

Abstract— This paper presents a variant of diversity guided

Particle Swarm Optimization (PSO) algorithm named QIPSO
for solving global optimization problems. In QIPSO the
conventional framework of PSO is modified by including a
crossover operator to maintain the level of diversity in the
swarm population. Numerical results show that the induction
of a crossover operator not only discourages premature
convergence to the local optima but also explores promising
regions of the search space effectively. Empirical results show
the superior performance of QIPSO with conventional PSO and
ARPSO. Efficiency of QIPSO is further validated by applying it
to a set of five real life problems (RLPs) with constraints.
Penalty method is used for dealing with constraints. Once again
the simulation results show the compatibility of QIPSO for
solving real life problems.

Index Terms— Particle Swarm Optimization, Crossover
operator, Quadratic Interpolation, Real life problems.

I. INTRODUCTION
 Population based search algorithms like Genetic
Algorithms (GA), Evolutionary Programming (EP),
Differential Evolution (DE), Particle Swarm Optimization
(PSO) etc. are perhaps some of the most popular stochastic
techniques for solving continuous global optimization
problems. These techniques have shown their efficiency for
solving complex test as well as real life problems. Of the
above mentioned algorithms other than PSO all other
algorithms are inspired by the phenomenon of Darwin’s
concept of ‘survival of the fittest’. Classical PSO on the other
hand follows the policy of cooperation and social behavior
displayed by various species like ants, birds, fish etc.
Nevertheless all the above mentioned algorithms share some
common features as pointed out by Angeline [1]:

 All are population based search techniques.
 None of the above mentioned algorithms require the

auxiliary knowledge (like continuity, differentiability
etc.) of the problem.

 In all the algorithms solutions belonging to the same
population interact with each other during the search
process.

 The quality of the solutions are improved using
techniques inspired from real world phenomenon like human

Manuscript received June 19, 2008.
Millie Pant is with the Department of Paper Technology, Indian Institute

of Technology Roorkee, (Saharanpur Campus), Saharanpur – 247001, India.
(e-mail: millifpt@iitr.ernet.in).

Radha Thangaraj is with the Department of Paper Technology, Indian
Institute of Technology Roorkee, (Saharanpur Campus), Saharanpur –
247001, India. (e-mail: t.radha@ieee.org).

V.P.Singh is with the Department of Paper Technology, Indian Institute
of Technology Roorkee, (Saharanpur Campus), Saharanpur – 247001, India.
(e-mail: singhfpt@iitr.ernet.in).

genetics in case of EA and cooperative behavior in case of
PSO.
 It is worth mentioning that although these algorithms have
been successful in solving a wide variety of problems, their
performance is criticized one certain aspects. For example the
problem of the loss of diversity after subsequent iterations
which lead to premature convergence leading to suboptimal
solution [2]. Loss of diversity becomes more prominent for
multimodal functions having several optima or noisy
functions where the optimum keeps shifting from one
position to other. Loss of diversity generally takes place
when the balance between the two antagonists processes
exploration (searching of the search space) and exploitation
(convergence towards the optimum) is disturbed. In case of
evolutionary algorithms the population diversity is generally
lost during the process of evolution (crossover and mutation),
whereas in case of PSO the diversity loss is generally
attributed to the fast information flow between the swarm
particles. Thus in absence of a good diversity enhancing
mechanism the optimization algorithms are unable to explore
the search space effectively.
 One of the simplest methods to overcome the problem of
diversity loss is to capitalize the strengths of EA and PSO
together in an algorithm. A variety of methods combining the
aspects of EA and PSO are available in literature. For detailed
study, the reader is suggested [3] - [5], etc. Out of the EA
operators, mutation is the most widely used EA tool applied
in PSO [6] - [9] etc. However very few examples of selection
and crossover operator are available in literature.
Keeping this in mind we proposed a variant of diversity
guided PSO called QIPSO which make use of crossover
operator to maintain the diversity of the population [10]. In
[10], we defined a new nonlinear quadratic crossover
operator which makes use of three members of the swarm to
produce a new member. This operator is activated when the
diversity of the swarm becomes less than a certain threshold
(say dlow) and stops when the required diversity (say dhigh) is
achieved. We checked the QIPSO algorithm with thirteen test
suit of benchmark problems (unconstrained), the
experimental results shown that the new algorithm gave
better results. Motivated by the preliminary good results
shown by QIPSO and to further validate its efficiency, we
used it to solve real life engineering design problems with
constraints associated with them. Penalty function approach
is used to deal with constraints.
 The structure of the paper is as follows: in section II, we
briefly explain the BPSO and ARPSO (another diversity
guided PSO [11]), in section III; we describe the QIPSO
algorithm and its performance on thirteen standard
benchmark problems taken from literature. Section IV deals
with the performance of QIPSO algorithm for constrained
optimization problems. Finally the paper concludes with
section V.

Particle Swarm Optimization with Crossover
Operator and its Engineering Applications

Millie Pant, Member, IAENG, Radha Thangaraj, Member, IAENG, and V. P. Singh

IAENG International Journal of Computer Science, 36:2, IJCS_36_2_02
__

(Advance online publication: 22 May 2009)

II. ALGORITHMS USED FOR COMPARISON
 In the present article we compared the performance of the
proposed QIPSO with the conventional or basic PSO and
ARPSO. ARPSO, described later in this section, uses the
unique concept of repulsing the population points for
enhancing the diversity of the population. Previous studies
have shown ARPSO to be competent for solving numerical
benchmark problems with sufficiently high dimension.

