
 

 

 

  
Abstract—This paper presents an approach to speedup the 

computation of co-occurrence matrices and Haralick texture 

features, as used for analyzing microscopy images of cells, by 

general-purpose graphics processing units (GPUs). The 

sequence of computation steps for the features is analyzed based 

on a graph and an optimized version of the software is derived. 

Afterwards, a massive parallel software version for GPUs is 

designed and implemented. On a single node of a cluster, a 

speedup of a factor of 360 was obtained compared to the original 

software version, and a speedup of a factor of 32 was achieved 

compared to the optimized software version.  

 

Index Terms— Co-occurrence matrix, Graphics Processing 

Units, GPGPU, Haralick Texture Features extraction 

 

I. INTRODUCTION 

In 1973 Haralick introduced the co-occurrence matrix and 

texture features for automated classification of rocks into six 

categories [1]. Today, these features are widely used for 

different kinds of images, for example, for microscope images 

of biological cells. One drawback of the features is the 

relatively high costs for computation. However, it is possible 

to speed up the computation using general-purpose graphics 

processing units (GPUs). Nowadays, GPUs (ordinary 

computer graphics cards) are more and more used to 

accelerate graphical as well as non-graphical software by 

highly parallel execution. 

In biological applications, features are extracted from 

microscopy images of cells and are used for automated 

classification as described in [2],[3]. Fig. 1 shows an example 

of a microscopy image (1344 x 1024 pixels and 12 bit gray 

level depth), which includes several hundred cells (typically 

100-600). Usually a very large number of images have to be 

analyzed so that computing the features takes several weeks 

or months. Hence, there is a demand to speed up the 

computation by orders of magnitude. 
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The overall goal of this biological application is to 

construct a network of signalling pathways of the cells. 

Therefore, genes are knocked down and images are acquired. 

Afterwards, the images are segmented using the adaptive 

thresholding algorithm in [2] to distinguish cells from the 

background. For the segmented cells Haralick texture features 

are computed. Besides these features also other features are 

calculated and a well-chosen list of features is used for 

classification. The classification result yields information 

about the signalling network of the cells. Due to a large 

number of interesting genes that are knocked down, the image 

analysis process must be automated. After analyzing the 

different computation steps it turned out that the Haralick 

texture features consume most of the time. 

  

 

Fig. 1 Microscopy image with several hundred cells. 

Our approach consists in using GPUs to accelerate the 

computation by a factor of 10 to 100 compared to optimized 

CPU code that meets the demand and opens new possibilities 

for the biologists. Earlier image processing algorithms have 

often been accelerated using reconfigurable hardware (field 

programmable gate arrays, FPGAs). However, from our 

experience, the development time for GPU programs is much 

shorter than for reconfigurable hardware. Moreover, a 

common off-the-shelf, high-end graphics card is much less 

expensive than a reconfigurable hardware board with more 

expensive ICs on it. In addition, the computing power of 

GPUs grows much faster than that of FPGAs or CPUs.  

 

Below, we briefly describe recent approaches to solve the 

problem, then the mathematical formulas that have to be 

computed, a graph that represents the interdependence of the 
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computation steps and allows extracting an optimal sequence 

of computation, and finally two software versions that use 

CPU and GPU for computation. For the GPU software 

version implementation details are given. Afterwards, we 

present the achieved speedup using these two versions. We 

finally discuss the results and draw conclusions. 

 

II. METHODS 

 

In this chapter, we first describe previous work on the 

computation of the Haralick texture features and explain the 

benefits of the GPU architecture versus CPUs (section A). 

Section B introduces the co-occurrence-matrix and the texture 

features as well as analyzes them for fast computations. An 

optimized software version is derived in section C. The main 

contribution is described in section D. We describe the 

structure of the parallelization using GPUs as well as 

implementation details. 

 

A. State of the Art 

Speedup of the computation of the co-occurrence matrix 

and the Haralick texture features using reconfigurable 

hardware has been described in [4]. There, only a subset of the 

14 features was chosen, obtaining a speedup of 4.75 for the 

co-occurrence matrix and 7.3 for the texture features when 

compared to a CPU. More recent FPGAs (Xilinx Virtex4, 

Virtex5) would provide more space to implement more 

features at a higher clock speed. 

Using GPUs for general-purpose computation is more and 

more common. During the last years, the peak computing 

power of GPUs has been rising dramatically. As an example, 

the NVidia GTX 280 from the GT200 series reached over 

933.1 GFLOPS with 240 thread processors and 1.296 GHz 

clock speed. It can process 3 operations concurrently, two 

operations of a multiply-add in the computing unit and one 

multiply operation in the texture interpolation. Hence, the 

maximum of the computing unit is only 240 * 1.296 GHz * 2 

floating point operations = 622 GFLOPS, in some cases less 

than half of it for costly operations. 

