co-occurrence matrix and

texture features for automated classification of rocks into six

categories [1]. Today, these features are widely used for

different kinds of images, for example, for microscope images

of biological cells. One drawback of the features is the

relatively high costs for computation. However, it is possible

to speed up the computation using general-purpose graphics

processing units (GPUs). Nowadays, GPUs (ordinary

computer graphics cards) are more and more used to

accelerate graphical as well as non-graphical software by

highly parallel execution.

In biological applications, features are extracted from

microscopy images of cells and are used for automated

classification as described in [2],[3]. Fig. 1 shows an example

of a microscopy image (1344 x 1024 pixels and 12 bit gray

level depth), which includes several hundred cells (typically

100-600). Usually a very large number of images have to be

analyzed so that computing the features takes several weeks

or months. Hence, there is a demand to speed up the

computation by orders of magnitude.

Manuscript received December 10, 2008. This work was supported by the

VIROQUANT project (http://viroquant.uni-hd.de).

Markus Gipp, Guillermo Marcus (group leader) and Reinhard Männer

(head of institute) are with the Institute of Computer Science V, Scientific

Computing Group, University of Heidelberg located at B6, 26, 68161

Mannheim, Germany (phone: +49 621 181-3585); (e-mails: markus.gipp,

guillermo.marcus, reinhard.maenner ..@ziti.uni-heidelberg.de).

Nathalie Harder, Apichat Suratanee, Karl Rohr, and Rainer König are

with IPMB, BIOQUANT and DKFZ Heidelberg, Dept. Bioinformatics and

Functional Genomics, University of Heidelberg, Im Neuenheimer Feld 267,

69120 Heidelberg, Germany. Nathalie Harder and Karl Rohr belong to the

Biomedical Computer Vision Group. (e-mails: n.harder, a.suratanee, k.rohr,

r.koenig ..@dkfz-heidelberg.de).

The overall goal of this biological application is to

construct a network of signalling pathways of the cells.

Therefore, genes are knocked down and images are acquired.

Afterwards, the images are segmented using the adaptive

thresholding algorithm in [2] to distinguish cells from the

background. For the segmented cells Haralick texture features

are computed. Besides these features also other features are

calculated and a well-chosen list of features is used for

classification. The classification result yields information

about the signalling network of the cells. Due to a large

number of interesting genes that are knocked down, the image

analysis process must be automated. After analyzing the

different computation steps it turned out that the Haralick

texture features consume most of the time.

Fig. 1 Microscopy image with several hundred cells.

Our approach consists in using GPUs to accelerate the

computation by a factor of 10 to 100 compared to optimized

CPU code that meets the demand and opens new possibilities

for the biologists. Earlier image processing algorithms have

often been accelerated using reconfigurable hardware (field

programmable gate arrays, FPGAs). However, from our

experience, the development time for GPU programs is much

shorter than for reconfigurable hardware. Moreover, a

common off-the-shelf, high-end graphics card is much less

expensive than a reconfigurable hardware board with more

expensive ICs on it. In addition, the computing power of

GPUs grows much faster than that of FPGAs or CPUs.

Below, we briefly describe recent approaches to solve the

problem, then the mathematical formulas that have to be

computed, a graph that represents the interdependence of the

Haralick’s Texture Features Computed
 by GPUs for Biological Applications

Markus Gipp, Guillermo Marcus, Nathalie Harder, Apichat Suratanee, Karl Rohr,

Rainer König, Reinhard Männer

IAENG International Journal of Computer Science, 36:1, IJCS_36_1_09
__

(Advance online publication: 17 February 2009)

computation steps and allows extracting an optimal sequence

of computation, and finally two software versions that use

CPU and GPU for computation. For the GPU software

version implementation details are given. Afterwards, we

present the achieved speedup using these two versions. We

finally discuss the results and draw conclusions.

II. METHODS

In this chapter, we first describe previous work on the

computation of the Haralick texture features and explain the

benefits of the GPU architecture versus CPUs (section A).

Section B introduces the co-occurrence-matrix and the texture

features as well as analyzes them for fast computations. An

optimized software version is derived in section C. The main

contribution is described in section D. We describe the

structure of the parallelization using GPUs as well as

implementation details.

A. State of the Art

Speedup of the computation of the co-occurrence matrix

and the Haralick texture features using reconfigurable

hardware has been described in [4]. There, only a subset of the

14 features was chosen, obtaining a speedup of 4.75 for the

co-occurrence matrix and 7.3 for the texture features when

compared to a CPU. More recent FPGAs (Xilinx Virtex4,

Virtex5) would provide more space to implement more

features at a higher clock speed.

Using GPUs for general-purpose computation is more and

more common. During the last years, the peak computing

power of GPUs has been rising dramatically. As an example,

the NVidia GTX 280 from the GT200 series reached over

933.1 GFLOPS with 240 thread processors and 1.296 GHz

clock speed. It can process 3 operations concurrently, two

operations of a multiply-add in the computing unit and one

multiply operation in the texture interpolation. Hence, the

maximum of the computing unit is only 240 * 1.296 GHz * 2

floating point operations = 622 GFLOPS, in some cases less

than half of it for costly operations.

 A state of the art CPU (Intel Xeon X5482, a two times

quad cores with 3.2GHz) reaches around 102 GFLOPS [5],

i.e. 12.8 GFLOPS for each core.

