
 
 

  
Abstract— This paper presents a variant of diversity guided 

Particle Swarm Optimization (PSO) algorithm named QIPSO 
for solving global optimization problems. In QIPSO the 
conventional framework of PSO is modified by including a 
crossover operator to maintain the level of diversity in the 
swarm population.  Numerical results show that the induction 
of a crossover operator not only discourages premature 
convergence to the local optima but also explores promising 
regions of the search space effectively. Empirical results show 
the superior performance of QIPSO with conventional PSO and 
ARPSO. Efficiency of QIPSO is further validated by applying it 
to a set of five real life problems (RLPs) with constraints. 
Penalty method is used for dealing with constraints. Once again 
the simulation results show the compatibility of QIPSO for 
solving real life problems. 
 

Index Terms— Particle Swarm Optimization, Crossover 
operator, Quadratic Interpolation, Real life problems.  

I. INTRODUCTION 
 Population based search algorithms like Genetic 
Algorithms (GA), Evolutionary Programming (EP), 
Differential Evolution (DE), Particle Swarm Optimization 
(PSO) etc. are perhaps some of the most popular stochastic 
techniques for solving continuous global optimization 
problems. These techniques have shown their efficiency for 
solving complex test as well as real life problems. Of the 
above mentioned algorithms other than PSO all other 
algorithms are inspired by the phenomenon of Darwin’s 
concept of ‘survival of the fittest’. Classical PSO on the other 
hand follows the policy of cooperation and social behavior 
displayed by various species like ants, birds, fish etc.  
Nevertheless all the above mentioned algorithms share some 
common features as pointed out by Angeline [1]: 

 All are population based search techniques. 
 None of the above mentioned algorithms require the 

auxiliary knowledge (like continuity, differentiability 
etc.) of the problem. 

 In all the algorithms solutions belonging to the same 
population interact with each other during the search 
process. 

 The quality of the solutions are improved using 
techniques inspired from real world phenomenon like human 
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genetics in case of EA and cooperative behavior in case of 
PSO.  
 It is worth mentioning that although these algorithms have 
been successful in solving a wide variety of problems, their 
performance is criticized one certain aspects. For example the 
problem of the loss of diversity after subsequent iterations 
which lead to premature convergence leading to suboptimal 
solution [2]. Loss of diversity becomes more prominent for 
multimodal functions having several optima or noisy 
functions where the optimum keeps shifting from one 
position to other. Loss of diversity generally takes place 
when the balance between the two antagonists processes 
exploration (searching of the search space) and exploitation 
(convergence towards the optimum) is disturbed. In case of 
evolutionary algorithms the population diversity is generally 
lost during the process of evolution (crossover and mutation), 
whereas in case of PSO the diversity loss is generally 
attributed to the fast information flow between the swarm 
particles. Thus in absence of a good diversity enhancing 
mechanism the optimization algorithms are unable to explore 
the search space effectively. 
 One of the simplest methods to overcome the problem of 
diversity loss is to capitalize the strengths of EA and PSO 
together in an algorithm. A variety of methods combining the 
aspects of EA and PSO are available in literature. For detailed 
study, the reader is suggested [3] - [5], etc. Out of the EA 
operators, mutation is the most widely used EA tool applied 
in PSO [6] - [9] etc. However very few examples of selection 
and crossover operator are available in literature. 
Keeping this in mind we proposed a variant of diversity 
guided PSO called QIPSO which make use of crossover 
operator to maintain the diversity of the population [10]. In 
[10], we defined a new nonlinear quadratic crossover 
operator which makes use of three members of the swarm to 
produce a new member. This operator is activated when the 
diversity of the swarm becomes less than a certain threshold 
(say dlow) and stops when the required diversity (say dhigh) is 
achieved. We checked the QIPSO algorithm with thirteen test 
suit of benchmark problems (unconstrained), the 
experimental results shown that the new algorithm gave 
better results. Motivated by the preliminary good results 
shown by QIPSO and to further validate its efficiency, we 
used it to solve real life engineering design problems with 
constraints associated with them. Penalty function approach 
is used to deal with constraints. 
 The structure of the paper is as follows: in section II, we 
briefly explain the BPSO and ARPSO (another diversity 
guided PSO [11]), in section III; we describe the QIPSO 
algorithm and its performance on thirteen standard 
benchmark problems taken from literature. Section IV deals 
with the performance of QIPSO algorithm for constrained 
optimization problems. Finally the paper concludes with 
section V. 
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II. ALGORITHMS USED FOR COMPARISON 
 In the present article we compared the performance of the 
proposed QIPSO with the conventional or basic PSO and 
ARPSO. ARPSO, described later in this section, uses the 
unique concept of repulsing the population points for 
enhancing the diversity of the population. Previous studies 
have shown ARPSO to be competent for solving numerical 
benchmark problems with sufficiently high dimension. 

