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Abstract—Router-level Internet macroscopic topology 

modeling is studied in this paper. The frequency-degree power 
exponent and the degree-rank power exponent of the 
macroscopic topology, according to corresponding power law 
analyses, are 2.1406 and [0.29981, 0.84639], respectively. After 
the scale-free property of Internet macroscopic topology is 
proved, the traditional Barabasi-Albert (BA) model is proposed 
and improved to match up the corresponding power exponents 
of the Internet topology by the optimization of Genetic 
Algorithm. Finally, generation algorithm for the im proved BA 
model is given.  

 
Index Terms—BA model, genetic algorithm, Internet topology 

modeling, power-law distribution. 
 

I. INTRODUCTION 

Generally speaking, the degree distribution of a target 
network (topology) is said to agree with principle of 
power-law distribution, if the network is of uneven topology 
structure and most of its nodes have small degree, whereas a 
rather few nodes have very large degree. General 
terminologies such as Max degree, Min degree or Average 
degree, however, could not appropriately character topology 
properties of such network, and power-law distribution might 
be introduced as an alternative[1][2].  

Internet is an example of such network and power-law 
approaches have already become one of the most powerful 
analytical tools in Internet topology research related 
area[1][2][4] . In 1999, for the first time, Faloutsos made use of a 
notion of frequency-degree power-law to character the 
topology of both AS-level and router-level Internet, thereafter, 
definitions of degree-rank power-law, eigenvalue-rank 
power-law and so on were brought forward[1]. In 2003, 
Siganos found in his research[3] that frequency-degree 
power-law distribution was quite similar to and better than 
the probability density function (PDF) with degree (d) as 
independent variable and frequency (f) as dependent variable. 
Then, Complementary Cumulative Distribution 
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Function(degree), short for  CCDF(d)-degree, power-law 
distribution was found[3]. So, power-law approaches would be 
mainly used in studies of Internet topology modeling in this 
paper.  

A. Mathematical description of power-law distribution 

Power-law distribution is mathematically denoted by 
rcxy −= , where x, y are random variables, and c, r are 

constants greater than 0. Perform logarithm on it, we then get 

xcy ln'ln = . There is a linear relationship between yln  

and xln , i.e., a straight line should exist in a 
dual-logarithmic coordinates. And this linear relationship, or 
the straight line in dual-logarithm graph, would be regarded 
as a primary judgment identifying whether power-law 
distribution is suited or not. 

Three important power-law distributions mostly used in 
Internet topology researches are listed in table I[3][4], and their 
parameters are in table II.  

TABLE  I 
THE BASIC EQUATIONS OF POWER-LAW DISTRIBUTIONS 

Power-law distributions Mathematical models 

frequency-degree R
vv dp ∝  

degree-rank R
vv rd ∝  

CCDF(d)-degree D
d dD ∝  

TABLE  II 
DEFINITIONS OF THE PARAMETERS AND SYMBOLS 

Variable Definition 

G   Undirected graph 

N   Number of the nodes in a graph 

E   Number of the links in a graph 

dv   Degree of node v 

d 
  Average degree of a 

graph, NEd /2=  

pv   Frequency of node whose degree is v 

Dd 
  CCDF(complementary cumulative 
distribution function)  

rv   Order of node v 

λ   eigenvalues of N*N Matrix A: X:X∈
RN \{0} and AX=λX 

ACC 
  Absolute value of the correlation 
coefficient, the closer the ACC is to 1, 
the more accurate the fitting model is 

B. The measured samples of the router-level Internet 

1) Measuring methods 
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Dynamic methods based on the active probing are the main 
approaches to measure the router-level Internet topology[16].  

The dynamic methods, at present, are mainly divided into 
three categories[19]: (1) single-monitor-measuring by 
recording the source routers in the route path, such as the 
Internet Mapping Project (IMP) in Bell Lab.[20], and the 
Mercator[21] projects; (2) active measuring based on the 
Public Traceroute Server (PTrS), such as the ISP topology 
measuring project by Boston University[22]. (3) 
multi-monitor-measuring or measuring-from-multiple- 
vantage-points by self-developed software engines, such as 
the CAIDA1 projects[17][18], and Active Measuring Project by 
Harbin Institute of Technology[19].  