Fig. 2 illustrates the peak performance of GPUs and CPUs

and highlights a much sharper growing curve of the GPUs.

Reference [6] presents various applications in which GPUs

provide a speedup of 3…59 compared to CPUs. Especially

n-body simulations achieve a GPU performance over 200

GFLOPS. One should mention that the total peak

performance depends on the application itself and how the

GFLOPS are counted. Only applications using multiply-add

operations without divisions and other costly operations come

close to the theoretical maximum performance. The better an

application can be parallelized and partitioned in identical

small computational units, the better the architecture of a

GPU is utilized.

0

250

500

750

1000

2003 2004 2005 2006 2007 2008

3.0 GHz

Core2 Duo

3.2 GHz

Harpertown

NVIDIA GPU

Intel CPU

GeForce

7900 series

GeForce

8800 GTX

GeForce

9800 GTX

GeForce

GTX 280

GFLOPS

Fig. 2 Peak performance growing curve of different GPU

and CPU generations [7]

The NVidia graphics card we used (GeForce GTX 280) has

30 multiprocessors. Each of them has 16,384 registers and 16

kBytes of shared memory, and consists of 8 processing

elements. These processing elements are arranged in a single

instruction multiple data (SIMD) fashion. In total, the GPU

provides 240 parallel pipelines that can operate most

efficiently if a much higher number of light-weight program

threads are available. Fig. 3 shows the construction of a

multiprocessor and the usable memories of the GPU (below

called “device”). The device memory is the biggest memory

with around 1 GByte but also the slowest. Access to this

memory is not cached and has a latency of several hundred

cycles. To increase the access reading time the limited texture

cache can be used. The constant cache has a size of 64 kByte

and can be accessed as fast as registers on a cache hit. More

details about the figure and the architecture can be found in

[7].

GPU
Multiprocessor N

Multiprocessor 2

Multiprocessor 1

RegisterRegister

Stream

Processor 1

Shared Memory

Stream

Processor N

Constant Cache

Texture Cache

Device Memory

...

Grafics Card (Device)

Fig. 3 Block diagram of a graphics card with a GPU and

on board memory [7]

IAENG International Journal of Computer Science, 36:1, IJCS_36_1_09
__

(Advance online publication: 17 February 2009)

NVidia offers an Application Programmable Interface

(API), an extension to the programming language C called

Compute Unified Device Architecture (CUDA), to use the

highly parallel GPU architecture. One CUDA block contains

a program code in a single instruction multiple threads (SIMT)

fashion and is executed on one multiprocessor. All threads

within a block share the total amount of registers and shared

memory of one multiprocessor. Using a high number of

threads has the advantage of hiding latency of memory

accesses for a maximum occupation of the multiprocessor

computational units. Blocks are arranged in a block grid so

they can be dispatched between the multiprocessors.

Reference [7] discusses the architecture and CUDA.

Fig. 4 shows, how serial C programs can use the parallel

execution of the GPUs. The C code is divided into different

parts which are executed on the host and kernel functions

executed on the device. A simple program starts with the

execution of host code. Memory on the device is allocated and

set by a memory transfer from the host to the device. Then a

kernel function is called and the code is executed in parallel in

several blocks with several threads on different data. After the

device has finished the execution, the host can execute a

function to transfer back the results from the device memory

to the host memory.

Fig. 4 A simple C program using the GPU [7]

B. Equation Analysis

We have analyzed the calculation in two steps, the

co-occurrence matrices (co-matrices) and the Haralick texture

features (features). The co-matrices are computed from an

image and the features are calculated based on the co-matrices.

In the following subsection the co-matrix is introduced and

we describe a possibility to reduce the size of the matrix as

well as its benefits. In the subsequent subsection we list all

equations for computing the features, show how they can be

visually interpreted and propose a graph for computing the

features efficiently.

1) Co-Matrix

The generation of the co-occurrence matrices is based on

second order statistics as described in [1] and [8]. With this

approach histogram matrices are computed for different

orientations of pixel pairs. Using pixel pairs along a specific

angle (horizontal, diagonal, vertical, co-diagonal) and

distance (one to five pixels) together, a two-dimensional

symmetric histogram of the gray levels is generated. The gray

levels of the pixel pair address the indexes in the co-matrix

and increment it by one, an example can be found in [8]. For

each specific angle/distance combination a separate matrix

must be generated. This means that one side of the square

co-matrix is as long as the gray range level in the image.

The microscope generates multi cell images (Fig. 1) with a

gray level depth of 12 bits corresponding to 4096 different

gray levels. Hence, each co-matrix needs 4096 x 4096 x 4

bytes = 64 Mbytes of storage capacity. The graphics device is

equipped with 1024 Mbytes of memory. Therefore we can

generate only 16 matrices at once and compute the features on

the corresponding image, which does not fully use the GPU.

For a massive parallel approach we need to reduce the size of

the co-matrices and the size depends on the existing gray

range of each cell image extracted from the multi cell image.

Fig. 5 Binary images of a full (A) and a packed (B)

co-occurrence matrix

Actually, the co-matrices contains zeros almost everywhere.

The reason for this is that the cell image contains nothing

purely random and all the pixel pairs have preferred gray

tones so that during the co-matrix counting part the elements

are not determined randomly. For example, the cell border has

gray tone values in a small range which means that the border

on the left side resembles on the right side. The same is true

for the cell core, here the gray tone variation is small too.