 A state of the art CPU (Intel Xeon X5482, a two times 

quad cores with 3.2GHz) reaches around 102 GFLOPS [5], 

i.e. 12.8 GFLOPS for each core. 

Fig. 2 illustrates the peak performance of GPUs and CPUs 

and highlights a much sharper growing curve of the GPUs. 

Reference [6] presents various applications in which GPUs 

provide a speedup of 3…59 compared to CPUs. Especially 

n-body simulations achieve a GPU performance over 200 

GFLOPS. One should mention that the total peak 

performance depends on the application itself and how the 

GFLOPS are counted. Only applications using multiply-add 

operations without divisions and other costly operations come 

close to the theoretical maximum performance. The better an 

application can be parallelized and partitioned in identical 

small computational units, the better the architecture of a 

GPU is utilized. 
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Fig. 2 Peak performance growing curve of different GPU 

and CPU generations [7]  

 

The NVidia graphics card we used (GeForce GTX 280) has 

30 multiprocessors. Each of them has 16,384 registers and 16 

kBytes of shared memory, and consists of 8 processing 

elements. These processing elements are arranged in a single 

instruction multiple data (SIMD) fashion. In total, the GPU 

provides 240 parallel pipelines that can operate most 

efficiently if a much higher number of light-weight program 

threads are available. Fig. 3 shows the construction of a 

multiprocessor and the usable memories of the GPU (below 

called “device”). The device memory is the biggest memory 

with around 1 GByte but also the slowest. Access to this 

memory is not cached and has a latency of several hundred 

cycles. To increase the access reading time the limited texture 

cache can be used. The constant cache has a size of 64 kByte 

and can be accessed as fast as registers on a cache hit. More 

details about the figure and the architecture can be found in 

[7]. 
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Fig. 3 Block diagram of a graphics card with a GPU and 

on board memory [7]  
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NVidia offers an Application Programmable Interface 

(API), an extension to the programming language C called 

Compute Unified Device Architecture (CUDA), to use the 

highly parallel GPU architecture. One CUDA block contains 

a program code in a single instruction multiple threads (SIMT) 

fashion and is executed on one multiprocessor. All threads 

within a block share the total amount of registers and shared 

memory of one multiprocessor. Using a high number of 

threads has the advantage of hiding latency of memory 

accesses for a maximum occupation of the multiprocessor 

computational units. Blocks are arranged in a block grid so 

they can be dispatched between the multiprocessors. 

Reference [7] discusses the architecture and CUDA.  

Fig. 4 shows, how serial C programs can use the parallel 

execution of the GPUs. The C code is divided into different 

parts which are executed on the host and kernel functions 

executed on the device. A simple program starts with the 

execution of host code. Memory on the device is allocated and 

set by a memory transfer from the host to the device. Then a 

kernel function is called and the code is executed in parallel in 

several blocks with several threads on different data. After the 

device has finished the execution, the host can execute a 

function to transfer back the results from the device memory 

to the host memory.  

 

 

Fig. 4 A simple C program using the GPU [7] 

 

B. Equation Analysis 

We have analyzed the calculation in two steps, the 

co-occurrence matrices (co-matrices) and the Haralick texture 

features (features). The co-matrices are computed from an 

image and the features are calculated based on the co-matrices. 

In the following subsection the co-matrix is introduced and 

we describe a possibility to reduce the size of the matrix as 

well as its benefits. In the subsequent subsection we list all 

equations for computing the features, show how they can be 

visually interpreted and propose a graph for computing the 

features efficiently.  

 

1) Co-Matrix 

The generation of the co-occurrence matrices is based on 

second order statistics as described in [1] and [8]. With this 

approach histogram matrices are computed for different 

orientations of pixel pairs. Using pixel pairs along a specific 

angle (horizontal, diagonal, vertical, co-diagonal) and 

distance (one to five pixels) together, a two-dimensional 

symmetric histogram of the gray levels is generated. The gray 

levels of the pixel pair address the indexes in the co-matrix 

and increment it by one, an example can be found in [8]. For 

each specific angle/distance combination a separate matrix 

must be generated. This means that one side of the square 

co-matrix is as long as the gray range level in the image. 

The microscope generates multi cell images (Fig. 1) with a 

gray level depth of 12 bits corresponding to 4096 different 

gray levels. Hence, each co-matrix needs 4096 x 4096 x 4 

bytes = 64 Mbytes of storage capacity. The graphics device is 

equipped with 1024 Mbytes of memory. Therefore we can 

generate only 16 matrices at once and compute the features on 

the corresponding image, which does not fully use the GPU. 

