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Abstract— A hierarchical approach, in which a high-
dimensional model is decomposed into series of low-dimensional
sub-models connected in cascade, has been shown to be an effec-
tive way to overcome the ‘curse of dimensionality’ problem. The
upwards propagation of information through a cascade hierar-
chy of Linguistic Decision Trees (LDTs) based on label semantics
forms a process of cascade decision making. In order to exam-
ine how a cascade hierarchy of LDTs works compared with a
single LDT for multiple attribute decision making, we developed
genetic algorithm with linguistic ID3 in wrapper to find optimal
cascade hierarchies. Experiments have been carried out on the
two benchmark databases, Pima Diabetes and Wisconsin Breast
Cancer databases from the UCI Machine Learning Repository.
It is shown that an optimal cascade hierarchy of LDTs has better
performance than a single LDT. The use of attribute hierarchies
also greatly reduces the number of rules when the relationship
between a goal variable and input attributes is highly uncertain
and nonlinear. Moreover, the cascade linguistic attribute hierar-
chy presents cascade transparent linguistic rules, which will be
useful for analyzing the effect of different attributes on the deci-
sion making as a reference in a special application.

Keywords: cascade linguistic attribute hierarchy, information prop-
agation, cascade decision making, Genetic algorithm in wrapper,
Linguistic ID3

1 Introduction

For multiple attribute decision making, the underlying rela-
tionship between attributes and the classification or decision
variable is often highly uncertain and imprecise. This re-
quires an integrated treatment of uncertainty and fuzziness
when modeling the propagation of information from low-level
attributes to high-level goal variables. One of the main draw-
backs to fuzzy modeling of systems is known as the ’curse
of dimensionality’, which is the exponential growth in the
number of possible fuzzy rules as a function of the dimen-
sion of model input space. A hierarchical approach in which
the original high-dimensional model is decomposed into se-
ries of low-dimensional sub-models connected in cascade, has
been shown to be an effective way to overcome this problem
since it provides a linear growth in the number of rules and pa-
rameters as the input dimension increases [12]. Campello and
Amaral presented a unilateral transformation that converts the
proposed hierarchical model into a mathematically equivalent
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non-hierarchical one [2]. As a result of the uncertainty and
non-linear relationship between different attributes anda goal
variable, different cascade hierarchies will have different per-
formance on decision making procedures. We have proposed
a general multiple attribute hierarchy embedded with Linguis-
tic Decision Trees (LDTs) based on Label Semantics [7]. In
this paper, we propose a cascade hierarchy approach embed-
ded with LDTs representing transparent rules, and describe
the process of information propagation through a cascade hi-
erarchy. We then develop a genetic algorithm with the Lin-
guistic ID3 (LID3) [9] algorithm in wrapper to optimise cas-
cade hierarchies. The experiments are performed on bench-
mark databases from the UCI Machine Learning Repository.

2 Label Semantics

Label semantics [5, 6] proposes two fundamental and inter-
related measures of the appropriateness of labels as descrip-
tions of an object or value. Given a finite set of labelsL from
which can be generated a set of expressionsLE through re-
cursive applications of logical connectives, the measure of ap-
propriateness of an expressionθ ∈ LE as a description of
instancex is denoted byµθ (x) and quantifies the agent’s sub-
jective belief thatθ can be used to describex based on his/her
(partial) knowledge of the current labelling conventions of the
population. From an alternative perspective, when faced with
an object to describe, an agent may consider each label inL
and attempt to identify the subset of labels that are appro-
priate to use. Let this set be denoted byDx. In the face
of their uncertainty regarding labelling conventions the agent
will also be uncertain as to the composition ofDx, and in la-
bel semantics this is quantified by a probability mass function
mx : 2L → [0, 1] on subsets of labels. The relationship be-
tween these two measures will be described below.

Unlike linguistic variables [14], which allow for the genera-
tion of new label symbols using a syntactic rule, label seman-
tics assumes a finite set of labelsL. These are the basic or
core labels to describe elements in an underlying domain of
discourseΩ. Based onL, the set of label expressionsLE is
then generated by recursive application of the standard logic
connectives as follows:

Definition 2.1 Label Expressions
The set of label expressionsLE ofL is defined recursively as
follows:
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• If L ∈ L thenL ∈ LE
• If θ, ϕ ∈ LE then¬θ, θ ∧ ϕ, θ ∨ ϕ ∈ LE

A mass assignmentmx on sets of labels then quantifies the
agent’s belief that any particular subset of labels contains all
and only the labels with which it is appropriate to describex.