Especially the background of the segmented image contains

only pixels with the same intensity value so that no gray tone

difference between neighboring pixels exists. These facts

result in that the gray tones from the pixel pairs resembling the

other pixel pairs and the counting in the matrix being more or

less spotted into small regions. Fig. 5A shows a binary image

IAENG International Journal of Computer Science, 36:1, IJCS_36_1_09
__

(Advance online publication: 17 February 2009)

of a full matrix with a size of 4096 x 4096 pixels. White pixels

indicate zeros and black pixel indicate values differ from

zero.

 Especially the plane background of the cell images has the

gray tone zero (black) with only one combination of gray

levels (zero/zero) apart from the background cell border

combinations.

In our algorithm we cut all rows (because of symmetry

columns too) with all zero elements to obtain a smaller packed

co-matrix. For an example of how much storage space can be

saved see Fig. 5B. The corresponding matrix of Fig. 5A can

be reduced to 277 x 277 elements in Fig. 5B. For this example,

a reduction from 64 MByte to 300 kByte could be achieved.

The total average packed co-matrix size has been determined

to be about 1.5 MByte of storage space. A big standard

derivation in the average size forces us to assume a bigger size

to determine the actually memory demand for the

computations.

For the feature computations, we store the gray value index

of the full co-matrix in a lookup table corresponding to the

index of the packed co-matrix. So the gray value can be

reconstructed from the index of the packed co-matrix, which

is necessary for some equations. This co-matrix reduction

strategy is a compromise between less storage capacity and

direct accessibility in memory.

This step, using packed co-matrices, works well in our

algorithm for real cell images. Additionally, we count the

memory required for the generated packed co-matrices, to

avoid overflow of the device memory.

2) Features

The Haralick Texture Features comprise 14 features as

summarized in [9]. In our implementation we optimize the

first 13 Haralick Texture Features (1) to (13) and do not

compute Feature number 14 (Maximum Correlation

Coefficient).

∑∑
= =

=
Ng

i

Ng

j

jiPf
1 1

2

),(1 (1)

kji
Ng

k

Ng

j

ji

Ng

i

Pkf
=−−

= ==
∑ ∑∑ 










=

||
1

0 1

),(

1

2

2 (2)

∑∑
= =

−=
Ng

i

Ng

j

jiPijf
1 1

2

),(23)(
1 µ

σ
 (3)

∑∑
= =

)−=
Ng

i

Ng

j

jiPif
1 1

),(

2

4 (µ (4)

∑∑
= = −+

=
Ng

i

Ng

j

ji

ji

P
f

1 1
2

),(

5
)(1

 (5)

∑
−

=
+=

22

0

6)(
Ng

k

yx kPkf (6)

∑
−

=
+−=

22

0

2

67)()(
Ng

k

yx kPfkf (7)

∑
−

=
++−=

22

0

8)](log[)(
Ng

k

yxyx kPkPf (8)

∑∑
= =

−=
Ng

i

Ng

j

jiji PPf
1 1

),(),(9]log[(9)

∑ ∑
−

=

−

=
−− 








−=

1

0

1

0

2

||||10))(()(
Ng

k

Ng

l

yxyx kPlkkPf (10)

∑
−

=
−−−=

1

0

||||11)](log[)(
Ng

k

yxyx kPkPf (11)

H

HXYf
f

19
12

−= (12)

]|2|2exp[1 913 fHXYf −−−=
 (13)

The definitions for the Haralick Texture Features are given

in (14) to (21).

jik

Ngk

Ng

i

Ng

j

jiyx Pkp +=
−=

= =
+ ∑∑= 22,..3,2

1 1

),()((14)

||

2..2,1,0

1 1

),(||)(jik

Ngk

Ng

i

Ng

j

jiyx Pkp −=
−=

= =
− ∑∑= (15)

∑
=

=
Ng

j

jii Pp
1

),()((16)

∑
=

=
Ng

g

gpg
1

)(µ (17)

2

1

)(

2)(µσ −=∑
=

gp
Ng

g

g (18)

∑∑
= =

−=
Ng

i

Ng

j

jiji ppPHXY
1 1

)()(),(]log[1 (19)

∑∑
= =

−=
Ng

i

Ng

j

jiji ppppHXY
1 1

)()()()(]log[2 (20)

∑
=

=
Ng

g

gg ppH
1

)()(]log[(21)

Most of the features (1) - (13) have a visual meaning. As an

example, we take one of our cells. Fig. 6a shows this cell with

added noise while Fig. 6b, shows it blurred. We then

subtracted the background and computed some features.

Fig. 6 Examples of noisy (a) and smoothed (b) cell images

IAENG International Journal of Computer Science, 36:1, IJCS_36_1_09
__

(Advance online publication: 17 February 2009)

Table 1 Feature values for a coarse and a smooth cell

image (see Fig. 6)

 Fig. 6a Fig. 6b

contrast (2) 3.625E5 1.035E4

inverse different moment (5) 0.5558 0.5715

entropy (9) 5.5187 5.4807

Table 1 shows some feature values for both images in Fig. 6.

The contrast (2) value is higher for high contrast in the image.

