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An Improved BA Model for Router-level Internet
Macroscopic Topology

Ye XU and Hai ZHAO

Abstract—Router-level  Internet  macroscopic  topology
modeling is studied in this paper. The frequency-dgree power
exponent and the degree-rank power exponent of the
macroscopic topology, according to corresponding peer law
analyses, are 2.1406 and [0.29981, 0.84639], respety. After
the scale-free property of Internet macroscopic toplogy is
proved, the traditional Barabasi-Albert (BA) model is proposed
and improved to match up the corresponding power gonents
of the Internet topology by the optimization of Gemtic
Algorithm. Finally, generation algorithm for the improved BA
model is given.

Index Terms—BA model, genetic algorithm, Internet topology
modeling, power-law distribution.

|. INTRODUCTION

Generally speaking, the degree distribution of egdhq
network (topology) is said to agree with principte

power-law distribution, if the network is of uneveapology
structure and most of its nodes have small degvbereas a
rather few nodes have very large degree.
terminologies such as Max degree, Min degree orage
degree, however, could not appropriately characigology
properties of such network, and power-law distidruimight
be introduced as an alternatiV@.

Function(degree), short for CCDF(d)-degree, polaer-
distribution was founld. So, power-law approaches would be
mainly used in studies of Internet topology modglin this
paper.

A. Mathematical description of power-law distribution
Power-law distribution is mathematically denoted by

y=cX", wherex, y are random variables, ara r are
constants greater than 0. Perform logarithm owetthen get
Iny =c'Inx. There is a linear relationship betwedn y

and Inx , ie., a straight line should exist in a
dual-logarithmic coordinates. And this linear redaship, or
the straight line in dual-logarithm graph, would tegarded
as a primary judgment identifying whether power-law
distribution is suited or not.

Three important power-law distributions mostly used
Internet topology researches are listed in taBlid,1and their
parameters are in table .

TABLE |
THE BASIC EQUATIONS OFPOWER-LAW DISTRIBUTIONS

General

Internet is an example of such network and power-la
approaches have already become one of the mostrjubwe
analytical tools in Internet topology research teda
ared™ |n 1999, for the first time, Faloutsos made uka o
notion of frequency-degree power-law to charactee t
topology of both AS-level and router-level Interrtbiereafter,
definitions of degree-rank power-law, eigenvaluekra
power-law and so on were brought forwdrdin 2003,
Siganos found in his reseaffhthat frequency-degree
power-law distribution was quite similar to and tbetthan
the probability density function (PDF) with degréd) as
independent variable and frequenflyas dependent variable.
Then, Complementary Cumulative Distribution
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Power-law distributions Mathematical models
frequency-degree p, O df
degree-rank dv O rVR
CCDF(d)-degree D, O dP
TABLE II
DEFINITIONS OF THEPARAMETERS AND SYMBOLS
Variable Definition
G Undirected graph
N Number of the nodes in a graph
E Number of the links in a graph
dy Degree of node
d AveEage degree of a
graphd =2E/N
pv Frequency of node whose degree is
Dy ‘ C_CDE(compIe_mentary cumulative
distribution function)
ry Order of nodey
1 eigenvaluesf N*N Matrix A: X:X €
RY\{0} and AX=AX
Absolute value of the correlation
ACC coefficient, the closer the ACC is to 1,

the more accurate the fitting model is

B. The measured samples of the router-level Internet
1) Measuring methods
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Dynamic methods based on the active probing arentiie
approaches to measure the router-level Internelagg™®.

The dynamic methods, at present, are mainly dividéa
three categori#s: (1) single-monitor-measuring by
recording the source routers in the route pathh @ag the
Internet Mapping Project (IMP) in Bell Ld#), and the

of the aliased IP addresses by some complicateatitlig
such as recognizing the TTL segment of the ip datagAnd
some researches found Rocketfuel tool could finthsAlIP
addresses three times more than the other pressgt®. So
it was selected as IP Alias Resolution tool in traper.

4) Problems of Sampling Bias

MercatoF" projects; (2) active measuring based on the Some recent researchés! found that the measuring

Public Traceroute Server (PTrS), such as the 19Bldgy
measuring  project by Boston Univer&ty (3)
multi-monitor-measuring  or
vantage-points by self-developed software engisash as
the CAIDA: project§ 8 and Active Measuring Project by
Harbin Institute of Technolody’.

