
Parallel Form of the Pipelined Intermediate
Architecture for Two-dimensional Discrete

Wavelet Transform
Ibrahim Saeed Koko, Member, IAENG and Herman Agustiawan

Abstract A lifting-based VLSI architecture for two-
dimensional discrete wavelet transform (2-D DWT) for 5/3 and
9/7 algorithms, called, pipelined intermediate architecture was
proposed by Ibrahim et al., which aim at reducing power
consumption of the overlapped external memory access without
using the expensive line-buffer. In this paper, we explore
parallelism in order to best meet real-time applications of 2-D
DWT with demanding requirements in terms of speed,
throughput, and power consumption. Therefore, 2-parallel and
3-parallel form of the single pipelined intermediate architecture
are proposed. The 2-parallel and 3-parallel pipelined
intermediate architectures achieve speedup factors of 2 and 3,
respectively, as compared with single pipelined intermediate
architecture proposed by Ibrahim et al.

Index Terms Parallel intermediate architecture, discrete
wavelet transform, lifting scheme, and VLSI.

I. INTRODUCTION

 The rational behind developing intermediate architecture
in [3] was to reduce the excess power consumption of the
external memory, due to scanning overlapped areas, to
somewhat between the architecture based on the first
overlapped scan method and that based on the nonoverlapped
scan method [10]. The intermediate architecture reduces
power consumption by 22.2 % as compared with the
architecture based on the first overlapped scan method
proposed in [10]. This reduction in power consumption is
achieved without the expensive line-buffer (LB) used in the
nonoverlapped scan architecture proposed in [10]. The
nonoverlapped architecture reduces the external memory
access to minimum, NM cycles and hence the power
consumption. Intermediate architectures are based on the
generalization of the overlapped scan method proposed in [3].
 In this paper, the single pipelined intermediate architecture
is extended to 2-parallel and 3-parallel architectures for 5/3
and the 9/7 algorithms. The proposed 2-parallel and 3-
perallel pipelined intermediate architectures achieves speedup
factors of 2 and 3, respectively, as compared with single
pipelined intermediate architecture. The two proposed parallel
architectures are intended for used in real-time applications of
2-D DWT, where very high-speed and low-power are
required. The advantage of the proposed parallel architectures

 The authors are with the Electrical and Electronic Engineering
Department, Universiti Teknologi PETRONAS, Perak, Tronoh, Malaysia
(emails: kokois12@hotmail.com, herman_agustiawan@petronas.com.my).

is that the total temporary line buffer (TLB) does not increase
from that of the single pipelined intermediate architecture
when degree of parallelism is increased. The two proposed
parallel architectures are based on lifting scheme, which
facilitates high speed and efficient implementation of wavelet
transforms [1], [2].
 This paper is organized as follows. In section II, the
lossless 5/3 and the lossy 9/7 algorithms are stated and the
data dependency graphs (DDGs) for both algorithms are
given. In section III, The two proposed parallel architectures
are presented. Evaluation and scale multipliers reduction are
given in sections IV and V, respectively. Comparisons are
discussed in sections IV. Conclusions are given in section V.

II. LIFTING-BASED 5/3 AND 9/7 ALGORITHMS

 The lossless 5/3 and lossy 9/7 wavelet transforms
algorithms are defined by the JPEG2000 image compression
standard as follow [4], [5]:
5/3 analysis algorithm

 +++−

+=

 ++

−+=+

4
2)12()12()2()2(:2

2
)22()2()12()12(:1

jYjYjXjYstep

jXjXjXjYstep
 (1)

9/7 analysis algorithm
() () () ()()
() () () ()()
() () () ()()
() () () ()()

()
)2()2(:6

121)12(:5
121222:4

2221212:3
121222:2

2221212:1

nYknYstep
nYknYstep

nYnYnYnYstep
nYnYnYnYstep

nYnYnXnYstep
nXnXnXnYstep

′=
+′=+

+′+−′+′′=′
+′′+′′++′′=+′

+′′+−′′+=′′
++++=+′′

δ
γ

β
α

 (2)

 The data dependency graphs (DDGs) for 5/3 and 9/7
derived from the algorithms are shown in Figs. 1 and 2,
respectively. The symmetric extension algorithm is
incorporated in the DDGs to handle the boundaries problems.
The boundary treatment is necessary to keep number of
wavelet coefficients the same as that of the original input.
The boundary treatment is only applied at the beginning and
ending of each row and column in an NxM image [6] to
prevent distortion from appearing at the image boundaries.
The nodes circled with the same numbers, are considered
redundant computations, which will be computed once and
used thereafter.

IAENG International Journal of Computer Science, 36:2, IJCS_36_2_01
__

(Advance online publication: 22 May 2009)

III. PROPOSED PARALLEL ARCHITECTURES

 To ease the architecture development [10], the strategy
adopted was to divide the details of the development into two
steps each having less information to handle. In the first step,
the DDGs were looked at from outside, which is specified by
the dotted boxes in Figs. 1 and 2, in terms of inputs and
outputs requirements. It was observed that the DDGs for 5/3
and 9/7 are identical when they are looked at from outside,
taking into consideration only the inputs and outputs
requirements but differ in the internal details. Based on this
observation, the first level of the architecture, called, the
external architecture was developed for both 5/3 and 9/7. In
the second step, the internal details of the DDGs for each
algorithm were considered separately for the development of
the processor’s datapath architectures, since DDGs internally
define and specify the structure of the processors.
 In this paper, the first level, the external architectures for
2-parallel and 3-parallel are developed for both 5/3 and 9/7
algorithms based on the scan method shown in Fig.3 [10].
Then the processors’ datapath architectures developed in [10]
for 5/3 and 9/7 are modified to fit into the two proposed
parallel external architectures’ processors.
 In general, the scan frequency fl and hence the period

ll f1=τ of the parallel architectures can be determined by

the following algorithm when the required pixels I of an
operation are scanned simultaneously in parallel. Suppose tp
and tm are the processor and the external memory critical path
delays, respectively.

ml

pl

mp

telse

klt

thentkltIf

=

⋅=

≥⋅

τ

τ (3)

Where l = 2, 3, 4 ... denote 2-, 3-, and 4-parallel and kt p is
the stage critical path delay of a k-stage pipelined processor.

 Fig. 3. Third overlapped scan method

1 2 5

3 1 1 3 5 7 5

2 0 4 6 62

1 1 3 5 7

0 2 4 6

1Y0Y 2Y 3Y 4Y 5Y 6Y 7Y

k k k k1−k 1−k 1−k 1−k

0 11 2 323 44 5 6 7 46 5

3 1 1 3 5 7 7 5

2 0 4 6 82 6

1 1 3 5 7 7

0 2 4 6 8

1Y0Y 2Y 3Y 4Y 5Y 6Y 7Y 8Y

k k k k k1−k 1−k 1−k 1−k

)(nX

()12 +′′ nY

()nY 2′′

()12 +′ nY

()nY 2′

()12,)2(+nYnY

0 11 2 323 44 5 6 7 8 47 6 5

)(a)(b

Fig. 1. 5/3 algorithm’s DDGs for (a) odd and (b) even length signals

Fig. 2. 9/7 algorithm’s DDG for odd (a) and even (b) length signals

0Y 1Y 2Y 3Y 4Y 5Y 6Y 7Y

11 3 5 7

7

0

02

2

11 2

4

43 5 6

6

6

0Y 1Y 2Y 3Y 4Y 5Y 6Y 7Y 8Y

11 3 5 7 7

77

0

0

2

1

4

43 6

6

8 6

8

)12(+jY

)2(jY
nscomputatio

redundant

)(jX

nscomputatio
redundant

)(a)(b

2

N

0 1 2 3 4 5 6
M
7 8 9 10 11 12 13 14

0

1

2

3

4

areaoverlapped1run

IAENG International Journal of Computer Science, 36:2, IJCS_36_2_01
__

(Advance online publication: 22 May 2009)

1RP

1I

2I

0I

1Rt

2Rt

0Rt

2RP

1I

2I

0I

1Rt

2Rt

0Rt

1CP

1I

2I

0I

1Rt

2Rt

0Rt

2CP

1I

2I

0I

1Rt

2Rt

0Rt

22f 22f

0

1

0

1
0bus

2f

1bus

2bus

1p
2p

0sre

0

1

0sce

0
1

0

1

0

1

0

1

0

1

H

H

H

H

L

L

L

L

0

1
2R 1R 0R

0SRL

2R 1R 0R

1SRL

0

1
2R 1R 0R

0SRH

2R 1R 0R

1SRH

RdL

RdH

22f

2f

2f

2f

2f

2f

2f

HH

HL

LH

LL

0Rd

0sce

m
ux

l
m

ux
h

m
ux

re
0

m
ux

1

m
ux

3
m

ux
3

m
ux

2
m

ux
2

m
ux

ce
0

m
ux

ce
0

sl
h

2s

2s

3s

1sl

3s

0sl

0sh

edl

Rth

Rth

Rtl

Rtl

23 ssedledh ===

A. 2-parallel pipelined intermediate architecture

 Based on the DDGs for 5/3 and 9/7 filters shown in Figs. 1
and 2, respectively, and the scan method shown in Fig. 3, the
2-parallel pipelined intermediate architecture shown in Fig. 4
is proposed. The dataflow of the architecture is given in
Table 1. The architecture consists of 2 k-stage pipelined row-
processors labeled RP1 and RP2 and 2 k-stage pipelined
column-processors labeled CP1 and CP2. In [10], the RP and
the CP for the 5/3 were pipelined into 4 and 3 stages,
respectively, whereas, the RP and the CP for the 9/7 were
pipelined into 8 and 6 stages, respectively.
 The scan method shown in Fig. 3 not only reduces the
power consumption of the external memory but also reduces
the memory requirements between RPs and CPs to a few
registers and allows the CPs to work in parallel with RPs as
earlier as possible.
 The proposed external parallel architecture operates with
frequency f2/2 and scans the external memory with frequency
f2. The buses labeled bus0, bus1, and bus2 are used for
transferring every clock cycle pixels from external memory to
one of the RPs latches labeled Rt0, Rt1, and Rt2. According
to the scan method shown in Fig. 3, in the first clock cycle,
the 3 buses are used for scanning the first 3 pixels from the
first row of the external memory, whereas in the second and
third cycles bus1 and bus2 are used for scanning two pixels
each cycle. The scan then moves to the second row to repeat
the process. The RP1 latches load new data (pixels) every
time clock f2/2 makes a positive transition, whereas RP2

latches load new data at the negative transitions. Assume the
first half cycle of the clocks f2 and f2/2 are low. On the other
hand, both CP1 and CP2 and their associate latches load new
data every time clock f2/2 makes a positive transition.
 According to the DDGs, in every clock cycle, 3 pixels are
required to initiate an operation. And the third pixel is always
needed in the next operation. Therefore, register Rd0 is
added in Fig. 4 to hold the third pixel for the next operation.
Multiplexer mux1 passes Rd0 to either Rt0 of RP1 or Rt0 of
RP2. Register Rd0 loads a new pixel from bus2, every time
clock f2 makes a negative transition.
 The control signal s1 of the multiplexer labeled mux1 is set
0 in the first clock cycle of f2 to pass data in bus0 and is set 1
in the second and third clock cycles to pass Rd0 contents.
The above steps are repeated in cycles 4, 5, and 6 and so on.
 The multiplexer labeled muxre0 is an extension
multiplexer and passes in all cases data coming through bus2,
except, when the row length (M) of an image is even and only
in the calculations of the last high and low coefficients in a
row r. According to the DDGs, the pixels at location X(r,M-
2), which will be placed in bus0, must be allowed to pass
through muxre0 and then should be loaded into Rt2 as well as
Rt0. The two multiplexers labeled muxce0, located at the CPs
side, are also extension multiplexers and perform the same
function as that of muxre0 when DWT is applied column-wise
by the CPs. The registers labeled SRH1, SRH0, SRL1, and
SRL0 are FIFO shift registers each holds at any times 3
coefficients. Registers SRH1, SRH0, and RdH are used for
storing high coefficients generated by RP1 and RP2, whereas