In the upper three methods, the PTrS (method No.2) is 
quite limited due to the following reasons[19]. Firstly, PTrS are 
quite unevenly distributed in Internet and not all ISP render 
services of PTrS. Reference [19] showed that only one of 
nine ISPs providing PTrS, so PTrS method is not reliable for 
measuring Internet. Secondly, it’s rather hard to control these 
PTrS from the ISPs due to security considerations, which 
directly make measuring Internet topology impossible.  

The first method is similar to the third one (e.g., CAIDA), 
they are all based on traceroute or the traceroute-like 
programs[17][18], but the first method is inferior since it‘s 
totally upon single-monitor-measuring tools. CAIDA, 
however, could implement multi-monitor-measuring tools 
and consequently yield better measuring results[17][18]. The 
Active Measuring Project by Harbin Institute of Technology 
(HIT) also used multi-monitor-measuring tools, but it had 
fewer monitors in its project than CAIDA has, what’s more, 
the HIT project mainly focused on the China part Internet 
topology[2][19], inferior to the world-wide Internet from 
CAIDA. So CAIDA was selected for this paper.  

2) Problems of the measuring results 
The measuring results from CAIDA monitors are complete 

but in coarse granularity. There are two main problems in it: 
IP Alias problem and the sampling bias problem due to 
single-monitor-measuring[6][19].  

3) Problems of IP Alias 
[Def 1] IP Alias[23][24]: Different ports with different IP 

addresses for one Internet router are mistaken for different 
routers during the active measuring programs. And this 
problem is known as IP Alias. 

IP Alias Resolution[25] is a way to distinguish the IP 
addresses and solve the problem of IP Alias. However, the 
researches on IP Alias Resolution is still in progress, and only 
a few methods or tools are provided at present and they still 
could not solve the whole problem of IP Alias, only to some 
extent[23][24]. Among these tools, three of them are 
comparatively practicable, and they are iffinder tool[26] from 
CAIDA, Mercator[27] and Rocketfuel tool[28] from Boston 
University. Rocketfuel tools implemented the distinguishing 

                                                      
1 CAIDA, the Cooperative Association for Internet Data Analysis, is a 

worldwide research center on Internet-related research fields. CAIDA has more 
than thirty monitor nodes which are distributed throughout the whole world, 
measuring and monitoring the variations of Internet. Three of them are located in 
Asia.  

of the aliased IP addresses by some complicated algorithm 
such as recognizing the TTL segment of the ip datagram. And 
some researches found Rocketfuel tool could find Alias IP 
addresses three times more than the other present tools[28]. So 
it was selected as IP Alias Resolution tool in this paper.  

4) Problems of Sampling Bias 
Some recent researches[6][19] found that the measuring 

results were usually different from real network topology and 
tended to show stronger power-law (frequency-degree 
power-law) relations when only one monitor or just a few 
monitors was used during the active measuring. For instance, 
one measuring monitor prardigm is illustrated in Fig.1(a). 

 
(a) Measuring a target network with four nodes (a, b, c and d) from one 

monitor with traceroute-like tools. The measure covers four path 
indicated by (1)(2)(3)(4). The dotted links and R1 are the missing 
routers and links for sampling bias. 

 
(b) Measuring the three leaf nodes (a, c and d) from two traceroute 

monitors. The covered path are indicated by (1)(2)(3)(4). The dotted 
links are the missing routers and links. 

Fig. 1. Illustrations of measuring a network from different monitors. 

From Fig.1(a), Router R1 and four links (the dotted links) 
are missed out. And difference between the measuring results 
from the real network is known as sampling bias[6]. Sampling 
bias is directly associated with the number of measuring 
monitors[6][19]. To prove this, let’s go on experiments 
illustrated in Fig.1(b), which has two monitors.  