A. Basic Particle Swarm Optimization (BPSO) 
Particle Swarm Optimization (PSO) is a relatively newer 

addition to a class of population based search technique for 
solving numerical optimization problems. A unique feature 
of PSO is that it maintains the memory of previous best 
positions. The particles or members of the swarm fly through 
a multidimensional search space looking for a potential 
solution. Each particle adjusts its position in the search space 
from time to time according to the flying experience of its 
own and of its neighbors (or colleagues). 

For a D-dimensional search space the position of the ith 
particle is represented as Xi = (xi1, xi2, …, xiD). Each particle 
maintains a memory of its previous best position Pbesti = (pi1, 
pi2… piD). The best one among all the particles in the 
population is represented as Pgbest = (pg1, pg2… pgD). The 
velocity of each particle is represented as Vi = (vi1, vi2, … 
viD). In each iteration, the P vector of the particle with best 
fitness in the local neighborhood, designated g, and the P 
vector of the current particle are combined to adjust the 
velocity along each dimension and a new position of the 
particle is determined using that velocity. The two basic 
equations which govern the working of PSO are that of 
velocity vector and position vector given by: 

)()( 2211 idgdidididid xprcxprcwvv −+−+=      (1) 

ididid vxx +=                                                                                             (2) 
The first part of equation (1) represents the inertia of the 

previous velocity, the second part is the cognition part and it 
tells us about the personal thinking of the particle, the third 
part represents the cooperation among particles and is 
therefore named as the social component [12]. Acceleration 
constants c1, c2 [13] and inertia weight w [14] are the 
predefined by the user and r1, r2 are the uniformly generated 
random numbers in the range of [0, 1].  

B. ARPSO Algorithm 
The ARPSO algorithm is diversity guided BPSO which 

uses an interesting concept of diverging the population points 
when the diversity becomes less than the desired threshold 
value.  ARPSO consists of two phases and the swarm 
population keeps shuttling between the phases of attraction 
and repulsion according to the increase or decrease in 
diversity measure. In the attraction phase, the particles come 
towards each other following equation (1) as they do in 
BPSO. The movement of particles towards each other causes 
a gradual decrease in diversity of the population. When the 
diversity becomes lower then a certain specified value dlow, a 
repulsion phase obtained by inverting the velocity update 
formula is activated according to the following equation: 

)()( 2211 idgdidididid xprcxprcwvv −−−−=                (3) 
In this phase the particles are no longer attracted towards 

each other but move away or from each other. This generates 
a perturbation in the population and causes an increase in the 
diversity of the swarm population. The swarm particles stay 

in this phase until the diversity reaches a higher value dhigh. 
As soon as the desired high diversity dhigh is achieved, the 
swarm particles again come back to the attraction phase and 
the same process continues iteratively until the global 
optimum is obtained. 

III. QIPSO ALGORITHM FOR UNCONSTRAINED 
OPTIMIZATION 

A. Proposed QIPSO Algorithm 
QIPSO is a simple and modified version of BPSO with an 

added crossover operator to enhance the performance of 
BPSO without disturbing the inherent features of BPSO. Like 
ARPSO, QIPSO uses diversity as a measure to guide the 
swarm, but instead of repulsing the population points, it 
makes use of crossover operator to explore the promising 
areas of the search domain.  