IAENG International Journal of Computer Science, 36:2, IJCS_36_2_01
__

(Advance online publication: 22 May 2009)

TABLE 1 DATAFLOW FOR THE ARCHITECTURE (K=3)

ck RP CP1 &CP2 input latches
Rt0 Rt2 Rt1 Rt0 Rt2 Rt1

 CP1 & CP2 output latches
 Rth Rtl Rth Rtl

13 1 H0,0 H2,0 H1,0 L0,0 L2,0 L1,0
14 2 --
15 1 H0,1 H2,1 H1,1 L0,1 L2,1 L1,1
16 2 --
17 1 H0,2 H2,2 H1,2 L0,2 L2,2 L1,2
18 2 --
19 1 H2,0 H4,0 H3,0 L2,0 L4,0 L3,0 HH0,0 HL0,0 LH0,0 LL0,0
20 2 -- -------------------------------------
21 1 H2,1 H4,1 H3,1 L2,1 L4,1 L3,1 HH0,1 HL0,1 LH0,1 LL0,1
22 2 -- --------------------------------------
23 1 H2,2 H4,2 H3,2 L2,2 L4,2 L3,2 HH0,2 HL0,2 LH0,2 LL0,2
24 2 -- --------------------------------------
25 1 H4,0 H6,0 H5,0 L4,0 L6,0 L5,0 HH1,0 HL1,0 LH1,0 LL1,0

SRL1, SRL0, and RdL are used for storing low coefficients.
These registers all operate with frequency f2. The control
signals sl0=sh0 and sl1=sh1 control the operation of the
FIFO registers. When these signals are asserted high, the
FIFOs shift in new data, otherwise, no shift take place. High
coefficients stored in SRH0 and SRH1 are executed by CP1,
while CP2 executes low coefficients stored in SRL0 and
SRL1.
 The operations of the two multiplexers, labeled muxh and
muxl, can be controlled by one control signal labeled slh. This
control signal is connected to the clock f2/2. When f2/2 is low,
both multiplexers pass coefficients generated by RP1,
otherwise, pass coefficients generated by RP2.

 In the following, the dataflow of the architecture using
Table 1 will be described. In the first cycle, 3 pixels are
scanned from external memory locations X(0,0), X(0,1), and
X(0,2) and are loaded into RP1 latches by the positive
transition of clock f2/2 to initiate the first operation. In
addition, pixel of location X(0,2) is also loaded into register
Rd0, as indicated in Table 1, since it is needed in the second
operation. During clock cycle 2, two pixels are scanned from
locations X(0,3) and X(0,4) through bus1 and bus2,
respectively, and are loaded , along with the pixel in Rd0, into
RP2 latches Rt1, Rt2, and Rt1, respectively, to initiate the
second operation. Pixel scanned from location X(0,4) is also
loaded into Rd0, since it is required in the third operation.

Ck RP Rd0 RP’s input latches
 Rt0 Rt2 Rt1

RdH SRH0
R2 R1 R0

 SRH1
R2 R1 R0

RdL SRL0
R2 R1 R0

 SRL1
R2 R1 R0

1 1 x 0,2 x 0,0 x 0,2 x 0,1

2 2 x 0,4 x 0,2 x 0,4 x 0,3
3 1 x 0,6 x 0,4 x 0,6 x 0,5
4 2 x 1,2 x 1,0 x 1,2 x 1,1

5 1 x 1,4 x 1,2 x 1,4 x 1,3
6 2 x 1,6 x 1,4 x 1,6 x 1,5

7 1 x 2,2 x 2,0 x 2,2 x 2,1 H0,0 ----- ----- L0,0 ----- -----
8 2 x 2,4 x 2,2 x 2,4 x 2,3 H0,1 H0,0 ----- L0,1 L0,0 -----

9 1 x 2,6 x 2,4 x 2,6 x 2,5 H0,2 H0,1 H0,0 L0,2 L0,1 L0,0
10 2 x 3,2 x 3,0 x 3,2 x 3,1 H1,0 ----- ----- L1,0 ----- -----

11 1 x 3,4 x 3,2 x 3,4 x 3,3 H1,1 H1,0 ----- L1,1 L1,0 -----
12 2 x 3,6 x 3,4 x 3,6 x 3,5 H0,2 H0,1 H0,0 H1,2 H1,1 H1,0 L0,2 L0,1 L0,0 L1,2 L1,1 L1,0

13 1 x 4,2 x 4,0 x 4,2 x 4,1 H2,0 H0,2 H0,1 ----- H1,2 H1,1 L2,0 L0,2 L0,1 ------ L1,2 L1,1

14 2 x 4,4 x 4,2 x 4,4 x 4,3 H2,1 H2,0 H0,2 H0,1 ----- H1,2 H1,1 L2,1 L2,0 L0,2 L0,1 ------ L1,2 L1,1

15 1 x 4,6 x 4,4 x 4,6 x 4,5 H2,2 H2,1 H2,0 H 0,2 ----- H1,2 H1,1 L2,2 L2,1 L2,0 L0,2 ------ L1,2 L1,1

16 2 x 5,2 x 5,0 x 5,2 x 5,1 H2,2 H2,1 H2,0 H 0,2 H3,0 ----- H1,2 L2,2 L2,1 L2,0 L0,2 L3,0 ------ L1,2

17 1 x 5,4 x 5,2 x 5,4 x 5,3 ------ H2,2 H2,1 H 2,0 H3,1 H3,0 ------ ------ L2,2 L2,1 L2,0 L3,1 L3,0 -----

18 2 x 5,6 x 5,4 x 5,6 x 5,5 ------ H2,2 H2,1 H 2,0 H3,2 H3,1 H3,0 ------ L2,2 L2,1 L2,0 L3,2 L3,1 L3,0

19 1 x 6,2 x 6,0 x 6,2 x 6,1 ------ H4,0 H2,2 H2,1 ------ H3,2 H3,1 ------ L4,0 L2,2 L2,1 ------ L3,2 L3,1

20 2 x 6,4 x 6,2 x 6,4 x 6,3 H4,1 H4,0 H2,2 H2,1 ------ H3,2 H3,1 L4,1 L4,0 L2,2 L2,1 ------ L3,2 L3,1

21 1 x 6,6 x 6,4 x 6,6 x 6,5 H4,2 H4,1 H4,0 H2,2 ------ H3,2 H3,1 L4,2 L4,1 L4,0 L2,2 ------ L3,2 L3,1

22 2 x 7,2 x 7,0 x 7,2 x 7,1 H4,2 H4,1 H4,0 H2,2 H5,0 ------ H3,2 L4,2 L4,1 L4,0 L2,2 L5,0 ----- L3,2

23 1 x 7,4 x 7,2 x 7,4 x 7,3 ------ H4,2 H4,1 H4,0 H5,1 H5,0 ------ ------ L4,2 L4,1 L4,0 L5,1 L5,0 -----

24 2 x 7,6 x 7,4 x 7,6 x 7,5 ----- H4,2 H4,1 H4,0 H5,2 H5,1 H5,0 ------ L4,2 L4,1 L4,0 L5,2 L5,1 L5,0

25 1 x 8,2 x 8,0 x 8,2 x 8,1 ------ H6,0 H4,2 H4,1 ------ H5,2 H5,1 ------ L6,0 L4,2 L4,1 ----- L5,2 L5,1

IAENG International Journal of Computer Science, 36:2, IJCS_36_2_01
__

(Advance online publication: 22 May 2009)

Cycle 3 scans 2 more pixels, located at X(0,5) and X(0,6), and
loads them along with contents of register Rd0 into RP1
latches Rt1, Rt2, and Rt0, respectively. In cycle 4, the
scanning moves to the second row and scans 3 pixels from
locations X(1,0), X(1,1), and X(1,2) and loads them into RP2
latches. The scanning proceeds according to the scan method
in Fig. 3, until the last row is reached, say, to complete the
first run. In the second run, the scan returns to the first row to
consider for scanning the next 7 columns. This process is
repeated until the whole image pixels are scanned.
 In cycle 7, the first outputs of the first operation,
generated by RP1 and labeled H0,0 and L0,0 in the table, are
shifted into SRH0 and SRL0, respectively, by the pulse
ending the cycle. In cycle 8, the outputs of the second
operation H0,1 and L0,1 generated by RP2 are shifted into
SRH0 and SRL0, respectively. Whereas, in cycle 9, the
results of the third operation H0,2 and L0,2 generated by RP1
are shifted into SRH0 and SRL0, respectively. In cycle 10,
the results of the fourth operation H1,0 and L1,0 produced by
RP2 are shifted into registers SRH1 and SRL1, respectively.
Similarly, in cycles 11 and 12, two more coefficients are
shifted into each SRH1 and SRL1, as shown in the table. The
4 FIFO registers each now contains 3 coefficients.
 In cycle 13, for the first time, CP1 and CP2 input latches
labeled Rt0, Rt1, and Rt2 simultaneously are loaded with the
high coefficients H0,0 , H1,0, and H2,0, and the low
coefficients L0,0, L2,0, and L1,0, respectively, as shown in
Table 1. Note that coefficient H2,0, generated by RP1 during
cycle 13, which passes through the multiplexers labeled
muxh, mux2, and muxce0, will be loaded into Rt2 of the CP1
by the pulse ending the cycle. Similarly, L2,0 is loaded into
Rt2 of CP2. Moreover, coefficients H2,0 and L2,0 are shifted
into SRH0 and SRL0, respectively, as shown in Table 1.
During cycle 14 no new coefficients are transferred to CP1
and CP2 latches and the coefficients stored in the 4 FIFO shift
registers remain unchanged. However, coefficients H2,1 and
L2,1 generated by RP2 during cycle 14 are loaded into
registers RdH and RdL, respectively.
 Cycle 15 generates coefficients H2,2 and L2,2, which are
loaded into registers RdH and RdL, respectively, while their
contents are shifted into SRH0 and SRL0 by the pulse ending
the cycle. Cycle 15 also loads new coefficients into CP1 and
CP2 latches, as shown in Table 1, while contents of the two
FIFO registers SRH1 and SRL1 remain unchanged.
 In cycle 16, coefficients H3,0 and L3,0 are shifted into
SRH1 and SRL1 , respectively, while RdH, SRH0, RdL, and
SRL0 maintain their contents and no data are scheduled for
CPs. The dataflow then proceeds as shown in table 1.
 Observe that the dataflow pattern between cycles 13 and
18 in Table 1, especially in the 4 FIFO registers including
RdH and RdL, repeats each 6 clock cycles. A careful
investigation of Table 1 from cycles 13 to 18 shows that the
control signals of the two multiplexers labeled mux2 and the
two multiplexers labeled mux3 including the control signals
(edh and edl) of the registers labeled RdH and RdL can all be
combined into one signal, s2. Moreover, examination of Table
1 shows that the control signals values for signals s2, sl0=sh0,
and sl1=sh1 starting from cycles 13 to 18 can be as shown in
Table 2. These control signal values repeat every 6 clock
cycles.