From Fig.1(b), Router R1 and two links missed in Fig.1(a) 
were successfully found. But there are still two dotted links 
missed due to sampling bias. Though it’s still hard to find 
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perfect approaches solving the sampling bias problems at 
present[6][19], we still found an easy and effective way from 
the last two figures. To solve, in some extent, the problem of 
sampling bias, it is helpful to use more monitors in measuring 
target network. And this is also the way we used in this paper. 

5) The router-level Internet measuring samples after IP 
Alias Resolution and Sampling Bias handling 

The rough measuring results in this paper are the Internet 
topology data measured at 30th, Jan. 2006 from twenty-one 
CAIDA monitors. And after the IP Alias resolution, we get 
twenty-one set of measuring samples. With these samples, we 
first gather them together to form a complete testing sample 
in order to reduce the impact of sampling bias to an extreme 
extent. As we know, this copy of sample is the ever best one 
in this paper in solving the problem of IP Alias and sampling 
bias, so, undoubtedly, this copy of sample would be our key 
sample in experiments of the paper.  

However, we still made several other incomplete testing 
samples for comparison reason and to analyze how much 
sampling bias would effect on the samples, and they are 
sample(1) comprising data from only one monitor (arin 
monitor), and sample(2) from two monitors (arin, b-root), till 
sample(20) from as many as twenty monitors. We eventually 
had twenty-one set of measuring samples including the key 
testing sample for studies in this paper.  

 

II.  POWER-LAW ANALYSIS 

A. Frequency-degree power-law 

Calculate the frequency and degree from one-monitor 
sample, two-monitor sample, five-monitor sample and 
twenty-one-monitor sample (the key sample) and the 
power-law curve fitting results were showed in table III.  

TABLE  III 
POWER EXPONENT OF THE FREQUENCY-DEGREE POWER-LAW ANALYSIS 

Number of monitors ACC |R| 
1 0.9675 2.8279 
2 0.9560 2.7834 
5 0.9601 2.5495 
21 0.9824 2.1406 

From table III, we observe that the curve fitting results (the 
straight line) are close to the sample, and all four ACCs 
(Absolute value of the correlation coefficient) are greater than 
0.95, meaning that the curve fitting results are acceptable. 

Besides, we find a phenomenon from table III that the 
power exponent |R| is getting smaller with increasing 
monitors. Considering the fact that a greater |R| means a 
stronger power-law relationship, we find that the power-law 
relationship of Internet topology is getting weaker with 
increasing monitors. Since the sampling bias might tend to 
produce extra power-law relations, the reason of the above 
phenomenon is easy to figure out. And what was found here 
on the router-level Internet in Fig.2 is quite similar to the 
research in [5].  

When it comes to the twenty-one-monitor samples, i.e., the 
key sample of the paper, the power-law property might be 
least influenced by the sampling bias. Under such conditions, 

obvious power-law relations still exists, meaning that the 
there is definite power-law relationship in Internet topology.  

Then, frequency-degree power exponent of the router-level 
Internet topology is found 2.1406, quite close to the 
power-exponent 2.2 of AS-level Internet topology in [6]–[8]. 
As we know, AS-level Internet topology is a coarse 
granularity of router-level Internet topology, the two research 
outcomes are expected to be similar to each other. And the 
analogs, in return, help to testify the accuracy of the 
frequency-degree power-law research results in this paper.  

B. Degree-rank power-law 

The degree-rank power-law relationship between the 
degree and its rank is showed in table IV, and that of the 
twenty-one-monitor sample is illustrated in Fig.2.  

TABLE  IV 
POWER EXPONENT OF THE DEGREE-RANK POWER-LAW ANALYSIS 

Monitor size ACC |R| Numld/Numsld 
1 0.9734 0.6550 3.3921 
2 0.9727 0.7128 4.2578 
5 0.9830 0.7762 6.7064 
21 0.9941 0.8464 17.4633 

Note: Numld is the number of nodes with the least degree, and Numsld is the 
number of nodes with the second least degree in the Internet topology graph. 

 
Fig. 2. The illustration of degree-rank power law analysis of the 
twenty-one-monitor sample. 