In the upper three methods, the PTrS (method Nis.2)
quite limited due to the following reas&iis Firstly, PTrS are
quite unevenly distributed in Internet and notl8P render
services of PTrS. Reference [19] showed that omlg of
nine ISPs providing PTrS, so PTrS method is noalbéd for
measuring Internet. Secondly, it's rather harddotl these
PTrS from the ISPs due to security considerationsich
directly make measuring Internet topology impossibl

The first method is similar to the third one (e QAIDA),
they are all based on traceroute or the tracerikde-
program&™18 put the first method is inferior since it's
totally upon single-monitor-measuring tools. CAIDA,
however, could implement multi-monitor-measuringol$o
and consequently yield better measuring re$tt8. The
Active Measuring Project by Harbin Institute of fieology
(HIT) also used multi-monitor-measuring tools, buthad
fewer monitors in its project than CAIDA has, wisathore,
the HIT project mainly focused on the China paretnet
topology?*?, inferior to the world-wide Internet from
CAIDA. So CAIDA was selected for this paper.

2) Problems of the measuring results

The measuring results from CAIDA monitors are costgl
but in coarse granularity. There are two main poid in it:
IP Alias problem and the sampling bias problem doe
single-monitor-measuriff*®.

3) Problems of IP Alias

[Def 1] IP Aliad®®®¥: Different ports with different IP
addresses for one Internet router are mistakerdifterent
routers during the active measuring programs. Ahid t
problem is known as IP Alias.

IP Alias ResolutioR® is a way to distinguish the IP
addresses and solve the problem of IP Alias. Howdhe
researches on IP Alias Resolution is still in pesg; and only
a few methods or tools are provided at presentthed still
could not solve the whole problem of IP Alias, otdysome
extenf¥?4. Among these tools,
comparatively practicable, and they are iffindesltd from
CAIDA, MercatoP”! and Rocketfuel toff' from Boston
University. Rocketfuel tools implemented the digtiishing

1 CAIDA, the Cooperative Association for Internet Bafnalysis, is a
worldwide research center on Internet-related rekefields. CAIDA has more
than thirty monitor nodes which are distributedotighout the whole world,
measurina and monitorina the variations of Interiiétree of them are located in

three of them are

results were usually different from real networgdtogy and
tended to show stronger power-law (frequency-degree

measuring-from-multiple- power-law) relations when only one monitor or jastfew

monitors was used during the active measuring.ristance,
one measuring monitor prardigm is illustrated ig.E{a).

Lraceroute
"

Y
SOFVED S
BIVED MW

li]
Measuring a target network with four nodes (a, land d) from one
monitor with traceroute-like tools. The measure erevfour path
indicated by (1)(2)(3)(4). The dotted links and Rfe the missing
routers and links for sampling bias.
lraceroute d

@

traceroute

SETVoK
(b) Measuring the three leaf nodes (a, ¢ and d) from traceroute
monitors. The covered path are indicated by (13(23). The dotted
links are the missing routers and links.
Fig. 1. lllustrations of measuring a network froifietent monitors.

From Fig.1(a), Router R1 and four links (the dotiieés)
are missed out. And difference between the meaguesults
from the real network is known as sampling Blasampling
bias is directly associated with the number of meag
monitor$™, To prove this, let's go on experiments
illustrated in Fig.1(b), which has two monitors.

From Fig.1(b), Router R1 and two links missed ig.Ka)
were successfully found. But there are still twdteld links
missed due to sampling bias. Though it's still htwdfind
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perfect approaches solving the sampling bias pnoblat
preserf™® we still found an easy and effective way from
the last two figures. To solve, in some extent, greblem of
sampling bias, it is helpful to use more moniteorsrieasuring
target network. And this is also the way we usethis paper.

5) The router-level Internet measuring samples after IP

Alias Resolution and Sampling Bias handling

The rough measuring results in this paper are thernet
topology data measured at"3an. 2006from twenty-one
CAIDA monitors. And after the IP Alias resolutiome get
twenty-one set of measuring samples. With theseksnwe
first gather them together to form a complete tgssample
in order to reduce the impact of sampling biasrtaeatreme
extent. As we know, this copy of sample is the éwest one
in this paper in solving the problem of IP Aliasdasampling
bias, so, undoubtedly, this copy of sample woulcbbekey

obvious power-law relations still exists, meaniratt the
there is definite power-law relationship in Intertapology.
Then, frequency-degree power exponent of the rdeted
Internet topology is found 2.1406, quite close toe t
power-exponent 2.2 of AS-level Internet topology6iji-8].
As we know, AS-level Internet topology is a coarse
granularity of router-level Internet topology, ttweo research
outcomes are expected to be similar to each ofrat. the
analogs, in return, help to testify the accuracy tbé
frequency-degree power-law research results inpéyer.