 According to the 5/3 DDGs, each coefficient calculated in
the first level (step1) is also required in the calculations of
two coefficients in the second level (step 2). That implies a
high coefficient calculated by RP1 in stage 1 should be passed
to stage 2 of RP2 and vice versa. The 9/7 DDGs also shows
similar dependencies among coefficients of two levels or
steps. Therefore, the path labeled P1 and P2 have been added
in Fig. 4 so that the two RPs can pass high coefficients to
each other. However, this would require the two RPs datapath
architectures for 5/3 and 9/7 to be modified as shown in Figs.
5 and 6, respectively. The 9/7 RPs datapath shown in Fig. 6
seems somewhat very complex. Therefore, its dataflow is
provided in Table 3, which describes in detail how it works.
In this table, the first index refers to a row number, while the
second refers to a pixel or a coefficient number in the DDGs.
Note that in Table 3 at cycle 5 coefficient 0,5 is stored in the
first location in TLB1 of RP1, whereas at cycle 11 coefficient

2,5 is stored in the second location.
 In addition, if the third high coefficient of the first row
labeled Y(5) in the 5/3 DDGs is stored in the first location in
TLB1 of RP1, then the third high coefficient of the second
row should be stored in the first location in TLB1 of RP2 and
so on. Similarly, the 9/7 coefficients labeled Y”(5), Y”(4), and
Y’(3) in the DDGs generated by processing the first row of
the first run should be stored in the first locations of each
TLB1, TLB2, and TLB3 of RP1, respectively. On the other
hand, the 3 coefficients generated by processing the second
row of the first run should be stored in the first locations of
each TLB1, TLB2, and TLB3 of RP2, respectively, and so on.
The same process also applies in all subsequent runs.
 Based on Table 3, the control signal sf of the 8
multiplexers labeled muxf in Fig. 6 can be set 0 in the first run
and 1 in all other runs. It is very important to note that,
especially in the first run, the scan method in Fig. 3 allows 5/3
RPs to yield 6 coefficients, half belong to the first 3 columns
of H decomposition and the other half to L decomposition,
each time it processes 7 pixels of each row. On the other
hand, the 9/7 yields only 4 coefficients, 2 high and 2 low, by
processing the same number of pixels in each row. This
implies that in the first run each 5/3 CP would process 3
columns in an interleave fashion as shown in Table 1,
whereas each 9/7 CP would process in the first run only two
columns in an interleave fashion. However, in all subsequent
runs, except the last, each 9/7 CP and each 5/3 CP would
process 3 columns at a time. This interleaving process,
however, would require 9/7 and 5/3 CPs to be modified in
order to allow interleaving in execution to take place.
 The advantage of this organization is that the TLBs in Figs.
5 and 6 are not required to be read and written in the same

TABLE 2
CONTROL SIGNAL VALUES FOR s3, sl0, AND sl1

Cycle number s2 sl0=sh0 sl1=sh1
13 0 1 1
14 1 0 0
15 1 1 0
16 0 0 1
17 1 1 1
18 0 0 1

IAENG International Journal of Computer Science, 36:2, IJCS_36_2_01
__

(Advance online publication: 22 May 2009)

0

1

2sre
Rt0

22f

Rt1

22f

Rt1

22f 22f
1TLB

2

N

TLBARincAR

22f

1

4s

1Rd

22f

Rt2

22f

Rt0

22f

0

1

1sre

Rt0

22f

+

0

1

2sre
Rt0

22f

Rt1

22f

Rt1

22f 22f

1TLB

2

N

TLBARincAR

22f

0

1

4s

2Rd

22f

Rt2

22f

Rt0

22f

0

1

1sre

Rt0

22f

+

2P1P

2stage

1RP

2RP

.

Rt1

Rt1

Fig. 5. Modified stage 2 of 5/3 RPS datapath architecture

0

WR

WR

clock cycle. Because, according to the scan method shown in
Fig. 3, 7 pixels are scanned from each row to initiate 3
successive operations and the TLB is read in the first
operation and is written in the third operation starting from
the second run. Furthermore, the fact that 7 pixels are scanned
from each row to initiate 3 consecutive operations and the
TLB is read in the first operation and written in the third can
be used to derive, for all runs except the last, the control
signal values for the signals labeled WR and incAR in both
5/3 and 9/7 TLBs including s4, as shown in Table 4. These
signal values repeat every 3 cycles starting from the first
cycle. Signals in Table 4, including the extension
multiplexers control signals, can be carried by latches, similar
to pipeline latches, from the control unit to the first stage of
the pipeline then to the next stage and so on. When a stage
where a signal(s) is used is reached that signal(s) can be
dropped and the rest are carried on to the next stage and so on
until they are all used.

B. Transitions to the last run
 The description given so far including the control signal
values in Tables 2 and 4 apply to all runs except the last run,

which requires special handling. The last run in any
decomposition level can be determined and detected by
subtracting after each run 6 from the width (M) of an image.
The last run is reached when M becomes less than or equal to
6 (M 6) and M can have one of the six different values 6, 5,
4, 3, 2, or 1, which imply 6 different cases. These values give
number of external memory columns that will be considered
for scanning in the last run.
 According to the scan method, in each run, 7 columns of
the external memory are considered for scanning and each 7
pixels scanned, one from each column, initiate 3 consecutive
operations. Thus, since, cases 6 and 5 initiate 3 operations;
they can be handled as normal runs.
 On the other hand, cases 4 and 3 initiate 2 operations and
the dataflow in the last run will differ from the normal
dataflow given in Table 1. Therefore, 2 dataflow are provided
in Tables 5 and 6 for even and odd N, respectively, so that
they can be applied when either of the two cases occurs. The
dataflow shown in Table 5 is derived for case 4 but it can be
used also for case3. Similarly, Table 6 is derived for case3 but
it can be used also for case 4. Moreover, examination of
Tables 5 and 6 show that after 2k+2 cycles from the last

IAENG International Journal of Computer Science, 36:2, IJCS_36_2_01
__

(Advance online publication: 22 May 2009)

0

1

2sre
0Rt

22f

1Rt

22f

1Rt

22f
1TLB

2

N

WR

0

1

4s
1Rd22f

2Rt

22f

0Rt

22f

0

1

1sre
+

0

1

2sre
0Rt

22f

1Rt

22f

1Rt

22f

1TLB

2

N
WR

0

1

4s

2Rd

22f

2Rt

22f

0Rt

22f

0

1

1sre

+

2stage

1RP

2RP

Fig. 6. Modified 9/7 RPs datapath for 2-parallel intermediate architecture

0
1

sf

0
1

sf

2

N

2

N

22f

0Rt

22f

22f

0Rt

22f

1Rt

1Rt

22f

0Rt

22f

22f

0

22f

1Rt

1Rt

0

1

4s

0

11Rd

0

1Rd2

0
1

4s

sf

sf

2Rt

22f

2Rt

22f

WR

WR

Address

Address

Address

2TLB

2TLB

0

1

5sre

1Rt

22f

2Rt

22f

0Rt

22f

0

1

4sre
+

0

1

5sre

1Rt

22f

2Rt

22f

0Rt

22f

0

1

4sre

+

1RP

2RP

22f

0Rt

22f

22f

0Rt

22f

1Rt

1Rt

0

1

5stage

0

1

sf

+

+

3sre

0

1

5stage

0

1

sf

+

+

3sre

2

N

0

1

sf

0

1

4s

2

N
0

1
sf

0

1

4s

1Rd

2Rd

+

22f

22f

WR

WR

3TLB

3TLB

Addr

Addr

+

+

+

3stage 4stage

6stage 7stage

H

H

L

L

Rt

IAENG International Journal of Computer Science, 36:2, IJCS_36_2_01
__

(Advance online publication: 22 May 2009)

TABLE 3 DATAFLOW FOR MODIFIED 9/7 RPS DATAPATH (FIG. 6)

TABLE 4 CONTROL SIGNAL VALUES FOR SIGNALS
IN STAGE 2 OF BOTH RP1 AND RP2

Cycle
Number

RP
number WR incAR s4

1 1 0 0 1
2 2 0 0 0
3 1 1 1 0

empty cycle, where k is the number of pipeline stages of the
RPs, the control signal values for signals s2, sl0, and sl1,
which repeat every 4 clock cycles, should be as shown in
Table 7 for the rest of the decomposition level. However,
during the 2k+2 and the empty cycles, the control signal
values for s2, sl0 and sl1 follow Table 3. Therefore, cases 4
and 3 can be considered as one case. Only at the beginning of
the transition to the last run, if N is even, then one empty
cycle is inserted, otherwise,
4 cycles are inserted, according to Table 5 and 6, respectively.
During an Empty cycle external memory is not scanned as in
cycle 25 in Table 5.
 On the other hand, cases 2 and 1, each initiate one
operation. Case 2 initiates an operation each time 2 pixels,
one from each column, are scanned, whereas case 1 initiate an
operation each time a pixel is scanned from the last column.

Therefore, dataflow of the last run in the two cases will differ
from the normal dataflow given in Table 1. Similar to cases 4
and 3, two dataflow for cases 2 and 1 can be derived and the
control signal values for signals s2, sl0, and sl1 can be
determined by investigating the two dataflow. The result of
the investigation would show that the control signal values for
both cases 2 and 1 are identical; therefore, the two cases can
be treated as one case.
 Fig. 7 shows the block diagram of the control unit that
generates signals s2, sl0, and sl1 along with the circuits that
detect the occurrence of the last run and the 6 cases. First, M
is loaded into register RM, then register R6, which contain the
2’s complement of 6, is subtracted from RM through the 2’s
complement adder circuit and the result of the subtraction is
loaded back into RM. If Lr is 1, then that implies the last run
is reached and the result of the subtraction is not transferred to
RM. The 3 least significant bits of register RM is then
examined by the control unit to determine which of the 6
cases has occurred. First z1 is examined. If z1 is 1, that
implies the occurrence of either cases 6 or 5 and the control
unit proceeds as usual. But, if z1 is 0, then z2 is examined. If
z2 is 1, then cases 4 and 3 are applied, otherwise, cases 2 and
1 are applied.
 The above description can be generalized for determining