In our example, the coarse cell image has a value one order of

magnitude higher than the smooth cell image. On the other

hand, the inverse different moment (5) is lower for higher

contrast images, as seen in the table. The entropy value is a

measure for randomness and is smaller for a smooth image

than for a coarse image. This is discussed in more detail in [9],

[10].

The standard feature list is suited for the common case,

symmetric and asymmetric co-variance matrices. Our

matrices are always symmetric, so we could simplify some

equations base on common results for row wise and column

wise computations. We have changed (3) correlation, (12)

information measure I, (17) mean, (18) variance and (21)

entropy.

Features (1), angular second moment, (2) contrast, (4)

variance, (5) inverse difference moment, (6) sum difference

average, (7) sum variance, (8) sum entropy, (9) entropy, (10)

difference variance, (11) difference entropy and (13)

information measurement II are unchanged as the rest of the

definitions.

Most of the features (1)-(4), (6)-(8) and (10)-(13) depend

on other features as well as on intermediate results. To avoid

expensive computations, we calculate these results only once.

Therefore, the features have to be calculated in the right

sequence, e.g. (7) demands the result of (6). The complex

dependency of the computation sequence is shown in Fig. 7. It

contains several graphs with the preferred sequence of

intermediate result and feature computation.

The aim was to split the whole feature calculation in small

computing steps with intermediate results and to recognize

which other results or intermediate results can be reused. This

graph is the basis of following optimizations. It shows roots,

branches and leaves. E.g., all leaves twigged to the same root

can be computed in one loop in order to read the same source

only once. To optimize the computation, the graph can also be

grouped in several graphs for less arbitrary memory accesses.

The advantage is that the computation of, e.g. (6), (7) and (8)

only reads from the intermediate result Px+y. Thus, linear

reading from memory provides fast access to a small area in

memory, providing good cache hit rates for architectures with

caches.

Fig. 7 The computation dependency graph of the Haralick

Texture Features (circles) and intermediate results

(boxes). All features and intermediate results marked

with an asterisk (*) depend on the co-occurrence

matrices.

C. Software Optimization

In our first step, we analyzed the existing software version

that computes the Haralick Texture Features. The goal was to

optimize the code and run it on a single node. The single node

version can be used to run it on a cluster with different data

sources. Fig. 8 gives the structure of the program code. The

outer loop iterates over all cell images sequentially. The first

task within this loop is to generate all matrix combinations

with angle A and distance D. Two further loops iterate over all

matrices to compute the features for each of them.

In the innermost loop of the diagram we implemented the

analyzed equation graph shown above. Within the first two

blocks the intermediate results are computed for Pxy (P),

P|x-y| and Px+y as like as the features f1, f5 and f9. This

computational sequence delivers ideal cache hit rates because

all functions read from the same memory area where the

current co-matix is stored. The following block computes the

mean value, var, and H with memory accesses only to the P

memory space. Afterwards, read accesses are limited to P|x-y|

and then to Px+y. In the last three computing blocks, several

sources must be read to fulfill all feature computations.

Especially, read access to already computed feature f6 and f9

saves a costly double computation and in case of f9 also a

triple computation.

The feature computational code is encapsulated in single

C++ class with inline functions only to avoid overhead of its

call.

IAENG International Journal of Computer Science, 36:1, IJCS_36_1_09
__

(Advance online publication: 17 February 2009)

We used the best optimization level (-O3) of the compiler

for the best parallelization efforts and, in addition, kept the

code as simple as possible so that the loops can be vectorized

by the compiler to make use of the SSE instruction of a

modern CPU.

loop over all cells (C)

compute Pxy, Pxmy, Pxpy

Loop over angles (A)

Loop over distances (D)

generate matrices

compute f1, f5, f9

compute f2, f10, f11, macPxmy

compute f6, f7, f8

compute mean, var, H

compute f3, f4, f12, f13

compute hxy1, hxy2

store feature values

clean matrices

Fig. 8 Structure of the optimized software version

D. GPU Parallelization

This section is divided into two subsections. Subsection 1

describes, how the GPU software is structured and the

parallelization is achieved whereas subsection 2 presents

implementation details of the adaptation of the computation to

the GPU architecture.

1) Structure

Kernel functions are executable code on the GPU

architecture which can be programmed using CUDA. CUDA

provides blocks and threads in order to parallelize a steady

work in a kernel function. This means each kernel has a

specific task and every thread executes the same kernel.

Kernel functions are parameterized by the number of blocks

and threads. Every block contains a number of threads

executed in parallel in a certain data context. At the same time,

each thread operates over a different data inside this context.

The difficulties lay in how to structure the blocks and threads

to split the computing work efficiently and access the data

structures. An efficient way to structure the CUDA blocks is

to match them to the data structures in memory. To help in this

arrangement, CUDA blocks can be arranged in a 2D grid to be

defined by the programmer. Similarly, threads can be

arranged in 1-,2- or 3D structures inside a block, giving some

freedom to choose the one best mapping with the algorithm.

 CUDA blocks contain resources like registers and shared

memory which are common to all threads. Consuming many

resources limits the available number of threads within a

block. Therefore, the code of a kernel function needs to be

kept simple. As a consequence, we need to split the

computational work into several kernel functions with small

computing steps.

 First of all, we determine the work to be computed.