Obvious power-law relationship is found in Fig. 3. And 
From table IV, ACCs are greater than 0.97 meaning the fitting 
result is good. |R| is increasing with increasing monitors. To 
better explain this phenomenon, we make reference to the 
research results of [2] that the power-exponent |R| would 
increase or decrease exactly with increasing or decreasing 
Numld/Numsld

[2] in degree-rank power-law analysis. What was 
found in table IV is quite the same, proving that the results of 
the degree-rank analysis in this paper are so far correct.  

After further studies on Fig.3, we find that there are bad 
curving fitting parts when ln(rank) is less than around 3 in all 
sub-graphs, especially in sub-graph 4. Since sub-graph 4 is 
out of the key sample of the paper, we would perform further 
studies on the bad parts, which is illustrated in Fig.4. 

The cross position of two straight lines in Fig.4 is around 
3.6 on axis x. Besides the power-law relationship where 
ln(rank) is greater than 3.6 as we discussed above, the straight 
line where ln(rank) is less than 3.6, also proves a power-law 
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property since the fitting ACC is greater than 0.95. Thus, 
there are two phases of degree-rank power-law relations 
found in Internet topology graph, and power exponents of the 
two parts are 0.29981 and 0.84639, respectively.  

 
Fig. 4. Two phase degree-rank power-law relationship analysis 

The founding power exponents could be used to 
quantitatively depict the power-law properties of Internet 
topology and would be used in Internet topology modeling 
later.  

C. CCDF(d)-degree power-law 

There are several mathematical models to calculate CCDF, 
and table V includes the CCDF(d)-degree power-law fitting 
results. To judge which one is best fitting the 
CCDF(d)-degree power-law of the Internet topology, a 
notation of SSSR(standard square sum of residual) is also 
listed in table V. 

TABLE  V 
FOUR CCDFS AND THEIR FITTING RESULTS 

Function name CCDF No. of monitors SSSR1 
1 12455.6927 
2 24215.0629 
5 114594.8493 

Power law 
1

1
)(' +

+
−= α

α
x

C
xF

 
21 485010.9747 
1 219431.0825 
2 303397.4291 
5 503785.6687 

Power law(2) 
Dxx

C
xF +

+
−= +1

1
)(' α

α

 
21 1160172.4009 
1 11594.8785 
2 20133.3965 
5 59191.7273 

Weibull(2-para
meter) 

cbxexF )/()(' −=
 

21 221809.1604 

First, SSSR of the CCDF of power-law(2) is greater than 
the other two CCDFs, so power-law(2) is the worst in three. 
For the other two CCDFs, SSSR of power-law in all four 
sub-graphs is greater than that of Weibull(2-parameter), thus 
Weibull(2-parameter) is better than power-law in fitting the 
Internet topology samples. So, we made conclusions that the 
CCDF(d)-degree power-law distribution might not be the best 
way to quantitatively character the Internet topology 
compared with Weibull(2-parameter) distribution. And this 
research result is completely identical to the studies in 
[9]–[11].  

III.  INTERNET TOPOLOGY MODELING 

A. BA Model 

Now we began to construct an Internet topology model 
according to the power-law analyses results. The power 
exponent of frequency-degree power-law is |R|=2.1406. To 
find a way to construct a model that could generate a network 
with such frequency-degree power exponent is what we need 
do first.  

Some researches[4][14] indicated that, the network having 
frequency-degree power-law properties is a kind of scale-free 
network, and the traditional model - Barabasi-Albert (BA) 
model[29] is viewed as one of the best choices to generate such 
scale-free networks. With this, we might use BA model as a 
base to form the Internet topology model.  

A short description of BA algorithm is: generate m0(m0>1) 
nodes, and link them randomly; repeat the following step: for 
network G(t-1) at present, add one new node with n links to 
G(t-1) and form a new network G(t). The n links should be 
connected between the new added node and any selected 
current node in the network if the selected node i’s 

∑=Π
j

jii kk / is greater than a given threshold, where i, j 

are nodes existed in G(t-1) and ki, kj are degree value of 
corresponding nodes.  

Network generated by the upper algorithm conforms to a 
frequency-degree power-law distribution of α−−−−kkp ~)( , 

where the power exponent α is irrelevant to m0 and n.  
Researches [4], [14] showed that the power exponent of the 

network generated by BA model is usually 3, which is 
different from 2.1406 in this paper. So improvement of BA 
model is necessary.  