 RP1
Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7

CK Rt0 Rt1 Rd1 TLB1 Rt0 Rt2 Rt1 Rt0 Rt1 Rd1 TLB2 Rt0 Rt2 Rt1 Rt0 Rt1 Rd1 TLB3 Rt0 Rt2 Rt1
1 X0,0 0,1 --- -----
3 X0,4 0,5 0,3 ---- X0,0 ---- 0,1
5 X1,2 1,3 1,1 0,5 X0,4 0,3 0,5 0,0 0,1 ---- ----
7 X2,0 2,1 1,5 X1,2 1,1 1,3 0,4 ---- ----- ---- 0,0 0,2 0,1
9 X2,4 2,5 2,3 X2,0 ---- 2,1 1,2 1,3 ---- 0,4 ---- ---- ---- 0,0 Ý0,1 ---- -----
11 -------------------- 2,5 X2,4 2,3 2,5 2,0 2,1 ---- 1,2 1,4 1,3 ----- ----- Ý0,3 ---- 0,0 ---- Ý0,1
13 X0,6 0,7 ----- -------------------- 2,4 ---- ---- 2,0 2,2 2,1 1,2 Ý1,3 Ý1,1 Ý0,3 ----- ---- -----
15 X0,10 0,11 0,9 X0,6 0,5 0,7 -------------------- 2,4 -------------------- 2,0 Ý2,1 ---- ----- 1,2 Ý1,1 Ý1,3
17 X1,8 1,9 1,7 0,11 X0,10 0,9 0,11 0,6 0,5 ---- -------------------- ------------ Ý2,3 2,0 ----- Ý2,1
19 X2,6 2,7 ------ X1,8 1,7 1,9 0,10 0,9 0,8 0,6 0,4 0,5 -------------------- Ý2,3 ------------------
21 X2,10 2,11 2,9 X2,6 2,5 2,7 1,8 1,7 1,6 0,10 0,10 0,8 0,9 0,4 Ý0,5 ---- ------------------
23 2,11 X2,10 2,9 2,11 2,6 2,5 ---- 1,8 1,6 1,7 0,8 Ý0,9 Ý0,7 0,4 Ý0,3 Ý0,5
25 2,10 2,9 2,8 2,6 2,4 2,5 1,6 Ý1,7 Ý1,5 Ý0,9 0,8 Ý0,7 Ý0,9
27 2,10 2,10 2,8 2,9 2,4 Ý2,5 ---- 1,6 Ý1,5 Ý1,7
29 2,8 Ý2,9 Ý2,7 2,4 Ý2,3 Ý2,5
31 Ý2,9 2,8 Ý2,7 Ý2,9
33 ------------------
 RP2

Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7
CK Rt0 Rt1 Rd2 TLB1 Rt0 Rt2 Rt1 Rt0 Rt1 Rd2 TLB2 Rt0 Rt2 Rt1 Rt0 Rt1 Rd2 TLB3 Rt0 Rt2 Rt1
2 X0,2 0,3 0,1 ----
4 X1,0 1,1 0,5 ---- X0,2 0,1 0,3
6 X1,4 1,5 1,3 ---- X1,0 ---- 1,1 0,2 0,3 ---- ----
8 X2,2 2,3 2,1 1,5 X1,4 1,3 1,5 1,0 1,1 ----- ---- 0,2 0,4 0,3
10 -------------------- X2,2 2,1 2,3 1,4 ---- ---- ---- 1,0 1,2 1,1 0,2 Ý0,3 Ý0,1 ----
12 -------------------- -------------------- 2,2 2,3 ---- 1,4 ----- ----- ---- 1,0 Ý1,1 ---- ---- 0,2 Ý0,1 Ý0,3
14 X0,8 0,9 0,7 -------------------- -------------------- 2,2 2,4 2,3 ---- ---- Ý1,3 ---- 1,0 ----- Ý1,1
16 X1,6 1,7 ----- X0,8 0,7 0,9 -------------------- -------------------- 2,2 Ý2,3 Ý2,1 Ý1,3 -------------------
18 X1,10 1,11 1,9 X1,6 1,5 1,7 0,8 0,7 0,6 -------------------- -------------------- 2,2 Ý2,1 Ý2,3
20 X2,8 2,9 2,7 1,11 X1,10 1,9 1,11 1,6 1,5 ---- 0,8 0,6 0,7 -------------------- ------------------
22 X2,8 2,7 2,9 1,10 1,9 1,8 1,6 1,4 1,5 0,6 Ý0,7 Ý0,5 ------------------
24 2,8 2,7 2,6 1,10 1,10 1,8 1,9 1,4 Ý1,5 ----- 0,6 Ý0,5 Ý0,7
26 2,8 2,6 2,7 1,8 Ý1,9 Ý1,7 1,4 Ý1,3 Ý1,5
28 2,6 Ý2,7 Ý2,5 Ý1,9 1,8 Ý1,7 Ý1,9
30 2,6 Ý2,5 Ý2,7
32 -------------------

IAENG International Journal of Computer Science, 36:2, IJCS_36_2_01
__

(Advance online publication: 22 May 2009)

TABLE 5 DATAFLOW OF THE LAST RUN FOR CASES 4 AND 3 WHEN N IS EVEN

ck RP CP1 &CP2 input latches
Rt0 Rt2 Rt1 Rt0 Rt2 Rt1

 CP1 & CP2 output latches
 Rt Rt Rt Rt

29 1 H4,2 H6,2 H5,2 L4,2 L6,2 L5,2 HH1,2 HL1,2 LH1,2 LL1,2
30 2 --- ------------------------------------
31 1 H6,0 H6,0 H7,0 L6,0 L6,0 L7,0 HH2,0 HL2,0 LH2,0 LL2,0
32 2 --- ------------------------------------
33 1 H6,1 H6,1 H7,1 L6,1 L6,1 L7,1 HH2,1 HL2,1 LH2,1 LL2,1
34 2 --- ------------------------------------
35 1 H6,2 H6,2 H7,2 L6,2 L6,2 L7,2 HH2,2 HL2,2 LH2,2 LL2,2
36 2 --- ------------------------------------
37 1 H0,3 H2,3 H1,3 L0,3 L2,3 L1,3 HH3,0 HL3,0 LH3,0 LL3,0
38 2 --- ------------------------------------
39 1 H0,4 H2,4 H1,4 L0,4 L2,4 L1,4 HH3,1 HL3,1 LH3,1 LL3,1
40 2 --- ------------------------------------
41 1 H2,3 H4,3 H3,3 L2,3 L4,3 L3,3 HH3,2 HL3,2 LH3,2 LL3,2
42 2 --- ------------------------------------
43 1 H2,4 H4,4 H3,4 L2,4 L4,4 L3,4 HH0,3 HL0,3 LH0,3 LL0,3
44 2 --- ------------------------------------
45 1 H4,3 H6,3 H5,3 L4,3 L6,3 L5,3 HH0,4 HL0,4 LH0,4 LL0,4
46 2 --- ------------------------------------
47 1 H4,4 H6,4 H5,4 L4,4 L6,4 L5,4 HH1,3 HL1,3 LH1,3 LL1,3
48 2 --- ------------------------------------
49 1 H6,3 H6,3 H7,3 L6,3 L6,3 L7,3 HH1,4 HL1,4 LH1,4 LL1,4
50 2 --- ------------------------------------
51 1 H6,4 H6,4 H7,4 L6,4 L6,4 L7,4 HH2,3 HL2,3 LH2,3 LL2,3

Ck RP Rd0 RP’s input latches
 Rt0 Rt2 Rt1

RdH SRH0
R2 R1 R0

 SRH1
R2 R1 R0

RdL SRL0
R2 R1 R0

 SRL1
R2 R1 R0

25 1 ------ ---------------------- ------ H6,0 H4,2 H4,1 ------ H5,2 H5,1 ----- L6,0 L4,2 L4,1 ----- L5,2 L5,1

26 2 x 0,8 x 0,6 x 0,8 x 0,7 H6,1 H6,0 H4,2 H4,1 ------ H5,2 H5,1 L6,1 L6,0 L4,2 L4,1 ----- L5,2 L5,1
27 1 ------ x 0,8 x 0,8 x 0,9 H6,2 H6,1 H6,0 H4,2 ------ H5,2 H5,1 L6,2 L6,1 L6,0 L4,2 ----- L5,2 L5,1
28 2 x 1,8 x 1,6 x 1,8 x 1,7 H6,2 H6,1 H6,0 H4,2 H7,0 ------ H5,2 L6,2 L6,1 L6,0 L4,2 L7,0 ------ L5,2

29 1 ------ x 1,8 x 1,8 x 1,9 ----- H6,2 H6,1 H6,0 H7,1 H7,0 ------ ------ L6,2 L6,1 L6,0 L7,1 L7,0 ------
30 2 x 2,8 X2,6 x 2,8 x 2,7 ------ H6,2 H6,1 H6,0 H7,2 H7,1 H7,0 ------ L6,2 L6,1 L6,0 L7,2 L7,1 L7,0

31 1 ------ x 2,8 x 2,8 x 2,9 ------ ----- H6,2 H6,1 ------ H7,2 H7,1 ------ ------ L6,2 L6,1 ------ L7,2 L7,1
32 2 x 3,8 x 3,6 x 3,8 x 3,7 H0,3 ----- H6,2 H6,1 ------ H7,2 H7,1 L0,3 ------ L6,2 L6,1 ------ L7,2 L7,1

33 1 ------ x 3,8 x 3,8 x 3,9 H0,4 H0,3 ----- H6,2 ------ H7,2 H7,1 L0,4 L0,3 ------ L6,2 ------ L7,2 L7,1
34 2 x 4,8 x 4,6 x 4,8 x 4,7 H0,4 H0,3 ----- H6,2 H1,3 ------ H7,2 L0,4 L0,3 ----- L6,2 L1,3 ------ L7,2

35 1 ------ x 4,8 x 4,8 x 4,9 ------ H0,4 H0,3 ----- H1,4 H1,3 ------ ------ L0,4 L0,3 ----- L1,4 L1,3 -----
36 2 x 5,8 x 5,6 x 5,8 x 5,7 H2,3 ----- H0,4 H0,3 ------ H1,4 H1,3 L2,3 ----- L0,4 L0,3 ------ L1,4 L1,3

37 1 ------ x 5,8 x 5,8 x 5,9 H2,4 H2,3 ----- H0,4 ------ H1,4 H1,3 L2,4 L2,3 ----- L0,4 ------ L1,4 L1,3

38 2 x 6,8 x 6,6 x 6,8 x 6,7 H2,4 H2,3 ----- H0,4 H3,3 ------ H1,4 L2,4 L2,3 ----- L0,4 L3,3 ------ L1,4

39 1 ------ x 6,8 x 6,8 x 6,9 ------ H2,4 H2,3 ----- H3,4 H3,3 ------ ------ L2,4 L2,3 ----- L3,4 L3,3 -----

40 2 x 7,8 x 7,6 x 7,8 x 7,7 H4,3 ------ H2,4 H2,3 ----- H3,4 H3,3 L4,3 ------ L2,4 L2,3 ----- L3,4 L3,3

41 1 ------ x 7,8 x 7,8 x 7,9 H4,4 H4,3 ------ H2,4 ----- H3,4 H3,3 L4,4 L4,3 ------ L2,4 ----- L3,4 L3,3

42 2 ------ ---------------------- H4,4 H4,3 ------ H2,4 H5,3 ----- H3,4 L4,4 L4,3 ------ L2,4 L5,3 ----- L3,4

43 1 ------ ---------------------- ------ H4,4 H4,3 ------ H5,4 H5,3 ----- ------ L4,4 L4,3 ------ L5,4 L5,3 -----

44 2 ------ ---------------------- H6,3 ----- H4,4 H4,3 ------ H5,4 H5,3 L6,3 ----- L4,4 L4,3 ------ L5,4 L5,3

45 1 ------ ---------------------- H6,4 H6,3 ----- H4,4 ------ H5,4 H5,3 L6,4 L6,3 ----- L4,4 ------ L5,4 L5,3

46 2 ------ ---------------------- H6,4 H6,3 ----- H4,4 H7,3 ------ H5,4 L6,4 L6,3 ----- L4,4 L7,3 ------ L5,4

47 1 ------ ---------------------- ------ H6,4 H6,3 ----- H7,4 H7,3 ------ ------ L6,4 L6,3 ----- L7,4 L7,3 -----

48 2 ------ ---------------------- ------ ----- H6,4 H6,3 ----- H7,4 H7,3 ------ ----- L6,4 L6,3 ----- L7,4 L7,3

49 1 ------ ---------------------- ------ ----- ------ H6,4 ----- H7,4 H7,3 ------ ----- ------ L6,4 ----- L7,4 L7,3

50 2 ------ ---------------------- ------ ----- ------ H6,4 ----- ------ H7,4 ------ ----- ------ L6,4 ----- ------ L7,4

IAENG International Journal of Computer Science, 36:2, IJCS_36_2_01
__

(Advance online publication: 22 May 2009)