Together, 13 features and eight intermediate results (1)-(21)

have to be computed on all matrices of all cells. We have AD

co-matrices (A angles times D directions) and several

hundred cells in a multi cell image. Hence, the total

computational work is the number of cells times AD times 21

equations.

Fig. 9 gives an idea, how we structured the CUDA blocks in

our algorithm. In the outer loop, we choose C cells to read in

parallel. Inside the loop, each cell generates AD co-matrices

concurrently. The CUDA block dimension is set by C times

AD for the co-matrix generation kernel function. The

following part computes the intermediate results and features

in small computing steps, where all these 24 kernel functions

have all the same C * AD dimensions. After the feature

computation, they are stored and the generated co-matrices

are cleaned up. The next loop iteration reads another set of C

cells.

Fig. 9 Structure of the GPU version. Bold marked entries

are executed in parallel.

A complete list of the 24 kernel functions is shown in Table

2. Each of them has its individual optimized thread structure

according to the required resources, as determined by the

NVidia CUDA Occupancy Calculator Sheet [11]. The kernel

functions compute the sums of either a feature value or an

intermediate result. The threads are used in parallel to sum up

the values, often in combination with multiply and logarithm

operations.

Already mentioned in the software optimization above, the

feature dependency graph is used to derive the optimal order

to compute the features shown in parts 1-5 of Table 2. This

sequence also turns out to be efficient for the GPU

architecture. Besides good cache hit rates in the CPU, it offers

much linear read access from the memory, which is vital for

an efficient GPU implementation. We have grouped the

kernel functions by the memory regions they access, as shown

in the different parts of the table.

IAENG International Journal of Computer Science, 36:1, IJCS_36_1_09
__

(Advance online publication: 17 February 2009)

Table 2 List of all kernel functions in their order of

execution. Left column contains the function names; right

column contains the computational task.

Initialisation part

Function 0A generate index / gray level lookup tables

Function 0B clear co-occurrence matrices

Function 0C compute co-occurrence matrices

Function 0D normalize co-occurrence matrices

Part 1, read from co-occurrence matrices

Function 1A compute f1

Function 1B compute f5

Function 1C compute f9

Function 1D compute P

Function 1E compute P|x-y|

Function 1F compute Px+y

Part 2, read from P

Function 2A compute mean

Function 2B compute var

Function 2C compute H

Part 3, read from P|x-y|

Function 3A compute f2

Function 3B compute f11

Function 3C compute MacP|x-y|

Function 3D compute f10

Part 4, read from Px+y

Function 4A compute f6

Function 4B compute f8

Function 4C compute f7

Part 5, read from co-occurrence matrix

Function 5A compute f3 with Pij

Function 5B compute f4

Function 5C compute HXY1, f12, read from P

Function 5D compute HXY2, f13, read from P only

When accessing a memory region, the dispatcher of the

GPU chooses a number of CUDA Blocks and switches

between them so that the computing units are best occupied

and memory transfer latencies are mostly hidden. This allows

for a good utilization of the 240 pipelines and the memory

access units. For a more detailed discussion of the execution

model, see [7].

2) Implementation

This section described implementation details and shows

problems and solutions concerning efficient programming for

the GPU architecture. For a simple expression we explain the

implementation for the singular case, not for the C * AD

parallel case.

Before any computation can be done, the multi cell image

must be transferred into the device memory. With additional

information from a file the squared cell can be located and

copied into a separate memory area. For the co-matrix

generation it is important that the cell is framed with the

distance D (5 pixels) to its border on each side. Otherwise,

information would get lost during the co-matrix generation

process. It would not be possible to establish pixel pairs

between pixels from the cell border to the background pixels,

because the image ends beside. Therefore, the cell is copied

into the center of an expanded (5 pixels on each side)

background image. To grant fast read operations from the cell

memory location, a cache is applied via two dimensional

texture accesses. (Keep in mind that we do this for many cells

in parallel, as mentioned above).

The dimension of the packed co-matrix depends on the

actual gray tone range of the cell and not on the bit depth of

the pixels. Each present gray tone level is counted for each

cell and successively added to a lookup a table. The

corresponding lookup value is the index starting by zero and

incremented by one for each further entry. With the help of

the gray tone / index lookup table the memory element of the

corresponding gray tone can be found. We need it for the

co-matrix generation process. An additional index / gray tone

lookup table is generated to determine a gray tone for a given

memory element which is important for the feature

computation. The actually counted gray tones give the

dimension of the packed co-matrices. In the same way for the

cells, a cached texture access is applied to both lookup tables

for faster access.

One problem is the memory demand of the full co-matrices.

The architecture of the GPU offers 1 GByte device memory in

which only 16 full matrices would fit. One way to overcome

this limitation would be to generate some full matrices and

pack them and repeat this step until all co-matrixes we need

are generated. This way is slow because we have extra work to

do to pack co-matrices. Our solution is to generate the packed

co-matrix directly with the help of the previous introduced

index / gray tone lookup table. A two dimensional loop over

the cell image using the texture access gives us a reference

pixel. The corresponding pixel is determined by the

generation rule, e.g. horizontal angle and one pixel distance,

to the right and to the left. So for each reference pixel two

pixel pairs can be found, except the pixel is outside the image.

The memory index of one pixel pair is looked up via the

texture access to the gray tone / index lookup table to

determine the matrix element represented by the gray tone.

The determined element is increment by one.