B. Degree-rank power-law

The degree-rank power-law relationship between the
degree and its rank is showed in table IV, and tifathe
twenty-one-monitor sample is illustrated in Fig.2.

sample in experiments of the paper.

However, we still made several other incompletdings
samples for comparison reason and to analyze hoehmu
sampling bias would effect on the samples, and they

TABLE IV
POWER EXPONENT OF THEDEGREERANK POWER-LAW ANALYSIS
Monitor size ACC R Numg/Numgg
1 0.9734 0.6550 3.3921
2 0.9727 0.7128 4.2578
5 0.9830 0.7762 6.7064
21 0.9941 0.8464 17.4633

sample(l) comprising data from only one monitorin(ar
monitor), and sample(2) from two monitors (arimowot), till
sample(20) from as many as twenty monitors. We texadiy
had twenty-one set of measuring samples includiegkey
testing sample for studies in this paper.

Il. POWER-LAW ANALYSIS

A. Frequency-degree power-law

Calculate the frequency and degree from one-monitor

sample, two-monitor sample, five-monitor sample and
twenty-one-monitor sample (the key sample) and the
power-law curve fitting results were showed in &abl.

TABLE Il
POWER EXPONENT OF THEFREQUENCY¥DEGREEPOWER-LAW ANALYSIS
Number of monitors ACC IR]
1 0.9675 2.8279
2 0.9560 2.7834
5 0.9601 2.5495
21 0.9824 2.1406

From table lll, we observe that the curve fittiegults (the
straight line) are close to the sample, and allr f&CCs
(Absolute value of the correlation coefficient) greater than
0.95, meaning that the curve fitting results ameatable.

Besides, we find a phenomenon from table Il thas t
power exponent |R| is getting smaller with incregsi
monitors. Considering the fact that a greater |Rpms a
stronger power-law relationship, we find that thewpr-law
relationship of Internet topology is getting weakeith
increasing monitors. Since the sampling bias mightd to
produce extra power-law relations, the reason ef ahove
phenomenon is easy to figure out. And what was ddoere
on the router-level Internet in Fig.2 is quite danito the
research in [5].

When it comes to the twenty-one-monitor samples, the
key sample of the paper, the power-law propertyhinige
least influenced by the sampling bias. Under susfditions,

Note: Nuny is the number of nodes with the least degree Nantdy is the
number of nodes with the second least degree iintemet topology graph.

12
¢ Obsered
10 — = 0084639 x + 11 5277
U ACC =0.593219
8
=3
4
2
twenty-one monitors
0 L :
a 5 10 15

Infrank)

Fig. 2. The illustration of degree-rank power lawalysis of the
twenty-one-monitor sample.

Obvious power-law relationship is found in Fig. And
From table IV, ACCs are greater than 0.97 mearteditting
result is good. |R]| is increasing with increasinonitors. To
better explain this phenomenon, we make referencthe
research results of [2] that the power-exponentwBi{ild
increase or decrease exactly with increasing oredsmng
Numg/Numgd? in degree-rank power-law analysis. What was

found in table IV is quite the same, proving the tesults of
the degree-rank analysis in this paper are sodfi@ect.

After further studies on Fig.3, we find that there bad
curving fitting parts when In(rank) is less thaowrd 3 in all
sub-graphs, especially in sub-graph 4. Since sapkg# is
out of the key sample of the paper, we would penféurther
studies on the bad parts, which is illustratedig4=

The cross position of two straight lines in Figs4around
3.6 on axis x. Besides the power-law relationshiperg
In(rank) is greater than 3.6 as we discussed altbgestraight
line where In(rank) is less than 3.6, also provemwaer-law
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property since the fitting ACC is greater than 0.9%hus,
there are two phases of degree-rank power-law ioakat
found in Internet topology graph, and power expésieh the
two parts are 0.29981 and 0.84639, respectively.

12 : :

+  Obsered
— y=-0.29931 * x +9.4244 ACC = 0.95519
— y=-0.84638 7 x + 11,8277 ACC = 095219 ||

In(degree)

twanty-one monitors

] 1 1 1 I 1 1
] 2 4 g g

Infrank)
Fig. 4. Two phase degree-rank power-law relatignanialysis

14

The founding power exponents could be used toll,

quantitatively depict the power-law properties aoternet
topology and would be used in Internet topology eiiog)
later.