A. Basic Particle Swarm Optimization (BPSO)
Particle Swarm Optimization (PSO) is a relatively newer

addition to a class of population based search technique for
solving numerical optimization problems. A unique feature
of PSO is that it maintains the memory of previous best
positions. The particles or members of the swarm fly through
a multidimensional search space looking for a potential
solution. Each particle adjusts its position in the search space
from time to time according to the flying experience of its
own and of its neighbors (or colleagues).

For a D-dimensional search space the position of the ith
particle is represented as Xi = (xi1, xi2, …, xiD). Each particle
maintains a memory of its previous best position Pbesti = (pi1,
pi2… piD). The best one among all the particles in the
population is represented as Pgbest = (pg1, pg2… pgD). The
velocity of each particle is represented as Vi = (vi1, vi2, …
viD). In each iteration, the P vector of the particle with best
fitness in the local neighborhood, designated g, and the P
vector of the current particle are combined to adjust the
velocity along each dimension and a new position of the
particle is determined using that velocity. The two basic
equations which govern the working of PSO are that of
velocity vector and position vector given by:

)()(2211 idgdidididid xprcxprcwvv −+−+= (1)

ididid vxx += (2)
The first part of equation (1) represents the inertia of the

previous velocity, the second part is the cognition part and it
tells us about the personal thinking of the particle, the third
part represents the cooperation among particles and is
therefore named as the social component [12]. Acceleration
constants c1, c2 [13] and inertia weight w [14] are the
predefined by the user and r1, r2 are the uniformly generated
random numbers in the range of [0, 1].

B. ARPSO Algorithm
The ARPSO algorithm is diversity guided BPSO which

uses an interesting concept of diverging the population points
when the diversity becomes less than the desired threshold
value. ARPSO consists of two phases and the swarm
population keeps shuttling between the phases of attraction
and repulsion according to the increase or decrease in
diversity measure. In the attraction phase, the particles come
towards each other following equation (1) as they do in
BPSO. The movement of particles towards each other causes
a gradual decrease in diversity of the population. When the
diversity becomes lower then a certain specified value dlow, a
repulsion phase obtained by inverting the velocity update
formula is activated according to the following equation:

)()(2211 idgdidididid xprcxprcwvv −−−−= (3)
In this phase the particles are no longer attracted towards

each other but move away or from each other. This generates
a perturbation in the population and causes an increase in the
diversity of the swarm population. The swarm particles stay

in this phase until the diversity reaches a higher value dhigh.
As soon as the desired high diversity dhigh is achieved, the
swarm particles again come back to the attraction phase and
the same process continues iteratively until the global
optimum is obtained.

III. QIPSO ALGORITHM FOR UNCONSTRAINED
OPTIMIZATION

A. Proposed QIPSO Algorithm
QIPSO is a simple and modified version of BPSO with an

added crossover operator to enhance the performance of
BPSO without disturbing the inherent features of BPSO. Like
ARPSO, QIPSO uses diversity as a measure to guide the
swarm, but instead of repulsing the population points, it
makes use of crossover operator to explore the promising
areas of the search domain.

The crossover operator applied in QIPSO is quadratic
interpolation (QI) operator. QI is a gradient free direct search
technique used for solving nonlinear optimization problems.
The concept of using QI in optimization methods is not new.
It has also been used as a method to generate new point in
population based search techniques [15], [16].
Mathematically, the point generated by QI lies at the point of
minima of the quadratic curve passing through three points.
Initially, QI method used for solving nonlinear optimization
problems considered three points to be equidistant from each
other. However, in the present study in order to provide more
randomness to explore the search space the particle having
the best fitness value (global best particle, Pgbest) is always
selected whereas the other two points are randomly chosen
from the remaining population.

Mathematically, the working of QI operator may be
defined as:

If a = Pgbest represents the global best position of the
swarm and let b, c represent randomly chosen swarm
particles such that a ≠ b ≠c, then the coordinates of the new
point generated by using QI is given as

)~,.......,~,~(~ 21 ni xxxx = , where

)(*)()(*)()(*)(
)(*)()(*)()(*)(

2
1~

222222

cfbabfacafcb
cfbabfacafcbx

iiiiii

iiiiii
i

−+−+−

−+−+−
= (4)

 When the diversity is less than dlow, QI operator is
activated and the particle having the best value (Pgbest) with
the help of two other distinct random points starts exploring
the domain in search of other potential candidates. This
process continues till the desired diversity level is attained.
Flow of the proposed QIPSO is given in Fig.1. A C++ style
implementation of QI operator is as follows:

If (Diversity < dlow)

 do
 {
 // generate a new point using (4)
 } while (Diversity > dhigh);
End if

IAENG International Journal of Computer Science, 36:2, IJCS_36_2_02
__

(Advance online publication: 22 May 2009)

Fig. 1 Flowchart of QIPSO algorithm

B. Experimental Setting, Benchmark Problems and Result
Analysis

1) Experimental Settings
All the parameters in PSO play an important role in

deciding the success of an algorithm. In order to make a fair
comparison of BPSO, ARPSO and QIPSO, we fixed the
same seed for random number generation so that the initial
swarm population is same for all the three algorithms. We
performed a number of experiments with varying
population sizes, inertia weight and acceleration constants.
From the empirical results we observed that a swarm size of
2*n (where n is the number of variables) is sufficient for
small and medium sized problems. A linearly decreasing
inertia weight starting at 0.9 and finishing at 0.4 is taken
and acceleration constants c1 and c2 are taken as 1.8.
However depending on the complexity of the problem user
may vary the parameters accordingly.