One constraint of the GPU architecture for fast memory

accesses is the memory alignment. Each matrix row has a base

address of a multiple of 256 bytes. That means a gap to the

next row (aligned base address) may exist after each row. We

bear the gap in mind while the co-matrices are generated. The

same alignment must be met for the texture accesses; here the

CUDA API functions take care about the memory alignment.

The computation of the features is based on normalized

co-occurrence matrices. During the generation process, a

variable counts all increments to a co-matrix sum. Since

division is an expensive operation which should be avoided,

we compute the reciprocal of the sum to multiply each

element of the matrix.

The list of feature equations (1)-(13) shows that the

features are computed by sums. In parallel architectures, sums

can be computed by the reduction operation. We implemented

two parallel ways to produce the sums, a 1d sum-up variant

and a 2d sum-up variant.

IAENG International Journal of Computer Science, 36:1, IJCS_36_1_09
__

(Advance online publication: 17 February 2009)

In the 1d sum-up variant, we define a block vector of shared

memory with the size of available thread count. Each thread

takes an element of the data source and sums it up in its block

vector element. Mostly, the sum operation is accompanied by

a multiplication, logarithm or other operations. The

summation continues with each GPU cycle and ends after the

data source is exhausted. With a standard reduction algorithm,

the block vector is reduced to one total sum value.

In the 2d sum-up variant, we define a small block matrix

with the size of the CUDA thread grid. It operates equally to

the 1d sum up variant. The difference between them is a

different arrangement of the data source. It turns out that the

feature computation of f5, f6 and f3 is faster due to better

memory transfer rates.

A further look to the feature equations shows that some

features use the index of the sum for their computation. This

means the gray tone value contributes to the result as a factor.

Index sensitive equations are (3), (4) and (5), representing f3,

f4 and f5 as like as the intermediate results (14), (15), (17) and

(18) representing Px+y, P|x-y|, mean and var. One small

drawback of using packed matrices instead of full matrices is

that the gray tone value must be determined for later equations.

The above generated index / gray tone lookup table translates

the index of the accessed memory element to the gray tone

value. This expansion raises the complexity by an additional

memory access to the lookup table. Therefore, it is cached by

a texture to limit the slow behavior of the expansion.

Due to the sensitivity on the gray tone index for the packed

matrix, the computation of Px+y and P|x-y| is different.

Additional difficulties arise from the complex memory

accesses due to big result vectors.

In case of Px+y(k) whereas k = 2, 3, 4, ... 2Ng-2 and

Ng = 4096, the gray tone range is the result vector Px+y and it

has 8188 elements. It does not fit in the fast shared memory.

Only 4096 elements (16kbyte divided by 4byte per element)

fit into the shared memory, and if in use, the occupancy would

be very low because several CUDA blocks need to share it.

We implemented the kernel function 1F in several versions.

First, we computed the Px+y vector partly step by step to keep

it in shared memory and optimized it. We also tried to use the

bigger local memory but our final version writes the result of

the add operation directly in global memory. This version

reads the matrix line by line, and each line is partitioned in a

block with the size of the available thread count. Hence, the

data can read in parallel block-wise into the shared memory.

Respectively to the row and the column index (i and j) of the

read data, we get the corresponding gray tones from the look

up table (I and J). Tone I added to J (see equation 14, k=i+j)

gives the aimed location in the Px+y vector where to add up

the previous read data.

The computation of P|x-y|(k) also has the problem that the

result vector is too big for a high performance use of the

shared memory. In this case, the vector has the size of 4094

elements (k = 0, 1, 2, ... Ng-2), which is the complete shared

memory and would be used by only one block. Besides the

need to look up the gray tone values, the indexing of the result

vector P|x-y|(k) has a slightly higher complexity. Before the

data can add up the indices, we have to subtract and then

compute the absolute value (k = |I – J|). The same algorithm

strategy for Px+y gives the best execution time for the P|x-y|

vector computation.

Additional helper functions are implemented for the device

memory management and the execution time measurement.

The CUDA API in version 2.0 offers an event management to

measure the total execution time of a kernel, by recording an

event before and after the kernel execution. The difference

gives an accurate measurement of the execution time. In

profiling mode, our application records the average execution

times for all kernels. To avoid memory overflow, we count all

allocated device memory in a variable and subtract it when the

memory is released, so we know the device memory usage at

each point during the execution, and actions can be taken if

the required memory exceeds the total available device

memory.

III. RESULTS

We compare four versions of the Haralick Texture Feature

computation: the original version, an optimized software

version and two CUDA versions using two different GPUs.

Results are shown in Table 3.

Table 3 Execution times and speedup factor comparison

of all introduced versions and different GPUs

Execution

time [s]

Speed

up

factor

to 1.

Speed

up

factor

to 2.

Speed

up

factor

to 3.

1. Original

Software

Version

2378 - - -

2. Optimized

Software

Version

214 11x - -

3. GPU

Version I

(8800 GTX)

11.1 214x 19x -

4. GPU

Version II

(GTX 280)

6.6 360x 32x 1.7x

The execution times have been compared on a Intel Core 2

Quad machine (Q6600) with 2.4 GHz and 8 MBytes L2 cache,

4 GBytes DDR2 Ram with 1066MHz clock speed, a NVidia

GeForce 8800GTX with a 1350MHz shader clock, 768

MByte GDDR3 at 900MHz and 384Bit wide in a PCIe v1.0

16x slot; and a NVidia GeForce GTX280 with a 1300 MHz

shader clock, 1024 MByte GDDR3 at 1107MHz and 512Bit

wide in a PCIe v2.0 slot. The operating system was Linux

Ubuntu x64 with kernel version 2.6.20 and gnu C-compiler

version 4.1.2. For software version 1 and 2 we used one CPU

core only.