B. Improvement of BA Model 

1) Improvement approaches 
Researches on how to modulate the power exponent 

generated by BA model are still scarce at present. Reference 
[15] gives an algorithm using limit calculation and is too 
complicated to fit for the improvement requirement in this 
paper. Reference [7] gave an easier way: according to the 
probability model of linking nodes:  

∑=Π
j

jii kk /                                 (1) 

where ki, kj are degree value of node i and j. If it’s changed to: 

∑
++=Π

j
jii kk εε 11 /                                  (2) 

Then the power exponent of BA model would be around 2.2 
when parameter ε is set in interval [0.1, 0.3][7]. Since value 
2.2 is close to value 2.1406 in this paper, this method seemed 
to be effective for our requirement and would be adopted in 
this paper. And now we began to find the appropriate ε. 

2) Optimize parameter ε by Genetic Algorithm 
Genetic Algorithm (GA)[30][31] is used in this paper to try to 

find and optimize parameter ε in interval (0, 0.6] (enlarged to 
make sure ε could be finally found). GA algorithm repeats the 
operations such as cross, mutation and so on till network 
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model with ε found by GA could produce power exponent of 
2.1406.  

i) Gene code: We define a gene code x as a vector 
comprising primary parameters to be optimized.  

)(ε=x                                       (3) 
ii) Random initialization of gene group: Randomly 

initialize a gene group having N genes, N is set to 100 here. 
iii) Evaluation function : Optimization of ε is to minimize 

the difference between the found power exponents and 
2.1406. So the evaluation function should be:  

|1406.2)(|)( −= nPxf ε                          (4) 

where Pε(n) is the power exponent of the generated 
network with parameter ε, and n is the size of the network. n 
is an important parameter because it’s closely related to the 
calculation efficiency of the target network’s power exponent. 
It’s easy to know that the greater n is, the longer time is 
needed to calculate the power exponent. So a good choice of 
n would produce better and quicker outcome. 

Two scale-free networks with 100 and 500 nodes 
respectively are illustrated in Fig.5. From the figure, there is a 
sign of scale-free property in Fig.5(a), and a much better 
property in Fig.5(b). So the average, 300, is taken in this 
paper, to ensure that the 300-node network generated by 
improved BA model could show both clear scale-free 
property and its simplicity in calculating its power exponent.  

 
(a) 100 nodes             (b) 500 nodes 

Fig. 5. Two scale-free networks. 

iv) Selection: Genes were sorted in descending order by 
scores in the gene group, and the first m*N genes, m is a 
random number (0<m<1), were selected for the next round of 
calculation by GA. We duplicate the best m*N genes and 
remove the last (worst) m*N genes in the sorted group, so that 
group size remains N.  

v) Crossover: Crossover operation is:  

ijj

jii

βεαεε
βεαεε

+−=

+−=

)1('

)1('
                              (5) 

where βα ,  are random numbers, and 10,10 <<<< βα . 

vi) Mutation: Mutation operation is:  

)1(

)1(

αεε
αεε

−=
+=

ii

ii

if

if

5.0

5.0

<
≥

γ
γ                           (6) 

where γα ,  are random numbers, and 10,10 <<<< γα .  

Unlike crossover operations, not all genes were selected to 
perform mutation. We set up a threshold of 0.3 in the 
algorithm, which means only 30% genes would mutate.  

vii) Termination  conditions: Basically there are two 
termination conditions in GA. The first condition is when 

evaluation function outcome of the best gene in the group is 
less than a threshold s, s is set to be 0.01 in the algorithm. The 
other condition is an iteration of 1000 runs. This is to 
guarantee ending GA in an appropriated way.  

According to GA experiments, parameter ε was finally 
optimized to be 0.1886 in this paper.  

C. Construct Internet topology model based on the improved 
BA model 

Studies on AS-level Internet topology in [32] indicated that 
nodes in a network would not definitely conform to only one 
power exponent, especially the CCDF(d)-degree power-law 
and degree-rank power-law distribution. Likewise, the 
outcome of degree-rank power-law analysis is divided into 
two parts with two different power exponents in this paper, 
and they are 0.29981 and 0.84639.  