The crossover operator applied in QIPSO is quadratic 
interpolation (QI) operator. QI is a gradient free direct search 
technique used for solving nonlinear optimization problems. 
The concept of using QI in optimization methods is not new. 
It has also been used as a method to generate new point in 
population based search techniques [15], [16]. 
Mathematically, the point generated by QI lies at the point of 
minima of the quadratic curve passing through three points. 
Initially, QI method used for solving nonlinear optimization 
problems considered three points to be equidistant from each 
other. However, in the present study in order to provide more 
randomness to explore the search space the particle having 
the best fitness value (global best particle, Pgbest) is always 
selected whereas the other two points are randomly chosen 
from the remaining population. 

Mathematically, the working of QI operator may be 
defined as: 

If  a = Pgbest represents the global best position of the 
swarm and let b, c represent randomly chosen swarm 
particles such that a ≠ b ≠c, then the coordinates of the new 
point generated by using QI is given as 

)~,.......,~,~(~ 21 ni xxxx = , where   
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 When the diversity is less than dlow, QI operator is 
activated and the particle having the best value (Pgbest) with 
the help of two other distinct random points starts exploring 
the domain in search of other potential candidates. This 
process continues till the desired diversity level is attained. 
Flow of the proposed QIPSO is given in Fig.1. A C++ style 
implementation of QI operator is as follows: 
 
If (Diversity < dlow) 

    do 
       { 
        // generate a new point using (4) 
       } while (Diversity > dhigh); 
End if  
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Fig. 1 Flowchart of QIPSO algorithm 

B. Experimental Setting, Benchmark Problems and Result 
Analysis 

1)  Experimental Settings 
All the parameters in PSO play an important role in 

deciding the success of an algorithm. In order to make a fair 
comparison of BPSO, ARPSO and QIPSO, we fixed the 
same seed for random number generation so that the initial 
swarm population is same for all the three algorithms. We 
performed a number of experiments with varying 
population sizes, inertia weight and acceleration constants. 
From the empirical results we observed that a swarm size of 
2*n (where n is the number of variables) is sufficient for 
small and medium sized problems. A linearly decreasing 
inertia weight starting at 0.9 and finishing at 0.4 is taken 
and acceleration constants c1 and c2 are taken as 1.8. 
However depending on the complexity of the problem user 
may vary the parameters accordingly.  

    Diversity is an important aspect for checking the efficiency 
of the swarm. Ideally, the diversity of an algorithm should 
be high in the beginning decreasing slowly in the 
successive iterations. The diversity measure [17] of the 
swarm in the present study is taken as: 
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where S is the swarm, ns = ⎜S ⎜is the swarm size, nx is the 
dimensionality of the problem, xij is the j’th value of the i’th 
particle and )(tx j  is the average of the j-th dimension over 
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The diversity controlling parameters dlow and dhigh are 
taken as 5.0*10– 6 and 0.25 respectively. For all algorithms, 
the maximum number of iterations allowed was set to 10,000. 
A total of 30 runs for each experimental setting were 
conducted and the average fitness of the best solutions 
throughout the run was recorded. 

2)   Benchmark Problems 
To test the credibility of the QIPSO algorithm we tested it 

on a test bed of 13 bench mark problems. The test bed 
comprises of a variety of problems ranging from a simple 
spherical function to highly multimodal functions and also a 
noisy function (with changing optima). These test problems 
provide a platform for testing the credibility of an algorithm 
and also represents the scenarios that may occur in real life 
cases. The first function f1 is a simple unimodal function with 
objective function value as zero. Any decent optimization 
algorithm is able to solve it but when we increase the 
dimension of the problem the algorithms sometimes have 
difficulty in reaching the true objective function value. 
Functions f7 to f13 are highly multimodal, where the number 
of peaks and valleys goes on increasing with increase in 
number of variables. All the functions are scalable and are 
tested for dimensions 30, 50 and 100. 
 In Table II, we give the results of problems with dimension 
30, in Table III results of the same problems with increased 
dimension 50 are given and in Table IV results are recorded 
for dimension 100. Algorithms are compared in terms of 
mean best fitness value.  