For a massive parallel approach we need to reduce the size of 

the co-matrices and the size depends on the existing gray 

range of each cell image extracted from the multi cell image.  

 

 

Fig. 5 Binary images of a full (A) and a packed (B) 

co-occurrence matrix 

 

Actually, the co-matrices contains zeros almost everywhere. 

The reason for this is that the cell image contains nothing 

purely random and all the pixel pairs have preferred gray 

tones so that during the co-matrix counting part the elements 

are not determined randomly. For example, the cell border has 

gray tone values in a small range which means that the border 

on the left side resembles on the right side. The same is true 

for the cell core, here the gray tone variation is small too. 

Especially the background of the segmented image contains 

only pixels with the same intensity value so that no gray tone 

difference between neighboring pixels exists. These facts 

result in that the gray tones from the pixel pairs resembling the 

other pixel pairs and the counting in the matrix being more or 

less spotted into small regions. Fig. 5A shows a binary image 
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of a full matrix with a size of 4096 x 4096 pixels. White pixels 

indicate zeros and black pixel indicate values differ from 

zero.  

 

 Especially the plane background of the cell images has the 

gray tone zero (black) with only one combination of gray 

levels (zero/zero) apart from the background cell border 

combinations. 

In our algorithm we cut all rows (because of symmetry 

columns too) with all zero elements to obtain a smaller packed 

co-matrix. For an example of how much storage space can be 

saved see Fig. 5B. The corresponding matrix of Fig. 5A can 

be reduced to 277 x 277 elements in Fig. 5B. For this example, 

a reduction from 64 MByte to 300 kByte could be achieved. 

The total average packed co-matrix size has been determined 

to be about 1.5 MByte of storage space. A big standard 

derivation in the average size forces us to assume a bigger size 

to determine the actually memory demand for the 

computations. 

For the feature computations, we store the gray value index 

of the full co-matrix in a lookup table corresponding to the 

index of the packed co-matrix. So the gray value can be 

reconstructed from the index of the packed co-matrix, which 

is necessary for some equations. This co-matrix reduction 

strategy is a compromise between less storage capacity and 

direct accessibility in memory. 

This step, using packed co-matrices, works well in our 

algorithm for real cell images. Additionally, we count the 

memory required for the generated packed co-matrices, to 

avoid overflow of the device memory.  

 

2) Features 

The Haralick Texture Features comprise 14 features as 

summarized in [9]. In our implementation we optimize the 

first 13 Haralick Texture Features (1) to (13) and do not 

compute Feature number 14 (Maximum Correlation 

Coefficient).  
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The definitions for the Haralick Texture Features are given 

in (14) to (21). 
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Most of the features (1) - (13) have a visual meaning. As an 

example, we take one of our cells. Fig. 6a shows this cell with 

added noise while Fig. 6b, shows it blurred. We then 

subtracted the background and computed some features.  

 

Fig. 6 Examples of noisy (a) and smoothed (b) cell images 
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Table 1 Feature values for a coarse and a smooth cell 

image (see Fig. 6) 

 Fig. 6a Fig. 6b 

contrast (2) 3.625E5 1.035E4 

inverse different moment (5) 0.5558 0.5715 

entropy (9) 5.5187 5.4807 

 

 

Table 1 shows some feature values for both images in Fig. 6. 

The contrast (2) value is higher for high contrast in the image. 

In our example, the coarse cell image has a value one order of 

magnitude higher than the smooth cell image. On the other 

hand, the inverse different moment (5) is lower for higher 

contrast images, as seen in the table. The entropy value is a 

measure for randomness and is smaller for a smooth image 

than for a coarse image. This is discussed in more detail in [9], 

[10]. 

The standard feature list is suited for the common case, 

symmetric and asymmetric co-variance matrices. Our 

matrices are always symmetric, so we could simplify some 

equations base on common results for row wise and column 

wise computations. We have changed (3) correlation, (12) 

information measure I, (17) mean, (18) variance and (21) 

entropy.  

Features (1), angular second moment, (2) contrast, (4) 

variance, (5) inverse difference moment, (6) sum difference 

average, (7) sum variance, (8) sum entropy, (9) entropy, (10) 

difference variance, (11) difference entropy and (13) 

information measurement II are unchanged as the rest of the 

definitions.  

Most of the features (1)-(4), (6)-(8) and (10)-(13) depend 

on other features as well as on intermediate results. To avoid 

expensive computations, we calculate these results only once. 

Therefore, the features have to be calculated in the right 

sequence, e.g. (7) demands the result of (6). The complex 

dependency of the computation sequence is shown in Fig. 7. It 

contains several graphs with the preferred sequence of 

intermediate result and feature computation. 