C. CCDF(d)-degree power-law

There are several mathematical models to calc@&oF,
and table V includes the CCDF(d)-degree power-lating
results. To judge which one is best fitting the
CCDF(d)-degree power-law of the Internet topology,
notation of SSSR(standard square sum of residsaBlso
listed in table V.

TABLE V
FOUR CCDFs AND THEIR FITTING RESULTS
Function name CCDF No. of monitors SSSR
c 1 12455.6927
F'(x) = ———x* 2 24215.0629
Power law a+l 5 114594.8493
21 485010.9747
. 1 219431.0825
F'(x) = —Tx”“ +Dx 2 303397.4291
Power law(2) o 5 503785.6687
21 1160172.4009
1 11594.8785
Weibull(2-para  F'(x) = e */D° 2 20133.3965
meter) 5 59191.7273
21 221809.1604

First, SSSR of the CCDF of power-law(2) is gredtem
the other two CCDFs, so power-law(2) is the wonsthiree.
For the other two CCDFs, SSSR of power-law in allirf
sub-graphs is greater than that of Weibull(2-patemethus
Weibull(2-parameter) is better than power-law itirfg the
Internet topology samples. So, we made concludiocaisthe
CCDF(d)-degree power-law distribution might nottbe best
way to quantitatively character the Internet topglo
compared with Weibull(2-parameter) distribution. dAthis
research result is completely identical to the issidin

[9]-{11].

Il. INTERNETTOPOLOGYMODELING

A. BAModel

Now we began to construct an Internet topology rhode
according to the power-law analyses results. Theepo
exponent of frequency-degree power-law is |R|=514®
find a way to construct a model that could genesatetwork
with such frequency-degree power exponent is wheaheed
do first.

Some research®8¥ indicated that, the network having
frequency-degree power-law properties is a kindaalle-free
network, and the traditional modelBarabasi-Albert(BA)
model’® is viewed as one of the best choices to genevate s
scale-free networks. With this, we might use BA iloas a
base to form the Internet topology model.

A short description of BA algorithm is: generatg(my>1)
nodes, and link them randomly; repeat the followsiep: for
network G(t-1) at present, add one new node witimks to
G(t-1) and form a new network G(t). Timelinks should be
connected between the new added node and any exklect
current node in the network if the selected node

=k /z k; is greater than a given threshold, whirg
j

are nodes existed in G(t-1) akg ki are degree value of
corresponding nodes.

Network generated by the upper algorithm conforms t
frequency-degree power-law distribution of(k) ~k™ ,
where the power exponeatis irrelevant tan, andn.

Researches [4], [14] showed that the power expoofetie
network generated by BA model is usually 3, which i
different from 2.1406 in this paper. So improvemehtBA
model is necessary.

B. Improvement of BA Model

1) Improvement approaches

Researches on how to modulate the power exponent
generated by BA model are still scarce at predReterence
[15] gives an algorithm using limit calculation amgl too
complicated to fit for the improvement requiremeémtthis
paper. Reference [7] gave an easier way: accortinthe
probability model of linking nodes:

M=k />k
j
wherek;, k; are degree value of nodandj. If it's changed to:

M=k @
J

Then the power exponent of BA model would be arofrid
when parametet is set in interval [0.1, 0.8}. Since value
2.2 is close to value 2.1406 in this paper, thishoe seemed
to be effective for our requirement and would bemdd in
this paper. And now we began to find the appropsat

2) Optimize parameter £ by Genetic Algorithm

Genetic Algorithm (GAJEY is used in this paper to try to
find and optimize parameterin interval (0, 0.6] (enlarged to
make sure& could be finally found). GA algorithm repeats the
operations such as cross, mutation and so on dilvork

)
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model withe found by GA could produce power exponent of evaluation function outcome of the best gene ingiorip is

2.1406. less than a threshogisis set to be 0.01 in the algorithm. The
i) Gene code We define a gene code as a vector other condition is an iteration of 1000 runs. Tligs to

comprising primary parameters to be optimized. guarantee ending GA in an appropriated way.