 Diversity is an important aspect for checking the efficiency
of the swarm. Ideally, the diversity of an algorithm should
be high in the beginning decreasing slowly in the
successive iterations. The diversity measure [17] of the
swarm in the present study is taken as:

∑ ∑ −=
= =

s xn

i

n

j
jij

s

txtx
n

tSDiversity
1 1

2))()((
1

))(((5)

where S is the swarm, ns = ⎜S ⎜is the swarm size, nx is the
dimensionality of the problem, xij is the j’th value of the i’th
particle and)(tx j is the average of the j-th dimension over
all particles, i.e.

s

sn

i
ij

j n

tx
tx

∑
== 1

)(
)(.

The diversity controlling parameters dlow and dhigh are
taken as 5.0*10– 6 and 0.25 respectively. For all algorithms,
the maximum number of iterations allowed was set to 10,000.
A total of 30 runs for each experimental setting were
conducted and the average fitness of the best solutions
throughout the run was recorded.

2) Benchmark Problems
To test the credibility of the QIPSO algorithm we tested it

on a test bed of 13 bench mark problems. The test bed
comprises of a variety of problems ranging from a simple
spherical function to highly multimodal functions and also a
noisy function (with changing optima). These test problems
provide a platform for testing the credibility of an algorithm
and also represents the scenarios that may occur in real life
cases. The first function f1 is a simple unimodal function with
objective function value as zero. Any decent optimization
algorithm is able to solve it but when we increase the
dimension of the problem the algorithms sometimes have
difficulty in reaching the true objective function value.
Functions f7 to f13 are highly multimodal, where the number
of peaks and valleys goes on increasing with increase in
number of variables. All the functions are scalable and are
tested for dimensions 30, 50 and 100.
 In Table II, we give the results of problems with dimension
30, in Table III results of the same problems with increased
dimension 50 are given and in Table IV results are recorded
for dimension 100. Algorithms are compared in terms of
mean best fitness value.

3) Results analysis for problems with dimension 30:
 For dimension 30 (Table I), we have referred the results of
BPSO and ARPSO presented in Ref. [18] for the purpose of
comparison with QIPSO. From the numerical results it is
evident that QIPSO gave a superior performance in
comparison to the other two algorithms in 12 of out of 13 test
cases which shows a success rate of more than 90%. For f7 the
performance of QIPSO is not as good as the other two
algorithms but still is a satisfactory value. The best function
value for f7 is obtained from ARPSO. From Table III, which
gives the percentage of improvement in the function value,
the superior performance of QIPSO is evident.

4) Results analysis for problems with dimension50:
 Generally the performance of an algorithm deteriorates on
increasing the dimension of the problem. Therefore we
increased the dimension of the test problems to 50. From
Table II, it is clear that even for increased dimension the
performance of QIPSO remains quite stable in terms of
fitness function value. Surprisingly, for f7 QIPSO gave a
better value with increased dimension. For the remaining
functions also QIPSO gave a superior performance in
comparison to other algorithms. Moreover the stability of
QIPSO can be seen from the objective function values which
are near to the true function values. Similar observations can

IAENG International Journal of Computer Science, 36:2, IJCS_36_2_02
__

(Advance online publication: 22 May 2009)

be made from Table III which gives the percentage of
improvement. Figure 2 gives the 3D plot of some selected
benchmark problems.
Figures 3 - 7 show the mean best fitness curves for selected
benchmark problems. Figures 8 – 9 show the comparison of
fitness function for selected benchmark problems.

5) Results analysis for problems with dimension100:
For dimension 100 (Table IV) also, we have referred the

results of BPSO and ARPSO presented in Ref. [18] for the
purpose of comparison with QIPSO. Table V gives the
percentage of improvement of QIPSO in comparison with
BPSO and ARPSO. From Table IV, it is clear that even for
increased dimension the performance of QIPSO remains
quite stable in terms of fitness function value. Surprisingly,
for function f6 BPSO gave a better value than QIPSO and for
function f10 ARPSO gave a better value. For the remaining
functions QIPSO gave a superior performance in comparison
to other algorithms.
The complete formulation of the test of problems is given
below:

1. Sphere function

x
min ∑=

=

n

i
ixxf

1

2
1)(, 12.512.5 ≤≤− ix ,)0,...,0,0(* =x ,

0*)(1 =xf .

2. Schwefel function 1

x
min ||||)(

1

0

1

0
2 ∑ ∏

−

=

−

=

+=
n

i

n

i
ii xxxf , 1010 ≤≤− ix ,

)0,...,0,0(* =x , 0*)(2 =xf .

3. Function f3

x
min ∑ ∑=

−

= =

1

0 0

2
3)()(

n

i

i

j
ixxf , 100100 ≤≤− ix ,)0,...,0,0(* =x ,

0*)(3 =xf .

4. Schwefel function 2

x
min ||max)(4 ixxf = , ni <≤0 , 100100 ≤≤− ix ,

)0,...,0,0(* =x , 0*)(4 =xf .