The aim was to split the whole feature calculation in small 

computing steps with intermediate results and to recognize 

which other results or intermediate results can be reused. This 

graph is the basis of following optimizations. It shows roots, 

branches and leaves. E.g., all leaves twigged to the same root 

can be computed in one loop in order to read the same source 

only once. To optimize the computation, the graph can also be 

grouped in several graphs for less arbitrary memory accesses. 

The advantage is that the computation of, e.g. (6), (7) and (8) 

only reads from the intermediate result Px+y. Thus, linear 

reading from memory provides fast access to a small area in 

memory, providing good cache hit rates for architectures with 

caches.   

 

 

Fig. 7 The computation dependency graph of the Haralick 

Texture Features (circles) and intermediate results 

(boxes). All features and intermediate results marked 

with an asterisk (*) depend on the co-occurrence 

matrices.  

 

C. Software Optimization 

In our first step, we analyzed the existing software version 

that computes the Haralick Texture Features. The goal was to 

optimize the code and run it on a single node. The single node 

version can be used to run it on a cluster with different data 

sources. Fig. 8 gives the structure of the program code. The 

outer loop iterates over all cell images sequentially. The first 

task within this loop is to generate all matrix combinations 

with angle A and distance D. Two further loops iterate over all 

matrices to compute the features for each of them.  

In the innermost loop of the diagram we implemented the 

analyzed equation graph shown above. Within the first two 

blocks the intermediate results are computed for Pxy (P), 

P|x-y| and Px+y as like as the features f1, f5 and f9. This 

computational sequence delivers ideal cache hit rates because 

all functions read from the same memory area where the 

current co-matix is stored. The following block computes the 

mean value, var, and H with memory accesses only to the P 

memory space. Afterwards, read accesses are limited to P|x-y| 

and then to Px+y. In the last three computing blocks, several 

sources must be read to fulfill all feature computations. 

Especially, read access to already computed feature f6 and f9 

saves a costly double computation and in case of f9 also a 

triple computation. 

The feature computational code is encapsulated in single 

C++ class with inline functions only to avoid overhead of its 

call. 
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We used the best optimization level (-O3) of the compiler 

for the best parallelization efforts and, in addition, kept the 

code as simple as possible so that the loops can be vectorized 

by the compiler to make use of the SSE instruction of a 

modern CPU.  

 

loop over all cells (C)

compute Pxy, Pxmy, Pxpy

Loop over angles (A)

Loop over distances (D)

generate matrices

compute f1, f5, f9

compute f2, f10, f11, macPxmy

compute f6, f7, f8

compute mean, var, H

compute f3, f4, f12, f13

compute hxy1, hxy2

store feature values

clean matrices

 

Fig. 8 Structure of the optimized software version 

 

D. GPU Parallelization 

This section is divided into two subsections. Subsection 1 

describes, how the GPU software is structured and the 

parallelization is achieved whereas subsection 2 presents 

implementation details of the adaptation of the computation to 

the GPU architecture.  

 

1) Structure 

Kernel functions are executable code on the GPU 

architecture which can be programmed using CUDA. CUDA 

provides blocks and threads in order to parallelize a steady 

work in a kernel function. This means each kernel has a 

specific task and every thread executes the same kernel. 

Kernel functions are parameterized by the number of blocks 

and threads. Every block contains a number of threads 

executed in parallel in a certain data context. At the same time, 

each thread operates over a different data inside this context. 

The difficulties lay in how to structure the blocks and threads 

to split the computing work efficiently and access the data 

structures. An efficient way to structure the CUDA blocks is 

to match them to the data structures in memory. To help in this 

arrangement, CUDA blocks can be arranged in a 2D grid to be 

defined by the programmer. Similarly, threads can be 

arranged in 1-,2- or 3D structures inside a block, giving some 

freedom to choose the one best mapping with the algorithm.  

 CUDA blocks contain resources like registers and shared 

memory which are common to all threads. Consuming many 

resources limits the available number of threads within a 

block. Therefore, the code of a kernel function needs to be 

kept simple. As a consequence, we need to split the 

computational work into several kernel functions with small 

computing steps. 

 First of all, we determine the work to be computed. 

Together, 13 features and eight intermediate results (1)-(21) 

have to be computed on all matrices of all cells. We have AD 

co-matrices (A angles times D directions) and several 

hundred cells in a multi cell image. Hence, the total 

computational work is the number of cells times AD times 21 

equations. 

Fig. 9 gives an idea, how we structured the CUDA blocks in 

our algorithm. In the outer loop, we choose C cells to read in 

parallel. Inside the loop, each cell generates AD co-matrices 

concurrently. The CUDA block dimension is set by C times 

AD for the co-matrix generation kernel function. The 

following part computes the intermediate results and features 

in small computing steps, where all these 24 kernel functions 

have all the same C * AD dimensions. After the feature 

computation, they are stored and the generated co-matrices 

are cleaned up. The next loop iteration reads another set of C 

cells. 