3) Results analysis for problems with dimension 30: 
 For dimension 30 (Table I), we have referred the results of 
BPSO and ARPSO presented in Ref. [18] for the purpose of 
comparison with QIPSO.  From the numerical results it is 
evident that QIPSO gave a superior performance in 
comparison to the other two algorithms in 12 of out of 13 test 
cases which shows a success rate of more than 90%. For f7 the 
performance of QIPSO is not as good as the other two 
algorithms but still is a satisfactory value. The best function 
value for f7 is obtained from ARPSO. From Table III, which 
gives the percentage of improvement in the function value, 
the superior performance of QIPSO is evident. 

4) Results analysis for problems with dimension50: 
 Generally the performance of an algorithm deteriorates on 
increasing the dimension of the problem. Therefore we 
increased the dimension of the test problems to 50. From 
Table II, it is clear that even for increased dimension the 
performance of QIPSO remains quite stable in terms of 
fitness function value. Surprisingly, for f7 QIPSO gave a 
better value with increased dimension. For the remaining 
functions also QIPSO gave a superior performance in 
comparison to other algorithms. Moreover the stability of 
QIPSO can be seen from the objective function values which 
are near to the true function values. Similar observations can 
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be made from Table III which gives the percentage of 
improvement. Figure 2 gives the 3D plot of some selected 
benchmark problems. 
Figures 3 - 7 show the mean best fitness curves for selected 
benchmark problems. Figures 8 – 9 show the comparison of 
fitness function for selected benchmark problems.   

5) Results analysis for problems with dimension100: 
For dimension 100 (Table IV) also, we have referred the 

results of BPSO and ARPSO presented in Ref. [18] for the 
purpose of comparison with QIPSO. Table V gives the 
percentage of improvement of QIPSO in comparison with 
BPSO and ARPSO. From Table IV, it is clear that even for 
increased dimension the performance of QIPSO remains 
quite stable in terms of fitness function value. Surprisingly, 
for function f6 BPSO gave a better value than QIPSO and for 
function f10 ARPSO gave a better value. For the remaining 
functions QIPSO gave a superior performance in comparison 
to other algorithms.  
The complete formulation of the test of problems is given 
below: 
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3. Function f3 
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4. Schwefel function 2 
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5. Rosenbrock function 
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6. Step function 
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7. Dejong’s function with noise 
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8. Schwefel function 3 
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9. Rastringin function 
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10. Ackley’s function 
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11. Griewank function 
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12. Generalized penalized function 1 
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13. Generalized penalized function 1 
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In problem 12 1nd 13 the value of penalty function u is 
given by, 

caxbcbaxu )(),,,( −= , if ax >   
caxbcbaxu )(),,,( −−=  , if  ax −<  

0),,,( =cbaxu , if axa ≤≤− . 

IV. QIPSO ALGORITHM FOR CONSTRAINED OPTIMIZATION 
The QIPSO algorithm described in the previous section is 

used for solving constrained real life optimization problems 
in are given in the subsequent subsections. Penalty method 
[16], given in the following subsection, is used to handle the 
constraints. 

A.  Penalty method for solving constrained optimization 
problems 
Many real-world optimization problems are solved subject 

to sets of constraints. The search space in Constrained 
Optimization Problems (COPs) consists of two kinds of 
solutions: feasible and infeasible. Feasible points satisfy all 
the constraints, while infeasible points violate at least one of 
them. Therefore the final solution of an optimization problem 
must satisfy all constraints. 
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In this paper, the two algorithms BPSO and QIPSO handle 
the constraints using the concept of penalty functions. In the 
penalty function approach, the constrained problem is 
transformed into an unconstrained optimization algorithm by 
penalizing the constraints and building a single objective 
function, which is minimized using an unconstrained 
optimization algorithm. 