5. Rosenbrock function

x
min 21

0

22
15)1()(100)(−+∑ −=

−

=
+ i

n

i
ii xxxxf ,

3030 ≤≤− ix ,)1,...,1,1(* =x , 0*)(5 =xf .

6. Step function

x
min ⎣ ⎦∑ +=

−

=

1

0

2
6 2/1)(

n

i
ixxf , 100100 ≤≤− ix ,

)0,...,0,0(* =x , 0*)(6 =xf .

7. Dejong’s function with noise

x
min ∑ ++=

−

=

1

0

4
7]1,0[))1(()(

n

i
i randxixf , 28.128.1 ≤≤− ix ,

)0,...,0,0(* =x , 0*)(7 =xf .

8. Schwefel function 3

x
min)||sin()(

1
8 ∑−=

=

n

i
ii xxxf , 500500 ≤≤− ix ,

)97.420,...,97.420,97.420(* =x , nxf *9829.418*)(8 −= .

9. Rastringin function

x
min)10)2cos(10()(

1

2
9 +∑ −=

=
i

n

i
i xxxf π ,

12.512.5 ≤≤− ix ,)0,...,0,0(* =x , 0*)(9 =xf .

10. Ackley’s function

x
min)12.0exp(2020)(

1

2
10 ∑−−+=

=

n

i
ix

n
exf

∑−
=

n

i
ix

n 1
))2cos(1exp(π , 3232 ≤≤− ix ,)0,...,0,0(* =x ,

0*)(10 =xf .

11. Griewank function

x
min 1)

1
cos(

4000
1)(

1

0

1

0

2
11 +∑

+
−∑=

−

=

−

=

n

i

in

i
i

i

x
xxf ,

600600 ≤≤− ix ,)0,...,0,0(* =x , 0*)(11 =xf .

12. Generalized penalized function 1

x
min ∑ +−+=

−

=
+

1

1
1

22
1

2
12)](sin101[)1()(sin10{)(

n

i
ii yyy

n
xf πππ

)4,100,10,(})1(
1

2 ∑+−+
=

n

i
in xuy , where)1(

4
11 ++= ii xy

5050 ≤≤− ix ,)0,...,0,0(* =x , 0*)(12 =xf .

13. Generalized penalized function 1

x
min)))3(sin1()1(()3(){sin1.0()(1

1

1

22
1

2
13 +

−

=
∑ +−+= i
n

i
i xxxxf ππ

∑++−+
−

=

1

0

2)4,100,5,())}2(sin1)(1(
n

i
inn xuxx π , 5050 ≤≤− ix ,

)76.4,...,1,1(* −=x , 1428.1*)(13 −=xf .

In problem 12 1nd 13 the value of penalty function u is
given by,

caxbcbaxu)(),,,(−= , if ax >
caxbcbaxu)(),,,(−−= , if ax −<

0),,,(=cbaxu , if axa ≤≤− .

IV. QIPSO ALGORITHM FOR CONSTRAINED OPTIMIZATION
The QIPSO algorithm described in the previous section is

used for solving constrained real life optimization problems
in are given in the subsequent subsections. Penalty method
[16], given in the following subsection, is used to handle the
constraints.

A. Penalty method for solving constrained optimization
problems
Many real-world optimization problems are solved subject

to sets of constraints. The search space in Constrained
Optimization Problems (COPs) consists of two kinds of
solutions: feasible and infeasible. Feasible points satisfy all
the constraints, while infeasible points violate at least one of
them. Therefore the final solution of an optimization problem
must satisfy all constraints.

IAENG International Journal of Computer Science, 36:2, IJCS_36_2_02
__

(Advance online publication: 22 May 2009)

In this paper, the two algorithms BPSO and QIPSO handle
the constraints using the concept of penalty functions. In the
penalty function approach, the constrained problem is
transformed into an unconstrained optimization algorithm by
penalizing the constraints and building a single objective
function, which is minimized using an unconstrained
optimization algorithm.

 That is,
λ+=)()(xfxF)(xp (6)

Where ∑
+

=
=

hg nn

m
immi xpttxp

1
)()(),(λ (7)

=)(im xp })(,0max{ α
im xg

 if],......,1[gnm∈ (inequality) (8)

=)(im xp α|)(| im xh

 if],......,1[hgg nnnm ++∈ (equality) (9)

with α a positive constant, representing the power of the
penalty. The inequality constraints are considered as g(x) and
h(x) represents the equality constraints. ng and nh denotes the
number inequality and equality constraints respectively. λ is
the constraint penalty coefficient

TABLE I COMPARISON RESULTS OF TEST PROBLEMS OF DIMENSION 30

Function
Mean Best Fitness

BPSO ARPSO QIPSO
f1 0.000000e+00 6.808174e-13 0.000000e+00
f2 0.000000e+00 2.089204e-02 0.000000e+00
f3 0.000000e+00 0.000000e+00 0.000000e+00
f4 2.107015e-16 1.418379e-05 1.647667e-19
f5 4.026386e+00 3.550929e+02 8.608759e-19
f6 4.000000e-02 1.898000e+01 0.000000e+00
f7 1.908221e-03 3.886668e-04 1.51675e-01
f8 -7.187408e+03 -8.598653e+03 -1.054997e+04
f9 4.917079e+01 2.149141e+00 0.000000e+00
f10 1.404689e+00 1.842273e-07 6.292307e-10
f11 2.352893e-02 9.234456e-02 0.000000e+00
f12 3.819961e-01 8.559789e-03 5.505851e-13
f13 -5.968873e-01 -9.626354e-01 -1.150438e+00