 

Fig. 9 Structure of the GPU version. Bold marked entries 

are executed in parallel. 

A complete list of the 24 kernel functions is shown in Table 

2. Each of them has its individual optimized thread structure 

according to the required resources, as determined by the 

NVidia CUDA Occupancy Calculator Sheet [11]. The kernel 

functions compute the sums of either a feature value or an 

intermediate result. The threads are used in parallel to sum up 

the values, often in combination with multiply and logarithm 

operations.  

Already mentioned in the software optimization above, the 

feature dependency graph is used to derive the optimal order 

to compute the features shown in parts 1-5 of Table 2. This 

sequence also turns out to be efficient for the GPU 

architecture. Besides good cache hit rates in the CPU, it offers 

much linear read access from the memory, which is vital for 

an efficient GPU implementation. We have grouped the 

kernel functions by the memory regions they access, as shown 

in the different parts of the table.  
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Table 2 List of all kernel functions in their order of 

execution. Left column contains the function names; right 

column contains the computational task. 

Initialisation part 

Function 0A generate index / gray level lookup tables 

Function 0B clear co-occurrence matrices 

Function 0C compute co-occurrence matrices 

Function 0D normalize co-occurrence matrices 

 

Part 1, read from co-occurrence matrices 

Function 1A compute f1 

Function 1B compute f5 

Function 1C compute f9 

Function 1D compute P 

Function 1E compute P|x-y| 

Function 1F compute Px+y 

 

Part 2, read from P 

Function 2A compute mean 

Function 2B compute var 

Function 2C compute H 

 

Part 3, read from P|x-y| 

Function 3A compute f2 

Function 3B compute f11 

Function 3C compute MacP|x-y| 

Function 3D compute f10 

 

Part 4, read from Px+y 

Function 4A compute f6 

Function 4B compute f8 

Function 4C compute f7 

 

Part 5, read from co-occurrence matrix 

Function 5A compute f3 with Pij 

Function 5B compute f4 

Function 5C compute HXY1, f12, read from P 

Function 5D compute HXY2, f13, read from P only  

When accessing a memory region, the dispatcher of the 

GPU chooses a number of CUDA Blocks and switches 

between them so that the computing units are best occupied 

and memory transfer latencies are mostly hidden. This allows 

for a good utilization of the 240 pipelines and the memory 

access units. For a more detailed discussion of the execution 

model, see [7]. 

 

2) Implementation 

This section described implementation details and shows 

problems and solutions concerning efficient programming for 

the GPU architecture. For a simple expression we explain the 

implementation for the singular case, not for the C * AD 

parallel case.  

Before any computation can be done, the multi cell image 

must be transferred into the device memory. With additional 

information from a file the squared cell can be located and 

copied into a separate memory area. For the co-matrix 

generation it is important that the cell is framed with the 

distance D (5 pixels) to its border on each side. Otherwise, 

information would get lost during the co-matrix generation 

process. It would not be possible to establish pixel pairs 

between pixels from the cell border to the background pixels, 

because the image ends beside.  Therefore, the cell is copied 

into the center of an expanded (5 pixels on each side) 

background image. To grant fast read operations from the cell 

memory location, a cache is applied via two dimensional 

texture accesses. (Keep in mind that we do this for many cells 

in parallel, as mentioned above). 

The dimension of the packed co-matrix depends on the 

actual gray tone range of the cell and not on the bit depth of 

the pixels. Each present gray tone level is counted for each 

cell and successively added to a lookup a table.  The 

corresponding lookup value is the index starting by zero and 

incremented by one for each further entry. With the help of 

the gray tone / index lookup table the memory element of the 

corresponding gray tone can be found. We need it for the 

co-matrix generation process. An additional index / gray tone 

lookup table is generated to determine a gray tone for a given 

memory element which is important for the feature 

computation. The actually counted gray tones give the 

dimension of the packed co-matrices.  In the same way for the 

cells, a cached texture access is applied to both lookup tables 

for faster access. 

One problem is the memory demand of the full co-matrices. 

The architecture of the GPU offers 1 GByte device memory in 

which only 16 full matrices would fit. One way to overcome 

this limitation would be to generate some full matrices and 

pack them and repeat this step until all co-matrixes we need 

are generated. This way is slow because we have extra work to 

do to pack co-matrices. Our solution is to generate the packed 

co-matrix directly with the help of the previous introduced 

index / gray tone lookup table. A two dimensional loop over 

the cell image using the texture access gives us a reference 

pixel. The corresponding pixel is determined by the 

generation rule, e.g. horizontal angle and one pixel distance, 

to the right and to the left. So for each reference pixel two 

pixel pairs can be found, except the pixel is outside the image. 