TABLE 6 DATAFLOW OF THE LAST RUN FOR CASES 4 AND 3 WHEN N IS ODD

ck RP CP1 &CP2 input latches
Rt0 Rt2 Rt1 Rt0 Rt2 Rt1

 CP1 & CP2 output latches
 Rt Rt Rt Rt

22 2 --- ------------------------------------
23 1 H2,2 H4,2 H3,2 L2,2 L4,2 L3,2 HH0,2 HL0,2 LH0,2 LL0,2
24 2 --- ------------------------------------
25 1 H4,0 H6,0 H5,0 L4,0 L6,0 L5,0 HH1,0 HL1,0 LH1,0 LL1,0
26 2 --- ------------------------------------
27 1 H4,1 H6,1 H5,1 L4,1 L6,1 L5,1 HH1,1 HL1,1 LH1,1 LL1,1
28 2 --- ------------------------------------
29 1 H4,2 H6,2 H5,2 L4,2 L6,2 L5,2 HH1,2 HL1,2 LH1,2 LL1,2
30 2 --- ------------------------------------
31 1 H6,0 ------ ------ L6,0 ------ ------ HH2,0 HL2,0 LH2,0 LL2,0
32 2 --- ------------------------------------
33 1 H6,1 ------ ------ L6,1 ----- ------ HH2,1 HL2,1 LH2,1 LL2,1
34 2 --- ------------------------------------
35 1 H6,2 ------ ------ L6,2 ----- ------ HH2,2 HL2,2 LH2,2 LL2,2
36 2 --- ------------------------------------
37 1 H0,3 H2,3 H1,3 L0,3 L2,3 L1,3 ------- HL3,0 ------- LL3,0
38 2 --- ------------------------------------
39 1 ----------------------- L0,4 L2,4 L1,4 ------- HL3,1 ------- LL3,1
40 2 --- ------------------------------------
41 1 H2,3 H6,4 H3,3 L2,3 L4,3 L3,3 -------- HL3,2 -------- LL3,2
42 2 --- ------------------------------------

the last run for any scan method (first, second, or third scan
method and so on) used in designing single or l-parallel
architectures. Thus, in general, the last run in any scan
method can be determined and detected by subtracting after
each run 2i from the width (M) of an image. The last run is
reached when M becomes less than or equal 2i (M 2i), where
i=1, 2, 3… denote the first, the second, and the third scan
methods. M can have one of 2i different values, when last run
is reached, as follows: 2i, 2i-1, 2i-2 … 2, 1, which implies 2i

cases. These values give number of external memory columns
that would be considered for scanning in the last run. In
addition, cases 2i and 2i-1 can always be handled as normal
runs.

C. 3-parallel pipelined intermediate architecture

 The 2-parallel pipelined intermediate architecture can be
extended to 3-parallel pipelined intermediate architecture as
shown in Fig. 8. This architecture increases the speed up by

Ck RP Rd0 RP’s input latches
 Rt0 Rt2 Rt1

RdH SRH0
R2 R1 R0

 SRH1
R2 R1 R0

RdL SRL0
R2 R1 R0

 SRL1
R2 R1 R0

22 2 ------ ---------------------- H4,2 H4,1 H4,0 H2,2 H5,0 ------ H3,2 L4,2 L4,1 L4,0 L2,2 L5,0 ----- L3,2

23 1 ------ ---------------------- ------ H4,2 H4,1 H4,0 H5,1 H5,0 ------ ------ L4,2 L4,1 L4,0 L5,1 L5,0 ----
24 2 ------ ---------------------- ------ H4,2 H4,1 H4,0 H5,2 H5,1 H5,0 ------ L4,2 L4,1 L4,0 L5,2 L5,1 L5,0
25 1 ------ ---------------------- ------ H6,0 H4,2 H4,1 ----- H5,2 H5,1 ------ L6,0 L4,2 L4,1 ----- L5,2 L5,1

26 2 x 0,8 x 0,6 x 0,8 x 0,7 H6,1 H6,0 H4,2 H4,1 ----- H5,2 H5,1 L6,1 L6,0 L4,2 L4,1 ----- L5,2 L5,1
27 1 ------ x 0,8 ------ ------- H6,2 H6,1 H6,0 H4,2 ----- H5,2 H5,1 L6,2 L6,1 L6,0 L4,2 ----- L5,2 L5,1

28 2 x 1,8 x 1,6 x 1,8 x 1,7 H6,2 H6,1 H6,0 H4,2 ----- ------ H5,2 L6,2 L6,1 L6,0 L4,2 ----- ----- L5,2
29 1 ------ x 1,8 ------ ------- ------ H6,2 H6,1 H6,0 -------------------- ------ L6,2 L6,1 L6,0 ------------------

30 2 x 2,8 X2,6 x 2,8 x 2,7 ------ H6,2 H6,1 H6,0 -------------------- ------ L6,2 L6,1 L6,0 ------------------
31 1 ------ x 2,8 ------ ------ ------ ------ H6,2 H6,1 -------------------- ------ ------ L6,2 L6,1 ------------------

32 2 x 3,8 x 3,6 x 3,8 x 3,7 H0,3 ------ H6,2 H6,1 -------------------- L0,3 ------ L6,2 L6,1 ------------------
33 1 ------ x 3,8 ------ ------- ------ H0,3 ------ H6,2 -------------------- L0,4 L0,3 ------ L6,2 ------------------

34 2 x 4,8 x 4,6 x 4,8 x 4,7 ------ H0,3 ------ H6,2 H1,3 ------ ---- L0,4 L0,3 ------ L6,2 L1,3 ----- -----

35 1 ------ x 4,8 ------ ------- ------ ------ H0,3 ------ ------ H1,3 ---- ------ L0,4 L0,3 ------ L1,4 L1,3 -----

36 2 x 5,8 x 5,6 x 5,8 x 5,7 H2,3 ------ ------ H0,3 ------ ----- H1,3 L2,3 ------ L0,4 L0,3 ------ L1,4 L1,3

37 1 ------ x 5,8 ------ ------ ------ H2,3 ------ ----- ------ ----- H1,3 L2,4 L2,3 ------ L0,4 ------ L1,4 L1,3

38 2 x 6,8 x 6,6 x 6,8 x 6,7 ------ H2,3 ------ ----- H3,3 ------ ----- L2,4 L2,3 ------ L0,4 L3,3 ----- L1,4

39 1 ------ x 6,8 ------ ------ ------ ------ H2,3 ----- ------ H3,3 ----- ------ L2,4 L2,3 ------ L3,4 L3,3 -----

40 2 ------ --------------------- H4,3 ------ ------ H2,3 ------ ------ H3,3 L4,3 ------ L2,4 L2,3 ----- L3,4 L3,3

41 1 ------ --------------------- ------ H4,3 ------- ----- ------ ------ H3,3 L4,4 L4,3 ------ L2,4 ----- L3,4 L3,3

42 2 ------ --------------------- ------ H4,3 ------- ----- H5,3 ------ ----- L4,4 L4,3 ------ L2,4 L5,3 ---- L3,4

IAENG International Journal of Computer Science, 36:2, IJCS_36_2_01
__

(Advance online publication: 22 May 2009)

TABLE 7 CONTROL SIGNAL VALUES FOR
 s2, sl0, AND sl1, IN THE LAST RUN.

Cycle
number

s2 sl0=sh0 sl1=sh1

34 0 0 1
35 1 1 1
36 1 1 1
37 1 1 0

6R

ABC

RM

mux0 1

XNOR

ORAND

OR

s

N
O

R

Cout

load

2s

2f

0sl

1sl

reset

1z

2z

Lr
runlast
6≤M

start

1z

2z

0

0 1

1

101
110

011,100001,010
Fig. 7. A control circuit that determines

the last run

M

 Adder

factor of 3 as compared with single pipelined architecture.
The architecture performs its computations according to the
dataflow given in Table 8. It operates with frequency f3 /3
and scans the external memory with frequency f3. The clock
frequency f3 can be obtained from (3) as

ptkf 33 = (4)
The waveform of the frequency f3 including the two
waveforms of the frequency f3 /3 labeled f3a and f3b that can be
generated from f3 are shown in Fig. 9.
 The RP2 loads new data into its latches every time clock f3b
makes a positive transition, whereas RP1 and RP3 load when
clock f3a makes a positive and a negative transition,
respectively. On the other hand, CP1 and CP3 loads
simultaneously new data every time clock f3a makes a positive
transition and CP2 loads every time clock f3b makes a positive
transition. Furthermore, for the architecture to operate
properly, the three clocks labeled f3, f3a, and f3b must be
synchronized as shown in Fig.9. Clock f3a and f3b can be
generated from f3 using a 2-bit register clocked by f3 and with

a synchronous control signal clear. To obtain the divide-by-3
frequency, the register should be designed to count from 0 to
2 and then repeats. The synchronization can then be achieved
by the control unit simply by asserting the clear signal high
just before the first cycle where the external memory scanning
begins.
 The buses labeled bus0, bus1, and bus2 are used for
transferring, in every clock cycle, 3 pixels from external
memory to one of the RPs latches labeled Rt0, Rt1, and Rt2.
In the first clock cycle, 3 pixels are scanned from external
memory, locations X(0,0), X(0,1) and X(0,2), and are loaded
into RP1 latches to initiate the first operation. While the third
pixel (X(0,2)) in bus2, which is required in the next operation,
is also loaded into Rd0. The second clock cycle scans 2 pixels
from external memory, locations X(0,3) and X(0,4), through
bus1 and bus2 , respectively, and loads them into RP2 latches
along with the pixel in register Rd0 by the positive transition
of clock f3a. This cycle also stores pixel carried by bus2 in
register Rd0. Similarly, the third clock cycle transfers 2 pixels
from external memory, locations X(0,5) and X(0,6), including
the pixel in register Rd0 to RP3 latches to initiate the third
operation. The scan then moves to the second row to repeat
the process starting from RP1, as shown in Table 8.
 The paths labeled P1, P2, and P3 in Fig. 8 are used for
passing coefficients between the three RPs, since a coefficient
calculated in one stage of a RP is always required in the next
stage of another RP. This will require the combined three RPs
datapath architectures for 5/3 and 9/7 to be modified as shown
in Figs. 10 (a) and (a, b), respectively, so that they can fit into
RPs of the 3-parallel architecture shown in Fig. 8. Note that
Figs. 10 (a) and (b) together form the 9/7 RPs datapath
architecture. This architecture can be verified using the 9/7
DDGs shown in Fig. 2. The control signal sf of the 9
multiplexers, labeled muxf in Fig. 10, is set 1 in the first run
and 0 in all other runs.
 In the 5/3 datapath architecture shown in Fig. 10 (a), all
high coefficients calculated in stage 1 of the RP3 in each run
are stored in TLB of stage 2 so that they can be used by RP1
in the calculations of low coefficients in the next run. On the
other hand, the 9/7 datapath stores the coefficients labeled
Y”(5), Y”(4), and Y’(3) in the DDGs, which can be generated
by processing every row of the first run, in TLB1, TLB2, and
TLB3, respectively. Similarly, all other runs can be handled.
 Similar to the 2-parallel architecture, the 5/3 RPs will
generate 6 coefficients each time 7 pixels of each row are
processed. While, the 9/7 RPs will generate 4 coefficients by
processing the same number of pixels in the first run. Each 4
coefficients will be generated by RP1 and RP2, while RP3
will generate invalid coefficients during the first run. As
shown in Table 8, each CP in the 3-parallel architecture
processes, in each run, 2 columns coefficients in an interleave
fashion. This interleave processing will also require each CP
to be modified to allow interleaving in execution.
 In the first run the TLB is only written. However, starting
from the second run until the run before last, the TLB is read
and written in the same clock cycle, with respect to clock f3a.
The negative transition of clock f3a always brought a new high
coefficient from stage 1 into stage 2 of the RP3. During the
low pulse of clock f3a the TLB is read and the result is placed