 That is, 
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with α a positive constant, representing the power of the 
penalty. The inequality constraints are considered as g(x) and 
h(x) represents the equality constraints. ng and nh denotes the 
number inequality and equality constraints respectively. λ is 
the constraint penalty coefficient 

 
 

 
 
 

TABLE I COMPARISON RESULTS OF TEST PROBLEMS OF DIMENSION 30 

Function 
Mean Best Fitness 

BPSO ARPSO QIPSO 
f1 0.000000e+00 6.808174e-13 0.000000e+00 
f2 0.000000e+00 2.089204e-02 0.000000e+00 
f3 0.000000e+00 0.000000e+00 0.000000e+00 
f4 2.107015e-16 1.418379e-05 1.647667e-19 
f5 4.026386e+00 3.550929e+02 8.608759e-19 
f6 4.000000e-02 1.898000e+01 0.000000e+00 
f7 1.908221e-03 3.886668e-04 1.51675e-01 
f8 -7.187408e+03 -8.598653e+03 -1.054997e+04 
f9 4.917079e+01 2.149141e+00 0.000000e+00 
f10 1.404689e+00 1.842273e-07 6.292307e-10 
f11 2.352893e-02 9.234456e-02 0.000000e+00 
f12 3.819961e-01 8.559789e-03 5.505851e-13 
f13 -5.968873e-01 -9.626354e-01 -1.150438e+00 

 
 

 
Function  f2      

 

 
Function f6         

 
Function f8      

 

 
Function f9  

 
Function  f10 

 

 
Function  f11 

 
Fig. 2. 3D plots of selected benchmark problems 
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TABLE II COMPARISON RESULTS OF TEST PROBLEMS OF DIMENSION 50 

Function 
Mean Best Fitness 

BPSO ARPSO QIPSO 
f1 4.867600e-08 2.621439e+01 0.000000e+00 
f2 9.782400e+00 1.07820e+01 0.000000e+00 
f3 7.462966e-01 8.566760e-03 0.000000e+00 
f4 2.633483e-07 8.837717e-07 1.765932e-07 
f5 3.322306e-14 3.986624e+00 2.930120e-19 
f6 1.320000e+02 4.000000e+00 0.000000e+00 
f7 9.166647e+00 4.871490e+00 1.615060e-01 
f8 -1.365149e+04 -1.542069e+04 -1.702854e+04 
f9 2.596818e+02 3.554837e+02 1.069930e+02 
f10 2.342900e+01 1.948324e+01 1.646220e+00 
f11 2.466000e-03 1.084202e-19 0.000000e+00 
f12 5.643325e+00 2.270458e-09 3.303511e-13 
f13 -1.144380e+00 -1.150438e+00 -1.150438e+00 

 
         

TABLE III IMPROVEMENT (%) OF QIPSO IN COMPARISON WITH BPSO AND ARPSO 

Function 

Dimension 30 

Function 

Dimension 50 
Improvement  
with BPSO 

(%) 

Improvement 
with ARPSO 

(%)

Improvement 
with BPSO 

(%)

Improvement  
with ARPSO 

(%) 
f1 0.000000 100 f1 100 100 
f2 0.000000 100 f2 100 100 
f3 0.000000 0.000000 f3 100 100 
f4 99.921801 100 f4 32.943102 80.018233 
f5 100 100 f5 99.999118 100 
f6 100 100 f6 100 100 
f7 - - f7 98.238113 96.684669 
f8 46.784070 22.693287 f8 23.737529 10.426576 
f9 100 100 f9 58.798422 69.902136 
f10 99.999999 99.658449 f10 92.973579 91.55058 
f11 100 100 f11 100 100 
f12 100 99.999999 f12 100 99.98545 
f13 92.739567 19.509214 f13 0.5293696 0.000000 

 
 