The memory index of one pixel pair is looked up via the 

texture access to the gray tone / index lookup table to 

determine the matrix element represented by the gray tone. 

The determined element is increment by one.  

One constraint of the GPU architecture for fast memory 

accesses is the memory alignment. Each matrix row has a base 

address of a multiple of 256 bytes. That means a gap to the 

next row (aligned base address) may exist after each row. We 

bear the gap in mind while the co-matrices are generated. The 

same alignment must be met for the texture accesses; here the 

CUDA API functions take care about the memory alignment.  

The computation of the features is based on normalized 

co-occurrence matrices. During the generation process, a 

variable counts all increments to a co-matrix sum. Since 

division is an expensive operation which should be avoided, 

we compute the reciprocal of the sum to multiply each 

element of the matrix.  

The list of feature equations (1)-(13) shows that the 

features are computed by sums. In parallel architectures, sums 

can be computed by the reduction operation. We implemented 

two parallel ways to produce the sums, a 1d sum-up variant 

and a 2d sum-up variant.  
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In the 1d sum-up variant, we define a block vector of shared 

memory with the size of available thread count. Each thread 

takes an element of the data source and sums it up in its block 

vector element. Mostly, the sum operation is accompanied by 

a multiplication, logarithm or other operations. The 

summation continues with each GPU cycle and ends after the 

data source is exhausted. With a standard reduction algorithm, 

the block vector is reduced to one total sum value.   

In the 2d sum-up variant, we define a small block matrix 

with the size of the CUDA thread grid. It operates equally to 

the 1d sum up variant. The difference between them is a 

different arrangement of the data source. It turns out that the 

feature computation of f5, f6 and f3 is faster due to better 

memory transfer rates.  

A further look to the feature equations shows that some 

features use the index of the sum for their computation. This 

means the gray tone value contributes to the result as a factor. 

Index sensitive equations are (3), (4) and (5), representing f3, 

f4 and f5 as like as the intermediate results (14), (15), (17) and 

(18) representing Px+y, P|x-y|, mean and var. One small 

drawback of using packed matrices instead of full matrices is 

that the gray tone value must be determined for later equations. 

The above generated index / gray tone lookup table translates 

the index of the accessed memory element to the gray tone 

value. This expansion raises the complexity by an additional 

memory access to the lookup table. Therefore, it is cached by 

a texture to limit the slow behavior of the expansion. 

Due to the sensitivity on the gray tone index for the packed 

matrix, the computation of Px+y and P|x-y| is different. 

Additional difficulties arise from the complex memory 

accesses due to big result vectors. 

In case of Px+y(k) whereas k = 2, 3, 4, ... 2Ng-2 and 

Ng = 4096, the gray tone range is the result vector Px+y and it 

has 8188 elements. It does not fit in the fast shared memory. 

Only 4096 elements (16kbyte divided by 4byte per element) 

fit into the shared memory, and if in use, the occupancy would 

be very low because several CUDA blocks need to share it. 

We implemented the kernel function 1F in several versions. 

First, we computed the Px+y vector partly step by step to keep 

it in shared memory and optimized it. We also tried to use the 

bigger local memory but our final version writes the result of 

the add operation directly in global memory. This version 

reads the matrix line by line, and each line is partitioned in a 

block with the size of the available thread count. Hence, the 

data can read in parallel block-wise into the shared memory. 

Respectively to the row and the column index (i and j) of the 

read data, we get the corresponding gray tones from the look 

up table (I and J). Tone I added to J (see equation 14, k=i+j) 

gives the aimed location in the Px+y vector where to add up 

the previous read data.  

The computation of P|x-y|(k) also has the problem that the 

result vector is too big for a high performance use of the 

shared memory. In this case, the vector has the size of 4094 

elements (k = 0, 1, 2, ... Ng-2), which is the complete shared 

memory and would be used by only one block. Besides the 

need to look up the gray tone values, the indexing of the result 

vector P|x-y|(k) has a slightly higher complexity. Before the 

data can add up the indices, we have to subtract and then 

compute the absolute value (k = |I – J|). The same algorithm 

strategy for Px+y gives the best execution time for the P|x-y| 

vector computation.  

Additional helper functions are implemented for the device 

memory management and the execution time measurement. 

The CUDA API in version 2.0 offers an event management to 

measure the total execution time of a kernel, by recording an 

event before and after the kernel execution. The difference 

gives an accurate measurement of the execution time. In 

profiling mode, our application records the average execution 

times for all kernels. To avoid memory overflow, we count all 

allocated device memory in a variable and subtract it when the 

memory is released, so we know the device memory usage at 

each point during the execution, and actions can be taken if 

the required memory exceeds the total available device 

memory.  