X = (€) 3) According to GA experiments, parameterwas finally

i) Random initialization of gene group Randomly optimized to be 0.1886 in this paper.

initialize a gene group havirg genesN is set to 100 here. C. Construct Internet topology model based on the improved
iii) Evaluation function: Optimization ofe is to minimize BA model
the difference between the found power exponen® an studies on AS-level Internet topology in [32] inatied that
2.1406. So the evaluation function should be: nodes in a network would not definitely conformoialy one
f(x) 9 P.(n)—21404 4) power exponent, especially the CCDF(d)-degree pdaver
where P,(n) is the power exponent of the generated and degree-rank power-law distribution._ ITike\(vi.s.ehet
network with parametes, andn is the size of the networh. outcome of_degree-r_ank power-law analysis 1S dd/_lduo
is an important parameter because it’'s closelytedldo the two parts with two different power exponents instigaper,
calculation efficiency of the target network’s pavexponent. ang ther)]/ are 0.299ngaAndl(é.24639a | should b dulated
It's easy to know that the greataris, the longer time is 0, the improve . (IBA) mo € shou e modulate
needed to calculate the power exponent. So a goaide: of again to conform to this property. This improvementld be
nwould produce better and quicker outcome implemented as a periodical modulation operationthia
Two scale-free networks with 100 and 500 noolesgeneration algorithm of the IBA model, and the aithon is

respectively are illustrated in Fig.5. From theufig, there is a listed in table V.

sign of scale-free property in Fig.5(a), and a mibetter TABLE VI

property in Fig.5(b). So the average, 300, is takerhis THE IBA MODEL GENERATIONALGORITHM

paper, to ensure that the 300-node network gerteraye contents

|mproved BA model could show both clear scale-free (1) Input numbeN. N is the number of the nodes in the to-be-generated

povexponent. network; /*N should be input by users */

[Trad o3

W (2) Loop steps (3)(4) and (5) untiNanode network is generated

property and its simplicity in calculating its
-‘\ I '

X
\1 ™

(3) /* Growth by the frequency-degree power-lawparties */

Add a new node to the current network, and it lvdae linked to the
randomly selectedn nodes in the present network according to the
linking probability function (shown in Equation (2)ith parametere
optimized as 0.1886), amd is less than or equal to the total number of
the nodes in the network.

If the outcome out of the linking probability fction is greater than a

= 4 i threshold t0=0.6, then a link between nod@d the new added node will
(@ 100 nodes (b) 500 nodes be added to the network. Or else, the link would m® added to the
Fig. 5. Two scale-free networks. network.

/* Threshold t0=0.6 is set by the program, andhélps avoid

iv) Selection Genes were sorted in descending order by constructing a network with too many or too fevkirt/

scores in the gene group, and the firétN genes,m is a : . )

dom number (Ov<1), were selected for the next round of (4) Define a threshold t1=10%, if the incremenicpatage of the new
ran . ! i added nodes is greater than t1, then go to stepfo(5Hegree-rank
calculation by GA. We duplicate the bestN genes and power-law modulation operation; or else go backtép (2).

remove the last (worsth*N genes in the sorted group, so that (5) I Degree-rank power-law modulation */

group size remainil. Sort the nodes of the present network in descendidgr, for each
v) Crossovetr Crossover operation is: node lying in a range where In(rank) is less thah Galculate its degree
. by the degree-rank power-law distribution with thewer-exponent of
&'=&l-a)+ pe, 5) IR|=0.29981.
i 1— + If nodei’s calculated degree is less than its present degnen add
‘EJ' - ‘EJ' ( a) ﬁgi links by rules of step (3). Loop the operation ttile degree equals to the
calculated degree.
Whe.rea,ﬂ .are random numbers., arpk a<10<f<1. If nodei’'s calculated degree is greater than its presegrede delete
vi) Mutation: Mutation operation is: links. Randomly select nodeif the linking probability between andj
= c (1+ ; > out of equation (2) is greater than t0=0.6 andethe®’ link between node
& =& (1 a) it yz05 (6) i andj, then delete it. Loop the operation till naéedegree equals to the
&=¢@l-a)if y<05 calculated degree.
whereq, )y are random numbers, angl< o <10< y <1. D. Evaluations

Unlike crossover operations, not all genes werecsetl to
perform mutation. We set up a threshold of 0.3 he t
algorithm, which means only 30% genes would mutate.

vii) Termination conditions: Basically there are two
termination conditions in GA. The first conditios iwhen

1) Power-law evaluations
The way to evaluate the IBA model in this papetoisest
the power-exponent of the generated networks byrtbédel,
and the experiments results are shown in Fig. 6.
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