IAENG International Journal of Computer Science, 36:2, IJCS_36_2_01
__

(Advance online publication: 22 May 2009)

3fClock

333 ff a =

333 ff b =

1RPload 2RPload 3RPload

TLBadRe TLBWrite

output
RPpass

muxh
muxl

1

&

output
RPpass

muxh
muxl

2

&

output
RPpass

muxh
muxl

3

&

Fig. 9. Waveforms of the three clocks

bus2

bus1

1RP

1I

2I

0I

2RP

1I

2I

0I

1CP

1I

2I

0I

2CP

1I

2I

0I

af3

0

1

0

1

3f

0

1

0

1

0
1

H

H

H

H

L

L

L

L

0

1
2R 1R 0R

2R 1R 0R

RdH

3f

HH

HL

LH

LL

Fig. 8. 3-parallel pipelined intermediate architecture

3RP

1I

2I

0I

H

L

0

1

0

1

0
1

0

1
2R 1R 0R

2R 1R 0R

3CP

1I

2I

0I

H

L

LH

LL

af3

bf3

0
1

0
1

0

1

3

3

af3

af3

bf3

bf3

0Rd

af3

3f

3f

1R 0R

3f

3f

3f

HH

HL

bus0

sre0

s1

m
ux

re
0

m
ux

1

P2 P3

P1

sce0

sce0

edh

edl

RdL

SRL0

SRL1

m
ux

h
m

ux
l

m
ux

l3

m
ux

l2

m
ux

ce
0

m
ux

ce
0

m
ux

h3

m
ux

h2

m
ux

4
m

ux
4

m
ux

4

Rt2

Rt0

Rt0

Rt0

Rt2

Rt2

Rt1

Rt1

Rt1 Rt1

Rt1

Rt1

Rt2

Rt2

Rt2

Rt0

Rt0

Rt0

sh1

sh0

sl0

sl1

sl3

sh3

s4

sl2

sh2
Rth

Rtl

Rth

Rtl

Rth

Rtl

edh = sh3 = sh2 edl = sl3 = sl2

SRH1

SRH0

IAENG International Journal of Computer Science, 36:2, IJCS_36_2_01
__

(Advance online publication: 22 May 2009)

TABLE 8 DATAFLOW OF THE 3-PARALLEL INTERMEDIATE ARCHITECTURE

ck RP CP1 & CP3 input latches
Rt0 Rt2 Rt1 Rt0 Rt2 Rt1

CP2 input latches
Rt0 Rt2 Rt1

 CP1 & CP3 output latches
 Rth Rtl Rth Rtl

 CP2 output latches
 Rth Rtl

16 1 H0,0 H2,0 H1,0 L0,0 L2,0 L1,0
17 2 --- H0,1 H2,1 H1,1
18 3 --- ---------------------
19 1 H0,2 H2,2 H1,2 L0,1 L2,1 L1,1 ---------------------
20 2 --- L0,2 L2,2 L1,2
21 3 --- ---------------------
22 1 H2,0 H4,0 H3,0 L2,0 L4,0 L3,0 ---------------------
23 2 --- H2,1 H4,1 H3,1
24 3 --- ---------------------
25 1 H2,2 H4,2 H3,2 L2,1 L4,1 L3,1 --------------------- HH0,0 HL0,0 LH0,0 LL0,0
26 2 --- L2,2 L4,2 L3,2 ------------------------------------ HH0,1 HL0,1
27 3 --- --------------------- ------------------------------------ ----------------------
28 1 H4,0 H6,0 H5,0 L4,0 L6,0 L5,0 --------------------- HH0,2 HL0,2 LH0,1 LL0,1 ----------------------
29 2 --- ------------------------------------ LH0,2 LL0,2
30 3 --- --------------------- ------------------------------------ ----------------------

in the path labeled P3. Then the positive transition of clock f3a
loads it into Rt2 in stage 3 of RP1 where it will be used in the
calculation of the low coefficient. On the other hand, during
the high pulse, as indicated in Fig. 9, the high coefficient that

 are needed in the next run will be stored in the TLB.
 The register labeled TLBAR (TLB address register)
generates addresses for the TLB. Initially, register TLBAR is
cleared to zero by asserting signal incAR low to point at the

Ck RP Rd0 RP’s input latches
Rt0 Rt2 Rt1

RdH SRH0
R2 R1 R0

SRH1
R2 R1 R0

RdL
R1 R0

SRL0
R2 R1 R0

SRL1
R2 R1 R0

1 1 x 0,2 x 0,0 x 0,2 x 0,1

2 2 x 0,4 x 0,2 x 0,4 x 0,3
3 3 x 0,6 x 0,4 x 0,6 x 0,5
4 1 x 1,2 x 1,0 x 1,2 x 1,1

5 2 x 1,4 x 1,2 x 1,4 x 1,3
6 3 x 1,6 x 1,4 x 1,6 x 1,5

7 1 x 2,2 x 2,0 x 2,2 x 2,1
8 2 x 2,4 x 2,2 x 2,4 x 2,3

9 3 x 2,6 x 2,4 x 2,6 x 2,5
10 1 x 3,2 x 3,0 x 3,2 x 3,1 H0,0 ----- ----- L0,0 ----- -----

11 2 x 3,4 x 3,2 x 3,4 x 3,3 H0,1 H0,0 ----- L0,1 L0,0 -----
12 3 x 3,6 x 3,4 x 3,6 x 3,5 H0,2 H0,1 H0,0 L0,2 L0,1 L0,0

13 1 x 4,2 x 4,0 x 4,2 x 4,1 H0,2 H0,1 H0,0 H1,0 ----- ----- L0,2 L0,1 L0,0 L1,0 ----- -----

14 2 x 4,4 x 4,2 x 4,4 x 4,3 H2,0 H0,2 H0,1 H1,1 H1,0 ----- L2,0 L0,2 L0,1 L1,1 L1,0 -----

15 3 x 4,6 x 4,4 x 4,6 x 4,5 H0,2 H0,1 H0,0 H1,2 H1,1 H1,0 L0,2 L0,1 L0,0 L1,2 L1,1 L1,0

16 1 x 5,2 x 5,0 x 5,2 x 5,1 H2,0 H0,2 H0,1 ----- H1,2 H1,1 L2,0 L0,2 L0,1 ------ L1,2 L1,1

17 2 x 5,4 x 5,2 x 5,4 x 5,3 ------ H2,1 H2,0 H 0,2 ----- ------ H1,2 L2,1 ----- L2,0 L0,2 L0,1 ------ L1,2 L1,1

18 3 x 5,6 x 5,4 x 5,6 x 5,5 H2,2 H2,1 H2,0 H 0,2 ----- ------ H1,2 L2,2 L2,1 L2,0 L0,2 L0,1 ------ L1,2 L1,1

19 1 x 6,2 x 6,0 x 6,2 x 6,1 ------ H2,2 H2,1 H 2,0 H3,0 ----- ------ ----- L2,2 L2,1 L2,0 L0,2 L3,0 ------ L1,2

20 2 x 6,4 x 6,2 x 6,4 x 6,3 ------ H2,2 H2,1 H 2,0 H3,1 H3,0 ------ ------ ------ L2,2 L2,1 L2,0 L3,1 L3,0 -----

21 3 x 6,6 x 6,4 x 6,6 x 6,5 ------ H2,2 H2,1 H 2,0 H3,2 H3,1 H3,0 ------ ------ L2,2 L2,1 L2,0 L3,2 L3,1 L3,0

22 1 x 7,2 x 7,0 x 7,2 x 7,1 ------ H4,0 H2,2 H2,1 ------ H3,2 H3,1 ------ ------ L4,0 L2,2 L2,1 ------ L3,2 L3,1

23 2 x 7,4 x 7,2 x 7,4 x 7,3 ------ H4,1 H4,0 H2,2 ------ ------ H3,2 L4,1 ------ L4,0 L2,2 L2,1 ------ L3,2 L3,1

24 3 x 7,6 x 7,4 x 7,6 x 7,5 H4,2 H4,1 H4,0 H2,2 ------ ------ H3,2 L4,2 L4,1 L4,0 L2,2 L2,1 ------ L3,2 L3,1

25 1 x 8,2 x 8,0 x 8,2 x 8,1 ------ H4,2 H4,1 H4,0 H5,0 ------ ------ ----- L4,2 L4,1 L4,0 L2,2 L5,0 ----- L3,2

26 2 x 8,4 x 8,2 x 8,4 x 8,3 ------ H4,2 H4,1 H4,0 H5,1 H5,0 ------ ------ ------ L4,2 L4,1 L4,0 L5,1 L5,0 -----

27 3 x 8,6 x 8,4 x 8,6 x 8,5 ----- H4,2 H4,1 H4,0 H5,2 H5,1 H5,0 ------ ------ L4,2 L4,1 L4,0 L5,2 L5,1 L5,0

28 1 x 9,2 x 9,0 x 9,2 x 9,1 ------ H6,0 H4,2 H4,1 ------ H5,2 H5,1 ------ ------ L6,0 L4,2 L4,1 ----- L5,2 L5,1

29 2 x 9,4 x 9,2 x 9,4 x 9,3 ------ H6,1 H6,0 H4,2 ------ ------ H5,2 L6,1 ------ L6,0 L4,2 L4,1 ----- L5,2 L5,1

30 3 x 9,6 x 9,4 x 9,6 x 9,5 H6,2 H6,1 H6,0 H4,2 ------ ------ H5,2 L6,2 L6,1 L6,0 L4,2 L4,1 ----- L5,2 L5,1

IAENG International Journal of Computer Science, 36:2, IJCS_36_2_01
__

(Advance online publication: 22 May 2009)