In the GPU version, we chose C=8 and AD=20, i.e. eight

cells are calculated in parallel with 4 angles and 5 directions

per cell. These parameters gave the best results. The total grid

size is 160 blocks in CUDA for each feature kernel.

In Table 4 we show the profiling of the CUDA version. In

the first column, the kernel functions are listed. The second

column contains the execution times for each entry and the

IAENG International Journal of Computer Science, 36:1, IJCS_36_1_09
__

(Advance online publication: 17 February 2009)

last column contains the percentage of the total execution

time.

Table 4 Execution times and speedup factor comparison

of all introduced versions and different GPUs

Initialisation part

Function 0A 276.3 ms 4.2 %

Function 0B 242.4 ms 3.7 %

Function 0C 466.4 ms 7.1 %

Function 0D 224.4 ms 3.4 %

Part 1

Function 1A 221.8 ms 3.4 %

Function 1B 416.8 ms 6.3 %

Function 1C 202.5 ms 3.1 %

Function 1D 929.2 ms 14.1 %

Function 1E 310.1 ms 4.7 %

Function 1F 602.6 ms 9.1 %

Part 2

Function 2A 4.5 ms < 0.1%

Function 2B 6.2 ms 0.1 %

Function 2C 4.2 ms < 0.1%

Part 3

Function 3A 5.0 ms < 0.1 %

Function 3B 4.9 ms < 0.1 %

Function 3C 6.7 ms 0.1 %

Function 3D 5.2 ms < 0.1 %

Part 4

Function 4A 7.2 ms 0.1 %

Function 4B 10.9 ms 0.2 %

Function 4C 13.1 ms 0.2 %

Part 5

Function 5A 418.6 ms 6.3 %

Function 5B 269.3 ms 4.1 %

Function 5C 309.9 ms 4.7 %

Function 5D 225.1 ms 3.4 %

GPU Execution Time 5183.3 ms 78.5 %

CPU Execution Time 1416.7 ms 21.5 %

Total Execution Time 6600.0 ms 100.0 %

For an analysis of the execution times, we show in Table 5

the theoretical maximum performance of the used CPU and

the used graphics cards. We choose gigaflops per second

(GFLOPS) as a measure for the computational units and give

the maximum memory transfer rate for the used architectures.

For the CPU Q6600 we determine the total maximum

performance of 38.4 GFLOPS divided by 4 cores = 9.6

GFLOPS per core. The memory transfer rates of the CPU are

determined by the peak performance of the memory. We use

DDR2 memory with 1066MHz effective clock speed

operating in a dual channel mode (1066MHz * 64 bit memory

width * 2 dual channel / 8 bit per byte = 17 Gbyte/s).

Table 5 Peak performance of the used architectures in

GFLOPS and memory transfer rates with the execution

times. The numbers in parenthesis are speed up factors to

the other architectures.

 1. CPU

Intel Core 2

2. GPU

8800 GTX

3. GPU

GTX 280

Maximum

Performance

[GFLOPS]

9.6
345.6

(36x to 1.)

622

(65x to 1.)

(1.80x to 2.)

Maximum

Transfer Rate

[Gbytes/s]

17
86,4

(5x to 1.)

141

(8.3x to 1.)

(1.63x to 2.)

Execution

Time [s]
214

11.1

(19x to 1.)

6.6

(32x to 1.)

(1.68x to 2.)

We have measured the average peak performance in our

application, and we found it to be 45.1 GFLOPS, as measured

in kernel function 3D (see Table 4). The maximum measured

average memory transfer rate is 48.8 Gbytes/s served to

compute function 4A.

IV. DISCUSSION

The speedup of a factor of 360 for the GPU version

compared to the original un-optimized software version meets

the demand of the biologists. Compared to the optimized

software version the speedup is still around a factor of 32.

The percentage of each kernel shows the part of the total

execution time. To decrease the total execution time it makes

sense to optimize the kernel function with the biggest

percentage. A look at this column shows that all kernel

functions have no extraordinary outlier. Therefore,

optimization efforts of single kernel functions would not have

a direct performance boost in the total execution time.

However, some kernel functions are more time consuming

than others. For example, the functions from part 1 and 5 are

two orders of magnitude slower than other parts. These kernel

functions have more values to read from the memory to

compute their results, and can be explained as follows.

The memory access pattern is more random than linear

when several sources are read. Additionally, one row of a

co-matrix has roughly between 200 and 1500 entries, stored

linearly for one memory base address. The next row has a new

base address which must initiate a new memory transfer with a

waiting time of several hundred cycles. The memory

controller of the graphics card can handle only a limited

number of pending memory transfers so that the memory

bandwidth could be limited. Increasing the CUDA grid size

would not increase the memory bandwidth. These features are

therefore limited by the memory bandwidth.

Other kernel functions with expensive floating point

operations (DIV, LOG, SQRT and EXP like in features 8, 9,

11, 12 and 13) fully utilize the computational units and limit

the overall performance. In this case, the computation of the

features is limited by the computation time.