So, the improved BA (IBA) model should be modulated 
again to conform to this property. This improvement could be 
implemented as a periodical modulation operation in the 
generation algorithm of the IBA model, and the algorithm is 
listed in table VI.  

TABLE  VI 
THE IBA MODEL GENERATION ALGORITHM  

contents 

(1)  Input number N. N is the number of the nodes in the to-be-generated 
network; /* N should be input by users */ 

(2)  Loop steps (3)(4) and (5) until a N-node network is generated；  

(3)  /* Growth by the frequency-degree power-law properties */ 
  Add a new node to the current network, and it would be linked to the 
randomly selected m nodes in the present network according to the 
linking probability function (shown in Equation (2) with parameter ε 
optimized as 0.1886), and m is less than or equal to the total number of 
the nodes in the network.  
  If the outcome out of the linking probability function is greater than a 
threshold t0=0.6, then a link between node i and the new added node will 
be added to the network. Or else, the link would not be added to the 
network.  
 /* Threshold t0=0.6 is set by the program, and it helps avoid 

constructing a network with too many or too few links */ 

(4)  Define a threshold t1=10%, if the increment percentage of the new 
added nodes is greater than t1, then go to step (5) for degree-rank 
power-law modulation operation; or else go back to step (2).  

(5)  /* Degree-rank power-law modulation */ 
Sort the nodes of the present network in descending order, for each 

node lying in a range where ln(rank) is less than 3.6, calculate its degree 
by the degree-rank power-law distribution with the power-exponent of 
|R|=0.29981.  

If node i’s calculated degree is less than its present degree, then add 
links by rules of step (3). Loop the operation till the degree equals to the 
calculated degree.  

If node i’s calculated degree is greater than its present degree, delete 
links. Randomly select node j, if the linking probability between i and j 
out of equation (2) is greater than t0=0.6 and there is a link between node 
i and j, then delete it. Loop the operation till node i’s degree equals to the 
calculated degree.  

D. Evaluations 

1) Power-law evaluations 
The way to evaluate the IBA model in this paper is to test 

the power-exponent of the generated networks by the model, 
and the experiments results are shown in Fig. 6.  
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The power-exponents of two randomly generated networks 
are 2.2609 and 1.8753, with SSSE of 85.547 and 251.6474, 
indicating that the results are acceptable. Though different 
from 2.1406, the two power-exponent are rather close, from 
which a conclusion could be gained that the IBA model is 
acceptable despite minute errors.  

 
Fig. 6. Two networks generated by IBA model with power-exponent of 
2.2609 and 1.8753, respectively. 

2) Qualitative evaluations 
Firstly, peer models such as a static model: Inet[32] model, a 

dynamic model: GLP[33] model are mainly designed and 
implemented for AS-level Internet topology. And the model 
in this paper, different from these models, is designed on the 
basis of Internet router-level topology. Thus, it’s clear to say 
that the current studied model could generate a topology 
closer to real Internet. 

Besides, the model in this paper encompasses both merits 
form static model and dynamic model, and thus is superior to 
the sole static models or sole dynamic models. 

 

IV.  CONCLUSIONS 

With CAIDA samples, research approaches of the 
frequency-degree power-law, degree-rank power-law were 
performed, and obvious power-law properties were found in 
Internet macroscopic topology. The frequency-degree power 
exponent is found 2.1406, and the degree-rank power 
exponents are found to have two values, 0.29981 and 0.84639. 
Finally, we improved the traditional BA model (IBA model) 
and optimized it by Genetic Algorithm according to the 
gained power-exponents. Experiments proved the efficiencies 
of the IBA model in modeling Internet macroscopic topology. 

The network generated by the IBA model, however, only 
comprises nodes with degree greater than or equal to two. As 
is known, Internet topology has a large amount of nodes 
whose degree is one, e.g., the leaf nodes in a network. And 
modeling Internet with these nodes would be our next work.  
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