TABLE IV COMPARISON RESULTS OF TEST PROBLEMS OF DIMENSION 100 
 

Function 
Mean Best Fitness 

BPSO ARPSO QIPSO 
f1 0.0000000e+00 7.4869991e+02 0.000000e+00 
f2 1.8045813e+01 3.9637792e+01 2.96156e-005 
f3 3.6666668e+03 1.8174752e+01 4.960550e-01 
f4 5.3121806e+00 2.4367166e+00 2.396920e+00 
f5 2.0203629e+02 2.3609401e+02 1.712801e+01 
f6 2.1000000e+00 4.1183333e+02 1.200000e+01 
f7 2.7845728e-02 3.2324733e-03 5.540010e-05 
f8 -2.1579648e+04 -2.1209102e+04 -3.931473e+04 
f9 2.4359139e+02 4.8096522e+01 3.360902e+01 
f10 4.4934316e+00 5.6281044e-02 1.911440e+00 
f11 4.1715080e-01 8.5311042e-02 2.466180e-03 
f12 1.1774980e-01 9.219929e-02 8.027411e-12 
f13 -3.8604485e-01 3.3010679e+02 -1.139458e+00 
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TABLE V IMPROVEMENT (%) OF QIPSO IN COMPARISON WITH BPSO AND ARPSO: DIMENSION 100 
 

Function 
Improvement  
with BPSO 

(%) 

Improvement 
with ARPSO 

(%) 
Function 

Improvement 
with BPSO 

(%) 

Improvement  
with ARPSO 

(%) 
f1 0.000000 100 f8 82.18429 85.36725 
f2 102.28467 99.99992 f9 86.20270 30.12172 
f3 99.986471 97.27063 f10 57.46144 ---- 
f4 54.87879 1.63318 f11 99.40880 97.10915 
f5 91.52231 92.74525 f12 100 100 
f6 ---- 97.08619 f13 195.16272 100.34517 
f7 99.801045 98.28614    

 
 
 
 

 
Fig. 3 Convergence graph for the function f4 

 

       
Fig. 4 Convergence graph for the function f5 

                     
 

         
Fig. 5 Convergence graph for the function f8 

 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
Fig. 6 Convergence graph for the function f9 

 
 

 
Fig. 7 Convergence graph for the function f11 

 

 
Fig. 8 Comparison of objective function values for the function f3 
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Fig. 9 Comparison of objective function values for the function f12 

 
 

 
Fig. 10 Comparison of objective function values for the function f13 

B. Real life Problems 
An optimization algorithm is said to be successful only if it 

is capable of solving real life problems, which may or may 
not be assisted with constrained, also along with the 
benchmark problems. Therefore in order to check the 
efficiency of the QIPSO algorithm, we tested them on five 
engineering design problems common in the field of 
electrical engineering. These are; Dynamic Power schedule 
problem [19], Static power scheduling problem [19], electric 
network optimization problem [20], Cost Minimization of 
Transformer Design [19] and Transistor Modeling [21].  

A brief description of the real life problems along with 
mathematical models is given below. 

1) Dynamic power scheduling problem 
 This problem is a representation of the problem of 
scheduling three generators to meet the demand for power 
over a period of time. The variable x3k+i denotes the output 
from the ith generator at time t(k). The constraints in the 
problem are upper and lower limits on the power available 
from each generator, bounds on the amount by which the 
output from a generator can change from time t(k) to t(k+1), and 
the condition that the at each time t(k) the power generated 
must at least satisfy the demand. The mathematical model of 
this power scheduling problem is, 
Minimize 

∑
=

+++ +++=
4

0
23

2
1313 7.10001.03.2()(

k
kkk xxxxf  

)00015.02.20001.0 2
3333

2
23 +++ ++ kkk xxx  

Subject to: 
6157 1 ≤−≤− x , 67 2313 ≤−≤− −+ kk xx    4,.....,1=k  
7507 2 ≤−≤− x , 77 1323 ≤−≤− −+ kk xx    4,.....,1=k  
6107 3 ≤−≤− x , 67 333 ≤−≤− + kk xx      4,.....,1=k  

60321 ≥++ xxx , 50654 ≥++ xxx , 70987 ≥++ xxx  
85121110 ≥++ xxx , 100151413 ≥++ xxx  

900 13 ≤≤ +kx     4,.....,1=k     
1200 23 ≤≤ +kx     4,.....,1=k  
600 33 ≤≤ +kx       4,.....,1=k  