 

III. RESULTS 

We compare four versions of the Haralick Texture Feature 

computation: the original version, an optimized software 

version and two CUDA versions using two different GPUs. 

Results are shown in Table 3.  

Table 3 Execution times and speedup factor comparison 

of all introduced versions and different GPUs 

 

Execution 

time [s] 

Speed 

up 

factor 

to 1. 

Speed 

up 

factor 

to 2. 

Speed 

up 

factor 

to 3. 

1. Original 

Software 

Version 

2378 - - - 

2. Optimized 

Software 

Version 

214 11x - - 

3. GPU 

Version I 

(8800 GTX) 

11.1 214x 19x - 

4. GPU 

Version II 

(GTX 280) 

6.6 360x 32x 1.7x 

 

The execution times have been compared on a Intel Core 2 

Quad machine (Q6600) with 2.4 GHz and 8 MBytes L2 cache, 

4 GBytes DDR2 Ram with 1066MHz clock speed, a NVidia 

GeForce 8800GTX with a 1350MHz shader clock, 768 

MByte GDDR3 at 900MHz and 384Bit wide in a PCIe v1.0 

16x slot; and a NVidia GeForce GTX280 with a 1300 MHz 

shader clock, 1024 MByte GDDR3 at 1107MHz and 512Bit 

wide in a PCIe v2.0 slot. The operating system was Linux 

Ubuntu x64 with kernel version 2.6.20 and gnu C-compiler 

version 4.1.2. For software version 1 and 2 we used one CPU 

core only. 

In the GPU version, we chose C=8 and AD=20, i.e. eight 

cells are calculated in parallel with 4 angles and 5 directions 

per cell. These parameters gave the best results. The total grid 

size is 160 blocks in CUDA for each feature kernel.  

In Table 4 we show the profiling of the CUDA version. In 

the first column, the kernel functions are listed. The second 

column contains the execution times for each entry and the 
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last column contains the percentage of the total execution 

time. 

Table 4 Execution times and speedup factor comparison 

of all introduced versions and different GPUs  

Initialisation part 

Function 0A 276.3 ms 4.2 % 

Function 0B 242.4 ms 3.7 % 

Function 0C 466.4 ms 7.1 % 

Function 0D 224.4 ms 3.4 % 

 

Part 1 

Function 1A 221.8 ms 3.4 % 

Function 1B 416.8 ms 6.3 % 

Function 1C 202.5 ms 3.1 % 

Function 1D 929.2 ms 14.1 % 

Function 1E 310.1 ms 4.7 % 

Function 1F 602.6 ms 9.1 % 

 

Part 2 

Function 2A 4.5 ms < 0.1% 

Function 2B 6.2 ms 0.1 % 

Function 2C 4.2 ms < 0.1% 

 

Part 3 

Function 3A 5.0 ms < 0.1 % 

Function 3B 4.9 ms < 0.1 % 

Function 3C 6.7 ms 0.1 % 

Function 3D 5.2 ms < 0.1 % 

 

Part 4 

Function 4A 7.2 ms 0.1 % 

Function 4B 10.9 ms 0.2 % 

Function 4C 13.1 ms 0.2 % 

 

Part 5 

Function 5A 418.6 ms 6.3 % 

Function 5B 269.3 ms 4.1 % 

Function 5C 309.9 ms 4.7 % 

Function 5D 225.1 ms 3.4 % 

 

GPU Execution Time 5183.3 ms 78.5 % 

CPU Execution Time 1416.7 ms 21.5 % 

 

Total Execution Time 6600.0 ms 100.0 % 

 

For an analysis of the execution times, we show in Table 5 

the theoretical maximum performance of the used CPU and 

the used graphics cards. We choose gigaflops per second 

(GFLOPS) as a measure for the computational units and give 

the maximum memory transfer rate for the used architectures. 

For the CPU Q6600 we determine the total maximum 

performance of 38.4 GFLOPS divided by 4 cores = 9.6 

GFLOPS per core. The memory transfer rates of the CPU are 

determined by the peak performance of the memory. We use 

DDR2 memory with 1066MHz effective clock speed 

operating in a dual channel mode (1066MHz * 64 bit memory 

width * 2 dual channel / 8 bit per byte = 17 Gbyte/s). 

 

Table 5 Peak performance of the used architectures in 

GFLOPS and memory transfer rates with the execution 

times. The numbers in parenthesis are speed up factors to 

the other architectures. 

 1. CPU  

Intel Core 2 

2. GPU  

8800 GTX 

3. GPU 

GTX 280 

Maximum 

Performance 

[GFLOPS] 

9.6 
345.6 

(36x to 1.) 

622 

(65x to 1.) 

(1.80x to 2.) 