Function f2

Function f6

Function f8

Function f9

Function f10

Function f11

Fig. 2. 3D plots of selected benchmark problems

IAENG International Journal of Computer Science, 36:2, IJCS_36_2_02
__

(Advance online publication: 22 May 2009)

TABLE II COMPARISON RESULTS OF TEST PROBLEMS OF DIMENSION 50

Function
Mean Best Fitness

BPSO ARPSO QIPSO
f1 4.867600e-08 2.621439e+01 0.000000e+00
f2 9.782400e+00 1.07820e+01 0.000000e+00
f3 7.462966e-01 8.566760e-03 0.000000e+00
f4 2.633483e-07 8.837717e-07 1.765932e-07
f5 3.322306e-14 3.986624e+00 2.930120e-19
f6 1.320000e+02 4.000000e+00 0.000000e+00
f7 9.166647e+00 4.871490e+00 1.615060e-01
f8 -1.365149e+04 -1.542069e+04 -1.702854e+04
f9 2.596818e+02 3.554837e+02 1.069930e+02
f10 2.342900e+01 1.948324e+01 1.646220e+00
f11 2.466000e-03 1.084202e-19 0.000000e+00
f12 5.643325e+00 2.270458e-09 3.303511e-13
f13 -1.144380e+00 -1.150438e+00 -1.150438e+00

TABLE III IMPROVEMENT (%) OF QIPSO IN COMPARISON WITH BPSO AND ARPSO

Function

Dimension 30

Function

Dimension 50
Improvement
with BPSO

(%)

Improvement
with ARPSO

(%)

Improvement
with BPSO

(%)

Improvement
with ARPSO

(%)
f1 0.000000 100 f1 100 100
f2 0.000000 100 f2 100 100
f3 0.000000 0.000000 f3 100 100
f4 99.921801 100 f4 32.943102 80.018233
f5 100 100 f5 99.999118 100
f6 100 100 f6 100 100
f7 - - f7 98.238113 96.684669
f8 46.784070 22.693287 f8 23.737529 10.426576
f9 100 100 f9 58.798422 69.902136
f10 99.999999 99.658449 f10 92.973579 91.55058
f11 100 100 f11 100 100
f12 100 99.999999 f12 100 99.98545
f13 92.739567 19.509214 f13 0.5293696 0.000000

TABLE IV COMPARISON RESULTS OF TEST PROBLEMS OF DIMENSION 100

Function
Mean Best Fitness

BPSO ARPSO QIPSO
f1 0.0000000e+00 7.4869991e+02 0.000000e+00
f2 1.8045813e+01 3.9637792e+01 2.96156e-005
f3 3.6666668e+03 1.8174752e+01 4.960550e-01
f4 5.3121806e+00 2.4367166e+00 2.396920e+00
f5 2.0203629e+02 2.3609401e+02 1.712801e+01
f6 2.1000000e+00 4.1183333e+02 1.200000e+01
f7 2.7845728e-02 3.2324733e-03 5.540010e-05
f8 -2.1579648e+04 -2.1209102e+04 -3.931473e+04
f9 2.4359139e+02 4.8096522e+01 3.360902e+01
f10 4.4934316e+00 5.6281044e-02 1.911440e+00
f11 4.1715080e-01 8.5311042e-02 2.466180e-03
f12 1.1774980e-01 9.219929e-02 8.027411e-12
f13 -3.8604485e-01 3.3010679e+02 -1.139458e+00

IAENG International Journal of Computer Science, 36:2, IJCS_36_2_02
__

(Advance online publication: 22 May 2009)

TABLE V IMPROVEMENT (%) OF QIPSO IN COMPARISON WITH BPSO AND ARPSO: DIMENSION 100

Function
Improvement
with BPSO

(%)

Improvement
with ARPSO

(%)
Function

Improvement
with BPSO

(%)

Improvement
with ARPSO

(%)
f1 0.000000 100 f8 82.18429 85.36725
f2 102.28467 99.99992 f9 86.20270 30.12172
f3 99.986471 97.27063 f10 57.46144 ----
f4 54.87879 1.63318 f11 99.40880 97.10915
f5 91.52231 92.74525 f12 100 100
f6 ---- 97.08619 f13 195.16272 100.34517
f7 99.801045 98.28614

Fig. 3 Convergence graph for the function f4

Fig. 4 Convergence graph for the function f5

Fig. 5 Convergence graph for the function f8

Fig. 6 Convergence graph for the function f9

Fig. 7 Convergence graph for the function f11

Fig. 8 Comparison of objective function values for the function f3

IAENG International Journal of Computer Science, 36:2, IJCS_36_2_02
__

(Advance online publication: 22 May 2009)

Fig. 9 Comparison of objective function values for the function f12

Fig. 10 Comparison of objective function values for the function f13

B. Real life Problems
An optimization algorithm is said to be successful only if it

is capable of solving real life problems, which may or may
not be assisted with constrained, also along with the
benchmark problems. Therefore in order to check the
efficiency of the QIPSO algorithm, we tested them on five
engineering design problems common in the field of
electrical engineering. These are; Dynamic Power schedule
problem [19], Static power scheduling problem [19], electric
network optimization problem [20], Cost Minimization of
Transformer Design [19] and Transistor Modeling [21].