0

1

0
1

0

1

0
1

0

1

af3

TLB

N

WR

0

1af3

af3 af3

bf3

af3

af3

af3

bf3 bf3

bf3bf3

bf3

bf3

bf3

af3 af3

af3

af3

af3 af3

af3

af3
af3

+

+

+

first location in the TLB. Then to address the next location
after each read and write, register TLBAR is incremented by
asserting incAR. Each time a run is complete, register TLBAR
is reset zero to start a new run and the process is repeated.
 The two multiplexers, labeled muxh and muxl in Fig. 8, are
used for passing every clock cycle, with reference to clock f3,
the high and low coefficients, respectively, generated by the
three RPs. The two control signals of the two multiplexers are
shown in Fig. 8 connected to clocks f3a and f3b. When the two
pulses of the clock f3a and f3b are low, the two multiplexers
would pass the output coefficients generated by RP1, whereas
when a high pulse of the clock f3a and a low pulse of the clock
f3b occur, the two multiplexers would pass the output
coefficients generated by RP2. Finally, when the two pulses
are high, the two multiplexers would pass the output
coefficient of RP3, as indicated in Fig. 9. In addition, note
that the path extending from the inputs of the multiplexer

muxh, passing through muxh2, muxce0, and ending at Rt2
may form a critical path, since signals through this path
should reach Rt2 during one cycle of clock f3.
 The registers labeled SRH1, SRH0, SRL1, and SRL0,
including RdH and RdL all operate with frequency f3.
Registers SRH1, SRH0, and RdH store high coefficients,
while registers SRL1, SRL0, and RdL store low coefficients.
First, according to Table 8, registers SRH0 and SRL0 each
should be filled with 3 high and low coefficients, respectively.
This process starts at clock cycle 10 and ends at cycle 12.
Similarly, registers SRH1 and SRL1 each are filled with 3
high and low coefficients starting from cycles 13 to 15.
 In cycle 16, CP1 latches are loaded with coefficients H0,0
and H1,0 transferred from SRH0 and SRH1, respectively,
along with coefficient H2,0 generated by RP1 during the
cycle. Note that coefficient H2,0 takes the path extending
from the output of muxh, passing through muxh2, muxce0 and

IAENG International Journal of Computer Science, 36:2, IJCS_36_2_01
__

(Advance online publication: 22 May 2009)

N

Rd 2

Rd 3

Rt1

Rt0

Rt 1

Rt 0

Rt1Rt1

Rt0 Rt 0

Rt1 Rt1

Rt0

0

1
m

ux
f

sf

0

1

m
ux

f

sf

0

1

m
ux

f

sf

Fr
om

Rt
2

Fr
om

Rt
2

Fr
om

Rt
2

0

1 m
ux

f

sf

0

1 m
ux

f

sf

0

1

0

1

+

sre 4

sre 5

m
ux

e4
m

ux
e5

+

0

1

0

1

sre 4

sre 5

m
ux

e4
m

ux
e5

+

0

1

0

1

sre 4

sre 5
m

ux
e4

m
ux

e5

0

1

0

1

+

m
ux

e3

m
ux

f

sre3

sf

+

0

1

0

1

m
ux

e3

m
ux

f
sre3

sf

+

+

0

1

0

1

+

+

m
ux

e3

m
ux

f

sre3

sf

Rt 0Rt 0

N

0

1 m
ux

f

sf

Rt1

Rt1

Rt 0

Rt 1

Rt 0

Rt1

Rt0

Rt1

Rt 0

Rt1

Rt 0

Rt2

Rt2

Rt2

Rt 1

Rt 0

Rt 1

Rt 0

Rt1

Rt 0

Rt 2

Rt 2

Rd2

Stage3 Stage4 Stage5 Stage6 Stage7

WRf a =3

TLB2

TLB3

(b)

Fig. 10. (a, b) Modified 9/7 RPs datapath for 3-parallel intermediate architecture

af3af3

af3

af3

af3af3

af3 af3

af3
af3

af3

af3af3

af3
af3

af3

bf3

bf3

bf3

bf3

bf3

bf3

bf3

bf3 bf3

bf3

RP1

RP2

RP3
Rd3

af3

Rt 2
WRf a =3

+

+

+

ending at Rt2. Cycle 16 also loads CP3 latches with L0,0 and
L1,0 transferred from SRL0 and SRL1, respectively, along
with the coefficient L2,0 generated by RP1 during the cycle.
In addition, during cycle 16, the coefficients H2,0 and L2,0
are also shifted into SRH0 and SRL0, respectively, as shown
in Table 8. Cycle 17 loads, the two high coefficients H0,1 and
H1,1 transferred from SRH0 and SRH1, respectively, along
with the coefficient H2,1 generated by RP2 during the cycle,
into CP2 latches. Cycle 17 also stores coefficients H2,1 and
L2,1, generated by RP2 during the cycle, in SRH0 and RdL,
respectively. The dataflow proceeds as shown in Table 8.
 New coefficients are loaded simultaneously into both CP1
and CP3 latches every time clock f3a makes a positive
transition, whereas CP2 latches are loaded when clock f3b
makes a positive transition. Furthermore, each time a
transition from a run to the next is made, when the column

length (N) of an image is odd, the external memory should not
be scanned for 3 clock cycles, since during this period the
CPs will process the last high and low coefficients in each of
the 3 columns of H and L decompositions, as required by the
DDGs for odd signals. This is also true for 2-parallel
intermediate architecture. No such situation occurs when the
column length of an image is even.
 From Table 8 it can be determined that the control signals
of muxh2, muxh3, and register RdH can be combined into one
signal, sh2. Similarly, the control signal of the two
multiplexer’s muxl2, muxl3, and register RdL can be
combined into one signal, sl2. Furthermore, a careful
examination of Table 8 shows that the control signal values
that must be issued by the control unit for signals sh1, sh0,
sl1, sl0, sh2, and sl2, starting from cycles 16 to 21 and repeat
every 6 cycles, should be as shown in Table 9.

IAENG International Journal of Computer Science, 36:2, IJCS_36_2_01
__

(Advance online publication: 22 May 2009)

TABLE 9 CONTROL SIGNAL VALUES
Cycle sh1 sh0 sl1 sl0 sh2 sl2

16 1 1 1 1 0 0
17 1 1 0 0 0 1
18 0 0 0 0 1 1
19 1 1 1 1 1 1
20 1 0 1 1 0 0
21 1 0 1 1 0 0

 Finally, if it is necessary to extend the 2-parallel
architecture to 4-parallel architecture, then from experience
gained from designing 2- and 3-parallel architectures, the best
architecture for 4-parallel would be obtained if the fourth
overlapped scan method is used and 5-parallel if the fifth scan
method is used and so on. Then the architecture design for a
higher degree parallelism becomes similar to that experienced
in the 3-parallel intermediate architecture. While an attempt,
e.g., to design 4-parallel intermediate architecture using the
third scan method would require very complex modifications
in the datapath architecture of the combined 4 RPs and
complex control logic. However, the objective for choosing a
higher scan method in the first place is to reduce the power
consumption due to overlapped areas scanning of external
memory. Therefore, it makes sense if 4-parallel is designed
with fourth scan method and 5-parallel with fifth scan method
and so on.

IV. EVALUATION OF PERFORMANCE

 To evaluate the performance of the two proposed parallel
architectures in terms of speedup, throughput, and power
consumption as compared with the single pipelined
intermediate architecture proposed in [3] consider the
following. In the single pipelined intermediate architecture
[3], the total time, T1, required to yield n paired outputs for j-
level decomposition of an NxM image is given by

[]
[] ktnT

nT

p 3)1(31
)1(31

1

11

−+=
−+=

ρ
τρ

 (5)

 The dataflow of the 2-parallel architecture in Table 1 shows
that 192 =ρ clock cycles are needed to yield the first 2-pair
of output. The remaining (n-2)/2 outputs require 2(n-2)/2
cycles. Thus, the total time, T2, required to yield n paired
outputs is given by

[] 22)2(2 τρ −+= nT
From (3) kt p 22 =τ then

[] ktnT p 2)2(2 2 −+= ρ (6)
The speedup factor S is then given by

[]
[] ktn

ktn
T
TS

p

p

2)2(
3)1(3

2
1

2

1
2 −+

−+
==

ρ

ρ

For large n, the above equation reduces to

2
)3)(2(
)2)(1(3

2 =
−
−

=
kn
knS (7)

Eq (7) implies that the proposed 2-parallel intermediate
architecture is 2 times faster than the single pipelined
intermediate architecture.

 On the other hand, to estimate the total time, T3, required
for j-level decomposition of an NxM image on the 3-parallel
pipelined intermediate architecture, assume the output
generated by CP2 in Table 8 are shifted up one clock cycle so
that it parallel that of CP1 and CP3. Then, 252 =ρ clock
cycles are needed to yield the first 3-pair of output. The
remaining (n-3)/3 3-paired outputs require 3(n-3)/3 clock
cycles. Thus, the total time, T3, required to yield n paired
outputs is given by

[]
[] ktnT

nT

p 3)3(3
)3(3

3

33

−+=

−+=

ρ

τρ
 (8)

The speedup factor S is then given by
[]
[] ktn

ktn
T
TS

p

p

3)3(
3)1(3

3
1

3

1
3 −+

−+
==

ρ

ρ

3
)3(
)1(3

3 =
−
−

=
n
nS (9)

Eq (9) implies that the proposed 3-parallel pipelined
intermediate architecture is 3 times faster than the single
pipelined intermediate architecture.
 The throughput, H, which can be defined as number of
output coefficients generated per unit time, can be written for
each architectures as

() ()() ktnngleH p 313sin 1 −+= ρ
The maximum throughput, Hmax, occurs when n is very large
(n). Thus,

() ()
pp

n

fknfkn
gleHgleH

⋅=⋅⋅⋅⋅≅

= ∞→

33
sinsinmax

 (10)

() ()() ktnnparallelH p 222 2 −+=− ρ

pp

n

fknfkn
parallelHparallelH

⋅⋅=⋅⋅⋅≡

−=− ∞→

22
)2()2(max

 (11)

() ktnnparallelH p 3)3()3(3 −+=− ρ

()
pp

n

fknfkn
parallelHparallelH

⋅⋅=⋅⋅⋅≡

−=− ∞→

33
)3(3max

 (12)

Hence, the throughputs of the 2-parallel and 3-parallel
pipelined architectures have increased by a factor of 2 and 3,
respectively, as compared with single pipelined architecture.
 To determine the amount of power reduction achieved in
the external memory of the intermediate parallel architecture
as compared with first scan method based parallel
architecture, consider the following. The power consumption
of VLSI architectures can be estimated as

fVCP ototal ⋅⋅= 2 (13)
where Ctotal denotes the total capacitance of the architecture,
Vo is the supply voltage, and f is the clock frequency. Then
the power consumption due to scanning external memory of
single pipelined architecture based on nonoverlapped scan
method [10] can be written as

1
2)(fVCnonP ototals ⋅⋅⋅= β (14)

where 1
2 fVC ototal ⋅⋅ is the external memory power

consumption due to first overlapped scan method, 1f is the

IAENG International Journal of Computer Science, 36:2, IJCS_36_2_01
__

(Advance online publication: 22 May 2009)

external memory scan frequency, and 32== momn TTβ .

moT and mnT denote total external memory access time in
clock cycle for J levels of decomposition for architecture
based on the first overlapped and nonoverlapped scan
methods, respectively, [3].
 Using the fact that the scan method shown in Fig. 3 reduces
the power consumption of the overlapped areas by a factor of
1/3, [3], the power consumption due to scanning the
overlapped areas of Fig. 3 can be written as

()3)(1
2

0 fVCareasP ototalo ⋅⋅⋅= β (15)

where 310 == mome TTβ and meT is the excess memory
access time due to overlapped areas scanning for J levels of
decomposition, [3].
 Thus, the external memory power consumption of the
single pipelined intermediate, Ps(int), is

)3(3
)3(

3/

)()((int)

0
2

01
2

1
2

01
2

ββ

ββ

ββ

+⋅⋅⋅⋅=

+⋅⋅=

⋅⋅⋅+⋅⋅⋅=

+=

pototal

ototal

ototalototal

oss

fVCk
fVC

fVCfVC

areasPnonPP

 (16)

where pfkf ⋅⋅= 31 [10], and pf is processor’s frequency.