Maximum 

Transfer Rate 

[Gbytes/s] 

17 
86,4 

(5x to 1.) 

141 

(8.3x to 1.) 

(1.63x to 2.) 

Execution 

Time [s] 
214 

11.1 

(19x to 1.) 

6.6 

(32x to 1.) 

(1.68x to 2.) 

 

We have measured the average peak performance in our 

application, and we found it to be 45.1 GFLOPS, as measured 

in kernel function 3D (see Table 4). The maximum measured 

average memory transfer rate is 48.8 Gbytes/s served to 

compute function 4A. 

IV. DISCUSSION 

The speedup of a factor of 360 for the GPU version 

compared to the original un-optimized software version meets 

the demand of the biologists. Compared to the optimized 

software version the speedup is still around a factor of 32.  

The percentage of each kernel shows the part of the total 

execution time. To decrease the total execution time it makes 

sense to optimize the kernel function with the biggest 

percentage. A look at this column shows that all kernel 

functions have no extraordinary outlier. Therefore, 

optimization efforts of single kernel functions would not have 

a direct performance boost in the total execution time.  

However, some kernel functions are more time consuming 

than others. For example, the functions from part 1 and 5 are 

two orders of magnitude slower than other parts. These kernel 

functions have more values to read from the memory to 

compute their results, and can be explained as follows.  

The memory access pattern is more random than linear 

when several sources are read. Additionally, one row of a 

co-matrix has roughly between 200 and 1500 entries, stored 

linearly for one memory base address. The next row has a new 

base address which must initiate a new memory transfer with a 

waiting time of several hundred cycles. The memory 

controller of the graphics card can handle only a limited 

number of pending memory transfers so that the memory 

bandwidth could be limited. Increasing the CUDA grid size 

would not increase the memory bandwidth. These features are 

therefore limited by the memory bandwidth. 

Other kernel functions with expensive floating point 

operations (DIV, LOG, SQRT and EXP like in features 8, 9, 

11, 12 and 13) fully utilize the computational units and limit 

the overall performance. In this case, the computation of the 

features is limited by the computation time.  
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Table 5 gives the speedup factors obtained for the 

computational units and the maximum memory transfer rate, 

for the two graphics cards we used. The new device (GTX280) 

is 1.80 times faster and its memory transfers are 1.63 times 

faster. Our algorithm is 1.68 times faster on the newer device, 

which indicates that the algorithm performance on average is 

limited by the memory transfer rate rather than the 

computational units. Until now we have discovered a linear 

performance increasing with the memory transfer rate of more 

recent cards, but more studies are necessary.  

Increasing the parallel computation by increasing the 

CUDA block grid has no further performance boost. AD = 20 

is already the needed maximum with the combination of four 

angles and five distances. Only C, the number of parallel 

computations of the single cell images, is usable but the 

limited device memory of the GPU board enforces to use C < 

16 to keep the algorithm stable. Tests shows that C = 8, 

corresponding to a CUDA grid size of 160 blocks, delivers 

best performance on average. Some features decrease the 

computational time if we compute more than eight cells (> 

160 CUDA blocks) in parallel. This means that these kernel 

functions can use more CUDA blocks to hide memory 

transfers by the computing units. Other kernel functions 

increase the computation time using more than eight cells in 

parallel. Here the overhead and simply too many memory 

accesses slow down the computation of the kernel functions. 

Best performance would be achieved if each kernel 

function had its own individually optimized CUDA grid. For 

this case, however, the whole parallel software architecture 

would change as well as the memory arrangement because the 

parallel operating CUDA blocks match to the memory 

arrangement. Until today, we have no better solution to avoid 

the rigid C * AD block parallelization mapping to the memory 

structure in order to adapt the CUDA grid size independently 

for each kernel function.  

Given the complexity of the Haralick Texture Features and 

the co-occurrence matrices computations, and the application 

requirements, our implementation yields excellent 

performance. 

V. CONCLUSION 

In this paper we have shown that the costly computation of 

the co-occurrence matrix and the Haralick texture features can 

be speed up by a factor of 360 in comparison to the original 

un-optimized software version. This allows biologists to 

perform much more tests to acquire novel knowledge in cell 

biology in weeks or days instead of several months. 

To compute the features, we developed a graph which can 

be used to optimize the computation. Furthermore, the graph 

shows which paths need not be calculated if some features are 

uninteresting, and which branch can be completely skipped.   

Graphics Processing Units (GPUs) are inexpensive 

alternatives to reconfigurable hardware with an even higher 

computational capability, a much shorter implementation 

development time and much faster (in orders of magnitudes) 

than Central Processing Units (CPUs). Furthermore, GPUs 

can deal with complex memory access patterns and complex 

expensive computation with still a reasonable speedup 

compared to CPUs. 
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