A brief description of the real life problems along with
mathematical models is given below.

1) Dynamic power scheduling problem
 This problem is a representation of the problem of
scheduling three generators to meet the demand for power
over a period of time. The variable x3k+i denotes the output
from the ith generator at time t(k). The constraints in the
problem are upper and lower limits on the power available
from each generator, bounds on the amount by which the
output from a generator can change from time t(k) to t(k+1), and
the condition that the at each time t(k) the power generated
must at least satisfy the demand. The mathematical model of
this power scheduling problem is,
Minimize

∑
=

+++ +++=
4

0
23

2
1313 7.10001.03.2()(

k
kkk xxxxf

)00015.02.20001.0 2
3333

2
23 +++ ++ kkk xxx

Subject to:
6157 1 ≤−≤− x , 67 2313 ≤−≤− −+ kk xx 4,.....,1=k
7507 2 ≤−≤− x , 77 1323 ≤−≤− −+ kk xx 4,.....,1=k
6107 3 ≤−≤− x , 67 333 ≤−≤− + kk xx 4,.....,1=k

60321 ≥++ xxx , 50654 ≥++ xxx , 70987 ≥++ xxx
85121110 ≥++ xxx , 100151413 ≥++ xxx

900 13 ≤≤ +kx 4,.....,1=k
1200 23 ≤≤ +kx 4,.....,1=k
600 33 ≤≤ +kx 4,.....,1=k

2) Static power scheduling problem
 In this problem the decision variables x1 and x2 are the real
power outputs from two generators; x3 and x4 are the reactive
power outputs; x5, x6 and x7 are voltage magnitudes at three
nodes of an electrical network and x8 and x9 are voltage phase
angles at two of these nodes. The constraints other than the
bounds are the real and reactive power balance equations,
stating that the power flowing into a node must balance the
power flowing out. The mathematical model is,
Minimize

3
2

3
11 667.6662200010003000)(xxxxxf +++=

Subject to:
)]cos()sin([24.0 8865

2
51 xCxDxxCxx −−−++−

 0)]cos()sin([9975 =−−−+ xCxDxx

)]cos()sin([24.0 8865
2

62 xCxDxxCxx −++−

 0)]cos()sin([989876 =−−−+ xxCxxDxx

)]cos()sin([28.0 9975
2

7 xCxDxxCx −++

 0)]cos()sin([898976 =−−−+ xxCxxDxx

)]cos()sin([22.0 8865
2

53 xDxCxxDxx −+−−+−

 0)]cos()sin([9975 =−+−− xDxCxx

)]cos()sin([22.0 8865
2

64 xDxCxxDxx +−+−

 0)]cos()sin([989876 =−+−− xxDxxCxx

)]cos()sin([2337.0 9975
2

7 xDxCxxDx +−+−

 0)]cos()sin([898976 =−+−− xxDxxCxx
0≥ix .2,1=i

90909.00909.1 ≥≥ ix .7,6,5=i
Where 176.50/4.48)25.0sin(=C

176.50/4.48)25.0cos(=D
3) Electric Network optimization

 The mathematical model of the Electric Network
Optimization problem is given by,
Minimize

)()()(2211 xfxfxf +=
Constraints:

⎩
⎨⎧=

1
1

11 30
31)(x

xxf 400300
3000

1
1

≤≤
≤≤
x

x

⎪⎩

⎪
⎨
⎧

=
2
2
2

22
30
29
28

)(
x
x
x

xf
1000200
200100

1000

2
2

2

≤≤
≤≤

≤≤

x
x

x

)48477.1cos(
078.131

300 6
43

1 xxxx −−=

)47588.1cos(
078.131

90798.0 2
3x

+

)48477.1cos(
078.131 6

43
2 xxxx +−=

)47588.1cos(
078.131

90798.0 2
4x

+

IAENG International Journal of Computer Science, 36:2, IJCS_36_2_02
__

(Advance online publication: 22 May 2009)

)48477.1sin(
078.131 6

43
5 xxxx +−=

)47588.1sin(
078.131

90798.0 2
4x

+

)48477.1sin(
078.131

200 6
43 xxx

−−

 0)47588.1sin(
078.131

90798.0 2
3 =+

x

4000 1 ≤≤ x , 10000 2 ≤≤ x , 420340 3 ≤≤ x
420340 4 ≤≤ x , 10001000 5 ≤≤− x , 5236.00 6 ≤≤ x .

4) Cost Minimization of Transformer design
 The objective function represents the worth of the
transformer, including the operating cost, and the constraints
refer to the rating of the transformer and the allowable
transmission loss. The decision variables x1, x2, x3 and x4 are
physical dimensions of winding and core and the variables x5,
x6 are magnetic flux density and current density respectively.
The mathematical model of this problem is given by:
Minimize

++++++=)57.1(0187.0)(0204.0 4213232141 xxxxxxxxxxf
)57.1(0437.0)(0607.0 421

2
632321

2
541 xxxxxxxxxxxx +++++

Subject to:
3

654321 1007.2 ×≥xxxxxx
)(00062.01 321

2
541 xxxxxx ++−

0)57.1(00058.0 421
2

632 ≥++− xxxxxx
0≥ix)6,...,1(=i .