 The power consumption of l -parallel pipelined
intermediate architecture, (int)lP can be written as

)3((int) 0
2 ββ +⋅⋅⋅⋅= lototall fVCIP

From (3) pll tklf ⋅==τ1 , then

)3((int) 0
2 ββ +⋅⋅⋅⋅⋅⋅= pototall fVCIklP (17)

where I is number of input buses and it is 3 in the parallel
architecture.
 Similarly, the external memory power consumption of l -
parallel pipelined architecture based on the first
scan,)(firstPL can be written as

pototal

lototall

fVCIkl

fVCIfirstP

⋅⋅⋅⋅⋅=

⋅⋅⋅=
2

2)(
 (18)

Thus,

973

)3(
)(

(int)

0

2
0

2

=+=

⋅⋅⋅⋅⋅

+⋅⋅⋅⋅⋅⋅
=

ββ

ββ

pototal

pototal

l

l

fVCIkl
fVCIkl

firstP
P

implies that the intermediate parallel architecture based on
scan method in Fig. 3 reduces power consumption of the
external memory by a factor of 7/9 as compared with parallel
architecture based on the first scan method. While,

l
fVCk

fVCIkl
P
P

pototal

pototal

s

l =
+⋅⋅⋅⋅⋅

+⋅⋅⋅⋅⋅⋅
=

)3(3

)3(
(int)
(int)

0
2

0
2

ββ

ββ

implies that as the degree of parallelism increases the external
memory power consumption of the intermediate parallel
architecture based on the scan method in Fig. 3 also increases
by a factor of l as compared with single pipelined

intermediate architecture’s external memory power
consumption.

V. SCALE FACTOR MULTIPLIERS REDUCTION

 In the lifting-based tree-structured filter bank for 2-D
DWT shown in Fig. 11, it can be observed that the high
output coefficients, which form H decomposition, each is
multiplied by the scale factor k in the first pass. In the second
pass, the high output coefficients, which form HH subband,
each is multiplied by k. This implies the first multiplication
can be eliminated and the output coefficients of HH subband
can be multiplied by k2 using one multiplier after the second
pass. While, the high output coefficients, which form HL
subband, each is multiplied by 1/k. This implies no
multiplications are required and scale multipliers along this
path can be eliminated, since HL subband coefficients are
formed by multiplying each coefficient in the first pass by k
and then in the second by pass by 1/k.
 On the other hand, the low output coefficients of the first
pass, which form L decomposition, each is multiplied by 1/k.
Then in the second pass, the output coefficients, which form
LH subband, each is multiplied by k, which implies no
multiplications are required along this path. While, the output
coefficients of the second pass, which form LL subband, each
is multiplied by 1/k. Thus, instead of performing two
multiplications, one multiplication can be performed by 1/k2

after the second pass [5, 7, 9]. However, note that the simple
computations involve in each lifting step shown in Eqs (1)
and (2) have made arriving at these results possible.
 This process reduces number of multipliers used for scale
factor multiplications in the tree-structured filter bank to 2
instead of 6 multipliers. When it applied to single pipelined
architectures, it reduces number of scale multipliers to 2
instead of 4, whereas, in 2- and 3-parallel pipelined
architectures, it reduces number of scale multipliers to 2 and 4
instead of 8 and 12, respectively.
 In [14], it has been illustrated that the multipliers used for
scale factor k and coefficients ,,, γβα and δ of the 9/7 filter
can be implemented in hardware using only two adders.

VI. COMPARISONS

 Table 10 shows the comparison results of the proposed
architectures with most recent architectures in the literature.
In [12], a new method was introduced to shorten the critical
path delay of the lifting-based architecture to one multiplier
delay but requires a total line buffer of size 4N, which is a
very expensive memory component, while the two proposed
architectures each requires only a total line buffer of size 3N.
In [8, 11], by reordering the lifting-based DWT of the 9/7
filter, the critical path of the pipelined architectures have been
reduced to one multiplier delay but requires a total line buffer
of size 5.5N. The architecture proposed in [4], achieves a
critical path of one multiplier delay using very large number
of pipeline registers. In addition, it requires a total line buffer
of size 6N. In the efficient pipelined architecture [9], a critical
path delay of Tm+Ta is achieved through optimized data flow

IAENG International Journal of Computer Science, 36:2, IJCS_36_2_01
__

(Advance online publication: 22 May 2009)

 Fig. 11. Lifting-based tree-structured filter bank

graph but requires a total line buffer of size 10N.
 On the other hand, the architectures proposed in [13, 7],
like the proposed 2-parallel intermediate architecture,
achieves a speedup factor of 2 as compared with other
architectures. However, [13], the deeply parallel architecture
requires a total line buffer of size 5N, whereas [7] requires a
total line buffer of size 5.5N.
 The main objective for introducing intermediate
architecture is to reduce the external memory power
consumption, which consumes the most power, while in other
architectures this is not a concern. In addition, our
architectures as compared with architectures listed in Table
10 are accurate, complete, and more practical.

TABLE 10 COMPARISONS OF SEVERAL
1-LEVEL (9/7) 2-D DWT ARCHITECTURES

Tm: multiplier delay Ta: adder delay

VII. CONCLUSIONS

 In this paper, two highly efficient parallel VLSI
architectures for the 5/3 and the 9/7 algorithms that achieve
speedup factor of 2 and 3 as compared with the single
pipelined intermediate architecture are proposed. The
advantage of the two proposed architectures is that each
requires only a total line buffer of size N in the 5/3 processors
and 3N in the 9/7 processors. While other architectures in
Table 10 require more line buffers, which are very expensive
memory components. The two proposed parallel architectures
could be very excellent candidates in real-time applications of
2-D DWT, where very high-speed, low power, and low cost

are required. In addition, a control circuit diagram for
determining the last run, which needs especial treatment, is
provided. Furthermore, to reduce control design afford we
have provided also several tables giving the control signal
values for several control signals.

REFERENCES

[1] I. Daubechies and W. Sweldens, “Factoring wavelet transforms into
 lifting schemes,” J. Fourier Analysis and Application Vol. 4, No. 3,
 1998, PP. 247-269.
[2] W. Sweldens, “The lifting scheme: A new philosophy in biorthogonal
 wavelet constructions,” proc. SPIE 2569, 1995, PP. 68-79.
[3] Ibrahim Saeed and Herman Agustiawan, “high-speed and power
 Efficient lifting-based VLSI architectures for two-dimensional discrete
 Wavelet transform,” proceedings of the IEEE Second Asia International
 Conference on Modelling and Simulation, AMS 2008, PP. 998-1005.
[4] X. Lan, N. Zheng, “ Low-Power and High-Speed VLSI Architecture for
 Lifting-Based Forward and Inverse Wavelet Transform,” IEEE trans. on
 consumer electronics, Vol. 51, No. 2, May 2005, PP. 379 – 385.
[5] S. Mowa, S. Srinivasan, “A novel architecture for lifting-based
 discrete wavelet transform for JPEG2000 standard suitable for VLSI
 implementation,” Proceedings of the 16th International Conf. on VLSI
 Design, 2003 IEEE, PP. 202 – 207.
[6] G. Dillin, B. Georis, J-D. Legant, O. Cantineau, “Combined Line-based
 Architecture for the 5-3 and 9-7 Wavelet Transform of JPEG2000, “
 IEEE Trans. on circuits and systems for video tech., Vol. 13, No. 9, Sep.
 2003, PP. 944-950.
[7] C-Y. Xiong, J-W. Tian, J. Liu, “Efficient high-speed/low-power line-
 based architecture for two-dimensional discrete wavelet transforms
 using lifting scheme,” IEEE Trans. on Circuits & sys. For Video Tech.
 Vol.16, No. 2, February 2006, PP. 309-316.
[8] B-F. Wu, C-F. Lin, “ A high-Performance and Memory-Efficient
 Pipeline Architecture for the 5/3 and 9/7 Discrete Wavelet Transform of
 JPEG2000 Codec,” IEEE Trans. on Circuits & Sys. for Video
 Technology, Vol. 15, No. 12, December 2005, PP. 1615 – 1628.
[9] R. Jain and P. R. Panda,”An efficient pipelined VLSI architecture for
 Lifting-based 2D-discrete wavelet transform,” ISCAS, 2007 IEEE, PP.
 1377-1380.
[10] I. Saeed, H. Agustiawan., “Lifting-based VLSI architectures for
 2-dimensional discrete wavelet transform for effective image
 Compression,” Proceedings of the International MultiConference of
 Engineers and Computer Scientists 2008 Vol. 1 IMECS’08, Hong
 Kong, PP. 339-347, Newswood Limited, 2008.
[11] W. Chao, W. Zhilin, C. Peng, and L. Jie, “An efficient VLSI
 Architecture for lifting-based discrete wavelet transform,”
 Mulltimedia and Epo, 2007 IEEE International conference,
 PP. 1575-1578.
[12] C. Yi, J. Wen, J. Liu, “A note on Flipping structure: an efficient VLSI
 architecture for lifting-based discrete wavelet transform,” IEEE
 Trans. on signal proc. Vol. 54, No. 5, May 2006, PP. 1910 – 1916.
[13] B-F. Li and Y. Dou, “FIDP A novel architecture for lifting-based 2D
 DWT in JPEG2000,” MMM (2), lecture note in computer science, vol.
 4352, PP. 373-382, Springer, 2007.
[14] Qing-ming Yi and Sheng-Li Xie,”Arithmetic shift method suitable for
 VLSI implementation to CDF 9/7 discrete wavelet transform based on
 lifting scheme,” Proceedings of the Fourth Int. Conf. on Machine
 Learning and Cybernetics, Guangzhou, August 2005, PP. 5241-5244.

Architecture Multi Adders Line Computing Critical
 Buffer Time Path
Chao [11] 6 8 5.5N 2(1-4-j)NM Tm
PLSA [12] 12 16 4N N/A Tm
Bing [8] 6 8 5.5N 2(1-4-j)NM Tm
Lan [4] 12 12 6N 2(1-4-j)NM Tm
Overlapped[10] 10 16 3N 2(1-4-j)NM Tm + 2Ta
Jain [9] 9 16 10N 2(1-4-j)NM Tm + Ta
Cheng [7] 18 32 5.5N (1-4-j)NM N/A
FIDF [13] 24 32 5N (1-4-j)NM Tm + 2Ta
Proposed (2-parallel) 18 32 3N (1-4-j)NM Tm + 2Ta
Proposed (3-parallel) 28 48 3N 2/3(1-4-j)NM Tm + 2Ta

X

H

L

 K

 K

1/K

1/K

HL

HH

Xe

Xo

LH

LL

split

)(1 zt

)(1 zt

)(1 zt

)(zSm

)(zSm

)(zSm

K

 1/K

IAENG International Journal of Computer Science, 36:2, IJCS_36_2_01
__

(Advance online publication: 22 May 2009)