2) Static power scheduling problem 
 In this problem the decision variables x1 and x2 are the real 
power outputs from two generators; x3 and x4 are the reactive 
power outputs; x5, x6 and x7 are voltage magnitudes at three 
nodes of an electrical network and x8 and x9 are voltage phase 
angles at two of these nodes. The constraints other than the 
bounds are the real and reactive power balance equations, 
stating that the power flowing into a node must balance the 
power flowing out. The mathematical model is, 
Minimize 

3
2

3
11 667.6662200010003000)( xxxxxf +++=  

Subject to: 
)]cos()sin([24.0 8865

2
51 xCxDxxCxx −−−++−  

 0)]cos()sin([ 9975 =−−−+ xCxDxx  

)]cos()sin([24.0 8865
2

62 xCxDxxCxx −++−  

 0)]cos()sin([ 989876 =−−−+ xxCxxDxx  

)]cos()sin([28.0 9975
2

7 xCxDxxCx −++  

 0)]cos()sin([ 898976 =−−−+ xxCxxDxx  

)]cos()sin([22.0 8865
2

53 xDxCxxDxx −+−−+−  

 0)]cos()sin([ 9975 =−+−− xDxCxx  

)]cos()sin([22.0 8865
2

64 xDxCxxDxx +−+−  

 0)]cos()sin([ 989876 =−+−− xxDxxCxx  

)]cos()sin([2337.0 9975
2

7 xDxCxxDx +−+−  

 0)]cos()sin([ 898976 =−+−− xxDxxCxx  
0≥ix     .2,1=i  

90909.00909.1 ≥≥ ix   .7,6,5=i  
Where 176.50/4.48)25.0sin(=C  

176.50/4.48)25.0cos(=D  
3) Electric Network optimization  

 The mathematical model of the Electric Network 
Optimization problem is given by, 
Minimize 

)()()( 2211 xfxfxf +=  
Constraints: 

⎩
⎨⎧=

1
1

11 30
31)( x

xxf       400300
3000

1
1

≤≤
≤≤
x

x  

⎪⎩

⎪
⎨
⎧

=
2
2
2

22
30
29
28

)(
x
x
x

xf      
1000200
200100

1000

2
2

2

≤≤
≤≤

≤≤

x
x

x
 

)48477.1cos(
078.131

300 6
43

1 xxxx −−=   

           )47588.1cos(
078.131

90798.0 2
3x

+  

)48477.1cos(
078.131 6

43
2 xxxx +−=   

           )47588.1cos(
078.131

90798.0 2
4x

+  
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)48477.1sin(
078.131 6

43
5 xxxx +−=   

           )47588.1sin(
078.131

90798.0 2
4x

+  

)48477.1sin(
078.131

200 6
43 xxx

−−   

          0)47588.1sin(
078.131

90798.0 2
3 =+

x
 

4000 1 ≤≤ x , 10000 2 ≤≤ x , 420340 3 ≤≤ x  
420340 4 ≤≤ x , 10001000 5 ≤≤− x , 5236.00 6 ≤≤ x . 

4) Cost Minimization of Transformer design 
 The objective function represents the worth of the 
transformer, including the operating cost, and the constraints 
refer to the rating of the transformer and the allowable 
transmission loss. The decision variables x1, x2, x3 and x4 are 
physical dimensions of winding and core and the variables x5, 
x6 are magnetic flux density and current density respectively. 
The mathematical model of this problem is given by:  
Minimize  

++++++= )57.1(0187.0)(0204.0 4213232141 xxxxxxxxxxf            
)57.1(0437.0)(0607.0 421

2
632321

2
541 xxxxxxxxxxxx +++++  

Subject to: 
3

654321 1007.2 ×≥xxxxxx  
)(00062.01 321

2
541 xxxxxx ++−  

0)57.1(00058.0 421
2

632 ≥++− xxxxxx  
0≥ix  )6,...,1( =i . 