5) Transistor Modeling
 The mathematical model of the transistor design is given
by,

Minimize ∑
=

++=
4

1

222)()(
k

kkxf βαγ

Where
 3

7315321 10({exp[)1(−×−−= xggxxxx kkkα

245
3

85 }1)]10 xggxg kkk +−×− −
3

73216421 10({exp[)1(−×−−−= xgggxxxx kkkkβ

 kkk gxgxg 415
3

94 }1)]10 +−×+ − .

4231 xxxx −=γ

Subject to: 0≥ix

And the numerical constants ikg are given by the matrix

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

4823.2113884.1348467.1115132.28
267.191461.111779.1013037.23

2153.209274.220677.102095.5
455.1703.0254.1369.0
982.0869.0752.0485.0

This objective function provides a least-sum-of-squares
approach to the solution of a set of nine simultaneous

nonlinear equations, which arise in the context of transistor
modeling.

C. Simulation Results of Real life Problems
 Parameter settings for all the real life problems are same as
that of the test functions. Computational time for all the
algorithms is more or less similar with marginal difference
and is therefore not reported. The results of all the problems
are given in Table VI.
 The first RLP is a representation of the problem of
scheduling three generators to meet the demand for power
over a period of time. This problem has 15 decision variables,
35 inequality constraints and 30 boundary constraints. The
simulation result shown that QIPSO gave a better
performance than BPSO algorithm. The second RLP is a
static power scheduling problem, it has 9 decision variables
and 6 equality constraints. Here we would like to mention
that while solving equality constraints, we have changed
them to inequality with an accuracy of 10-4. This is to say that
a constraint hi = 0, is changed into an in equation as || ih <=
10-4. Again QIPSO algorithm gave a better result than BPSO
algorithm. Like first and second RLP the QIPSO algorithm
gave a better performance for all the remaining problems.

V. CONCLUSION
The present article presents a simple and modified version

of the Basic PSO by inducing a crossover component in it.
The crossover component is added to enhance the
performance of the conventional PSO without disturbing the
inherent features of BPSO. The QI crossover taken in this
paper is a nonlinear operator which uses three particles of the
swarm population to generate a new candidate solution. The
presence of global best swarm particle makes it behave like a
greedy search algorithm which explores its neighboring area
in search of more potential candidates.
 The integrity of QIPSO is validated by testing it on a set of
small, medium and large sized unconstrained test problems
with dimensions 30, 50 and 100. The results are compared
with conventional PSO and ARPSO, which is a modified
version of conventional PSO. The efficiency of QIPSO is
further tested by applying it on five real life problems which
are common in the field of electrical engineering. All the real
problems have constraints associated with them which are
dealt with the penalty function approach. Numerical results
of real as well as test problems show the robustness and
efficiency of QIPSO algorithm. Further investigations
include theoretical analysis of QI operator and also the
application of QIPSO for solving high dimension real life and
test problems.

ACKNOWLEDGMENT
The second author would like to thank All India Council

for Technical Education (AICTE), Government of India for
giving financial support to her research work.

IAENG International Journal of Computer Science, 36:2, IJCS_36_2_02
__

(Advance online publication: 22 May 2009)

TABLE VI NUMERICAL RESULTS OF REAL LIFE PROBLEMS
Dynamic Power Scheduling problem

Algorithm Best Average Worst Std
BPSO 666.6352 717.552687 802.85215 25.031686
QIPSO 664.015 703.223 742.139 17.5405

Static Power Scheduling
Algorithm Best Average Worst Std
BPSO 5061.01219 5154.529748 5221.47662 42.762777
QIPSO 5049.33 5109.37 5136.04 37.7784

Electric Network Optimization
Algorithm Best Average Worst Std
BPSO 8873.01753 9084.32555 9307.9852 141.867249
QIPSO 8865.98 9025.07 9234.88 106.193

Cost Minimization of Transformer Design
BPSO 87.0734 91.8331 139.243 11.5574
QIPSO 86.6171 87.323 88.4159 0.598072

Transistor Modeling
BPSO 0.069569 0.076523 0.09563 1.087695
QIPSO 0.066326 0.06978 0.07236 0.987302

REFERENCES
[1] Angeline P. J., “Evolutionary Optimization versus Particle Swarm

Optimization: Philosophy and Performance Difference,” The 7th
Annual Conference on Evolutionary Programming, San
Diego,USA,(1998).

[2] H. Liu, A. Abraham and W. Zhang: A Fuzzy Adaptive Turbulent
Particle Swarm Optimization. International Journal of Innovative
Computing and Applications, Volume 1, Issue 1, 2007, pp. 39-47.

[3] J. Robinson, S. Sinton, and Y. Rahmat-Samii., “Particle Swarm,
Genetic Algorithm, and Their Hybrids: Optimization of a Profiled
Corrugated Horn Antenna”, In Proc. of the IEEE Antennas and
Propagation Society International Symposium and URSI national radio
Science meeting, Vol. 1 (2002), pp. 314 – 317.

[4] Y. Shi and R. A. Krohling, “Co-Evolutionary Particle Swarm
Optimization to Solve Min-Max Problems”, In Proc. of the IEEE
Congress on Evolutionary Computation, Vol.2 (2002), pp. 1682 –
1687.

[5] X. Shi, J. Hao, J. Zhou, and Y. Liang, “Hybrid Evolutionary
Algorithms Based on PSO and GA”, In Proc. of the IEEE Congrss on
Evolutionary Computation, Vol. 4 (2003), pp. 2393 – 2399.