IAENG International Journal of Computer Science, 36:1, IJCS_36_1_09
__

(Advance online publication: 17 February 2009)

Table 5 gives the speedup factors obtained for the

computational units and the maximum memory transfer rate,

for the two graphics cards we used. The new device (GTX280)

is 1.80 times faster and its memory transfers are 1.63 times

faster. Our algorithm is 1.68 times faster on the newer device,

which indicates that the algorithm performance on average is

limited by the memory transfer rate rather than the

computational units. Until now we have discovered a linear

performance increasing with the memory transfer rate of more

recent cards, but more studies are necessary.

Increasing the parallel computation by increasing the

CUDA block grid has no further performance boost. AD = 20

is already the needed maximum with the combination of four

angles and five distances. Only C, the number of parallel

computations of the single cell images, is usable but the

limited device memory of the GPU board enforces to use C <

16 to keep the algorithm stable. Tests shows that C = 8,

corresponding to a CUDA grid size of 160 blocks, delivers

best performance on average. Some features decrease the

computational time if we compute more than eight cells (>

160 CUDA blocks) in parallel. This means that these kernel

functions can use more CUDA blocks to hide memory

transfers by the computing units. Other kernel functions

increase the computation time using more than eight cells in

parallel. Here the overhead and simply too many memory

accesses slow down the computation of the kernel functions.

Best performance would be achieved if each kernel

function had its own individually optimized CUDA grid. For

this case, however, the whole parallel software architecture

would change as well as the memory arrangement because the

parallel operating CUDA blocks match to the memory

arrangement. Until today, we have no better solution to avoid

the rigid C * AD block parallelization mapping to the memory

structure in order to adapt the CUDA grid size independently

for each kernel function.

Given the complexity of the Haralick Texture Features and

the co-occurrence matrices computations, and the application

requirements, our implementation yields excellent

performance.

V. CONCLUSION

In this paper we have shown that the costly computation of

the co-occurrence matrix and the Haralick texture features can

be speed up by a factor of 360 in comparison to the original

un-optimized software version. This allows biologists to

perform much more tests to acquire novel knowledge in cell

biology in weeks or days instead of several months.

To compute the features, we developed a graph which can

be used to optimize the computation. Furthermore, the graph

shows which paths need not be calculated if some features are

uninteresting, and which branch can be completely skipped.

Graphics Processing Units (GPUs) are inexpensive

alternatives to reconfigurable hardware with an even higher

computational capability, a much shorter implementation

development time and much faster (in orders of magnitudes)

than Central Processing Units (CPUs). Furthermore, GPUs

can deal with complex memory access patterns and complex

expensive computation with still a reasonable speedup

compared to CPUs.

REFERENCES

[1] R. M. Haralick and K. Shanmugam, "Computer Classification of

Reservoir Sandstones," IEEE Transactions on Geoscience Electronics,

vol. 11, pp. 171-177, 1973

[2] N. Harder, B. Neumann, M. Held, U. Liebel, H. Erfle, J. Ellenberg, R.

Eils, and K. Rohr, ''Automated recognition of mitotic patterns in

fluorescence microscopy images of human cells'', Proc. IEEE Internat.

Symposium on Biomedical Imaging: From Nano to Macro (ISBI'06),

Arlington/VA, USA, April 6-9, 2006, 1016-1019

[3] C. Conrad, H. Erfle, P. Warnat, N. Daigle, T. Lörch, J. Ellenberg, R.

Pepperkok, and R. Eils, "Automatic identification of subcellular

phenotypes on human cell arrays," Genome Research, vol. 14, pp.

130-1136, 2004.

[4] M. A. Tahir, A. Bouridane, F. Kurugollu, and A. Amira, "Accelerating

the computation of GLCM and Haralick texture features on

reconfigurable hardware," in Image Processing, 2004. ICIP '04. 2004

International Conference on, 2004, pp. 2857-2860 Vol. 5.

[5] Intel® microprocessor export compliance metrics, (5. Dec. 2008)

http://www.intel.com/support/processors/xeon/sb/CS-020863.htm

[6] H. Nguyen, GPU Gems 3. Upper Saddle River, NJ, USA:

Addison-Wesley, 2007, pp. 771-891.

[7] NVIDIA CUDA Programming Guid Version 2.0, (5. Dec. 2008)

http://www.nvidia.com/object/cuda_develop.html

[8] R. M. Haralick, "Statistical and structural approaches to texture,"

Proceedings of the IEEE, vol. 67, pp. 786-804, 1979.

[9] S. Theodoridis and K. Koutroumbas, Pattern Recognition Third

Edition. San Diego, CA, USA: Academic Press An imprint of Elsevier,

2006.

[10] R. M. Haralick, K. Shanmugam, and I. H. Dinstein, "Textural Features

for Image Classification," Systems, Man and Cybernetics, IEEE

Transactions on, vol. 3, pp. 610-621, 1973.

[11] CUDA Occupancy Calculator v1.2, Excel sheet, (5. Dec. 2008)

http://developer.download.nvidia.com/compute/cuda/CUDA_Occupa

ncy_calculator.xls

IAENG International Journal of Computer Science, 36:1, IJCS_36_1_09
__

(Advance online publication: 17 February 2009)