5) Transistor Modeling 
 The mathematical model of the transistor design is given 
by, 

Minimize ∑
=

++=
4

1

222 )()(
k

kkxf βαγ  

Where 
 3

7315321 10({exp[)1( −×−−= xggxxxx kkkα  

245
3

85 }1)]10 xggxg kkk +−×− −  
3

73216421 10({exp[)1( −×−−−= xgggxxxx kkkkβ    

   kkk gxgxg 415
3

94 }1)]10 +−×+ − . 

4231 xxxx −=γ  

Subject to:   0≥ix  

And the numerical constants ikg  are given by the matrix 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

4823.2113884.1348467.1115132.28
267.191461.111779.1013037.23

2153.209274.220677.102095.5
455.1703.0254.1369.0
982.0869.0752.0485.0

 

This objective function provides a least-sum-of-squares 
approach to the solution of a set of nine simultaneous 

nonlinear equations, which arise in the context of transistor 
modeling. 

C.  Simulation Results of Real life Problems 
 Parameter settings for all the real life problems are same as 
that of the test functions. Computational time for all the 
algorithms is more or less similar with marginal difference 
and is therefore not reported. The results of all the problems 
are given in Table VI. 
 The first RLP is a representation of the problem of 
scheduling three generators to meet the demand for power 
over a period of time. This problem has 15 decision variables, 
35 inequality constraints and 30 boundary constraints. The 
simulation result shown that QIPSO gave a better 
performance than BPSO algorithm. The second RLP is a 
static power scheduling problem, it has 9 decision variables 
and 6 equality constraints. Here we would like to mention 
that while solving equality constraints, we have changed 
them to inequality with an accuracy of 10-4. This is to say that 
a constraint hi = 0, is changed into an in equation as  || ih  <= 
10-4. Again QIPSO algorithm gave a better result than BPSO 
algorithm. Like first and second RLP the QIPSO algorithm 
gave a better performance for all the remaining problems. 

V.    CONCLUSION 
The present article presents a simple and modified version 

of the Basic PSO by inducing a crossover component in it. 
The crossover component is added to enhance the 
performance of the conventional PSO without disturbing the 
inherent features of BPSO. The QI crossover taken in this 
paper is a nonlinear operator which uses three particles of the 
swarm population to generate a new candidate solution. The 
presence of global best swarm particle makes it behave like a 
greedy search algorithm which explores its neighboring area 
in search of more potential candidates. 
 The integrity of QIPSO is validated by testing it on a set of 
small, medium and large sized unconstrained test problems 
with dimensions 30, 50 and 100. The results are compared 
with conventional PSO and ARPSO, which is a modified 
version of conventional PSO. The efficiency of QIPSO is 
further tested by applying it on five real life problems which 
are common in the field of electrical engineering. All the real 
problems have constraints associated with them which are 
dealt with the penalty function approach. Numerical results 
of real as well as test problems show the robustness and 
efficiency of QIPSO algorithm. Further investigations 
include theoretical analysis of QI operator and also the 
application of QIPSO for solving high dimension real life and 
test problems. 
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TABLE VI NUMERICAL RESULTS OF REAL LIFE PROBLEMS 
Dynamic Power Scheduling problem

Algorithm Best Average Worst Std 
BPSO 666.6352 717.552687 802.85215 25.031686 
QIPSO 664.015 703.223 742.139 17.5405 

Static Power Scheduling 
Algorithm Best Average Worst Std 
BPSO 5061.01219 5154.529748 5221.47662 42.762777 
QIPSO 5049.33 5109.37 5136.04 37.7784 

Electric Network Optimization 
Algorithm Best Average Worst Std 
BPSO 8873.01753 9084.32555 9307.9852 141.867249 
QIPSO 8865.98 9025.07 9234.88 106.193 

Cost Minimization of Transformer Design 
BPSO 87.0734 91.8331 139.243 11.5574 
QIPSO 86.6171 87.323 88.4159 0.598072 

Transistor Modeling 
BPSO 0.069569 0.076523 0.09563 1.087695 
QIPSO 0.066326 0.06978 0.07236 0.987302 
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