[6] X. Hu, R. C. Eberhart, and Y. Shi, “Swarm Intelligence for
Permutation Optimization: A Case Study on n-Queens problem”, In
Proc. of IEEE Swarm Intelligence Symposium (2003), pp. 243 – 246.

[7] C-F. Juang, “A hybrid of genetic Algorithm and Particle Swarm
Optimization for Recuurent Network Design”, IEEE Trans. On
Systems, Man, and Cybernetics – Part B: Cybernetics, 34(2), (2003) ,
pp. 997 – 1006.

[8] Kennedy, J. and Eberhart, R., “Particle Swarm Optimization”, IEEE
Int. Conf. on neural networks (Perth, Australia), IEEE service Center,
Piscataway, NJ. (1995), pp. 1942-1948.

[9] B. R. Secrest and G. B. Lamont. Visualizing Particle Swarm
Optimization – Gaussian Particle Swarm Optimization. In Proceedings
of the IEEE Swarm Intelligence Symposium, (2003), pp. 198 – 204.

[10] Millie Pant, Radha Thangaraj, “A New Particle Swarm Optimization
with Quadratic Crossover”, Int. Conf. on Advanced Computing and
Communications (ADCOM’07), India, IEEE Computer Society Press,
pp. 81 – 86, 2007.

[11] J.Riget and J.S. Vesterstrom, “A diversity-guided particle swarm
optimizer – the arPSO,” Technical report, EVAlife, Dept. of Computer
Science, University of Aarhus, Denmark,(2002).

[12] Kennedy, J., “The Particle Swarm: Social Adaptation of Knowledge,”
IEEE International Conference on Evolutionary Computation
(Indianapolis, Indiana), IEEE Service Center, Piscataway, NJ,(1997),
pg.303-308.

[13] R.C. Eberhart, Y. Shi, “Particle Swarm Optimization: developments,
Applications and Resources,” IEEE International Conference on
Evolutionary Computation, (2001), pg. 81 -86.

[14] Shi, Y. H., Eberhart, R. C., “A Modified Particle Swarm Optimizer,”
IEEE International Conference on Evolutionary Computation,
Anchorage, Alaska, (1998), pg. 69 – 73.

[15] C. Mohan and K. Shanker, “A Controlled Random Search Technique
For Global Optimization using Quadratic Approximation”,
Asia-Pacific Journal of Operational Research, Vol. 11, pp. 93-101,
1994.

[16] M. M. Ali and A. Torn, “Population Set Based Global Optimization
Algorithms: Some Modifications and Numerical Studies”,
www.ima.umn.edu/preprints, 2003.

[17] Engelbrecht, A. P., “Fundamentals of Computational Swarm
Intelligence”, John Wiley & Sons Ltd., (2005).

[18] J. Vesterstrom, R. Thomsen, “A Comparative study of Differential
Evolution, Particle Swarm optimization, and Evolutionary Algorithms
on Numerical Benchmark Problems,” in Proc. IEEE Congr.
Evolutionary Computation, Portland, OR, Jun. 20 – 23, (2004), pg.
1980 – 1987.

[19] M. C. B-Biggs, “A Numerical Comparison between Two Approaches
to the Nonlinear Programming Problem”, In: L. C. W. Dixon and G. P.
Szego, eds., Towards Global Optimization 2, Amsterdam, Holland:
North Holland Publishing Company, pp. 293 – 312, 1978.

[20] W. L. Price, “A Controlled Random Search Procedure for Global
Optimization”, In: L. C. W. Dixon and G. P. Szego, eds., Towards
Global Optimization 2, Amsterdam, Holland: North Holland
Publishing Company, pp. 71 – 84, 1978.

[21] D. M. Himmelblau, “Applied Non-Linear programming”, New York:
McGraw-Hill, 1972.

Millie Pant received the Bachelor’s and Master’s degrees from CCS
University, Meerut in the years 1997 and 1999 respectively and Ph. D degree
in 2003 from the Indian Institute of Technology Roorkee, India.
 Dr. M. Pant is currently with Indian Institute of Technology Roorkee,
India, where she is a Senior Lecturer in the Department of Paper Technology.
Her special fields of interests include Numerical Optimization, Evolutionary
Algorithms, Swarm Intelligence and Parallel Computing.

Radha Thangaraj received the Bachelor’s, Master in Science and Master in
Philosophy degrees in Mathematics from Manonmaniam Sundaranar
University, Tirunelveli, India in 2001, 2003 and 2004 respectively.
 Currently she is working towards the Ph. D degree at Department of Paper
Technology, Indian Institute of Technology Roorkee, India. Her field of
interest includes Evolutionary Computation and its Applications in
Engineering.

 V. P. Singh received the Bachelor’s degree from Meerut University, India
in the year 1970, Master’s and Ph. D degrees in Applied mathematics from
the University of Roorkee (now, Indian Institute of Technology Roorkee),
India, in 1972, and 1978 respectively.
 Prof. V. P. Singh is currently with Indian Institute of Technology Roorkee,
India, where he is a Professor in the Department of Paper Technology. His
special fields of interests include Applied and Industrial Mathematics,
Mathematical Modeling of Pulp washing problems.

IAENG International Journal of Computer Science, 36:2, IJCS_36_2_02
__

(Advance online publication: 22 May 2009)