Definition 2.2 Mass Assignment on Labels
∀x ∈ Ω a mass assignment on labels is a functionmx : 2L →
[0, 1] such that

∑

S⊆L mx (S) = 1

Now depending on labeling conventions there may be certain
combinations of labels which cannot all be appropriate to de-
scribe any object. For example,small and large cannot both
be appropriate. This restricts the possible values ofDx to the
following set of focal elements:

Definition 2.3 Set of Focal Elements
Given labelsL together with associated mass assignmentmx :
∀x ∈ Ω, the set of focal elements forL is given by:

F = {S ⊆ L : ∃x ∈ Ω, mx (S) > 0} (1)

The appropriateness measure,µθ (x), and the massmx are
then related to each other on the basis that asserting ‘x is θ’
provides direct constraints onDx. For example, asserting ‘x
is L1 ∧ L2’, for labelsL1, L2 ∈ L is taken as conveying the
information that bothL1 andL2 are appropriate to describe
x so that{L1, L2} ⊆ Dx. Similarly, ‘x is ¬L’ implies that
L is not appropriate to describex soL /∈ Dx. In general we
can recursively define a mappingλ : LE → 22L

from expres-
sions to sets of subsets of labels, such that the assertion ‘x is
θ’ directly implies the constraintDx ∈ λ (θ) and whereλ (θ)
is dependent on the logical structure ofθ. For example, if
L = {low, medium, high} thenλ(medium ∧ ¬high) =
{{low,medium}, {medium}} corresponding to those sets
of labels which includemedium but do not includehigh.
Hence, the descriptionDx provides an alternative to Zadeh’s
linguistic variables in which the imprecise constraint ‘x is θ’
on x, is represented by the precise constraintDx ∈ λ(θ), on
Dx.

Definition 2.4 λ-mappingλ : LE → 2F is defined recur-
sively as follows:∀θ, ϕ ∈ LE
• ∀Li ∈ L λ(Li) = {F ∈ F : Li ∈ F}
• λ(θ ∧ ϕ) = λ(θ) ∩ λ(ϕ)
• λ(θ ∨ ϕ) = λ(θ) ∪ λ(ϕ)
• λ(¬θ) = λ(θ)c

Therefore, based on theλ-mapping we define the appropriate-
ness measure as below:

Definition 2.5 (Appropriateness Measure)
Appropriateness measureµθ(x) is evaluated as the sum
of mass assignmentmx over those subsets of labels inλθ(x),
i.e. ∀θ ∈ LE,∀x ∈ Ω, µθ(x) =

∑

F∈λ(θ) mx(F ).

For example, ifL = {low,medium, high} with focal
sets {{l}, {l,m}, {h}} and θ = low ∧ ¬medium then
µl∧¬m(x) =

∑

F :l∈F,m 6∈F mx(F ) = mx({l}).

3 A cascade linguistic attribute hierarchy

3.1 Definition of a cascade hierarchy

The process of aggregation of evidence in multi-attribute deci-
sion problems based on attributesx1, ..., xn can be viewed as
a functional mapping between a high level variabley and in-
put attributes,y = f(x1, ..., xn), which is often dynamic and
nonlinear, and may be imprecisely defined. In some cases, the
function f may be approximated by a composition of lower
dimensional sub-functions, forming a cascade hierarchy (abi-
nary tree). Each sub-function represents a new intermediate
attribute. Figure 1 shows a simple cascade hierarchy. There
aren − 1 intermediate attributes produced. The last interme-
diate attributezn−1 corresponds to the goal variabley. The
cascade relationship is expressed as following:

zi =

{

F1(x1, x2) i = 1,
Fi(zi−1, xi+1) n > i > 1.

(2)

As proposed in [7], in a linguistic attribute hierarchy, func-
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Figure 1: A cascade hierarchy of LDTs

tion mappings between parent and child attribute nodes are
defined in terms of weighted linguistic rules which explicitly
model both the uncertainty and vagueness which often char-
acterises our knowledge of such aggregation functions. These
rules will be defined as conditional expressions in the label
semantics framework [6] weighted by conditional probabili-
ties. For each attribute, a set of labels and subsequent label
expressions is defined. We assume that expressions describ-
ing a parent attribute can be (imprecisely) defined in terms of
a description of its children. LetLi, θi andFi denote the set
of labels, a label expression and focal sets respectively, de-
fined for attributexi for i = 1, ..., n. Similarly, letLy, θy and
Fy denote the label set, a label expression and focal set for
describing the goal variabley, respectively.

More precisely, the weighted conditional rules can take the
form of an LDT. In an LDT, the nodes are attributes, and
the edges are label expressions describing each attribute.The
depth of an LDT with two input attributes is at most 2. A
branchB is a conjunction of expressionsθ1∧θ2, whereθ1 and
θ2 are the label expressions of the two edges on the branchB,
respectively. Each branch also is augmented by a set of condi-
tional mass valuesm(F |B)=P (Cx = F |B), for each output
focal elementF ∈ Fy. Then the rules corresponding to the
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branchB would be: θ1 ∧ θ2 → F : m(F |B) for each focal
elementF ∈ Fy.

3.2 Upwards propagation of information

The upwards propagation of information through a cascade
hierarchy of Linguistic Decision Trees (LDTs) based on label
semantics forms a process of cascade decision making. Fig-
ure 1 shows the process of bottom-up information propagation
through the cascade hierarchy. The only information available
regarding the mappingsF1, F2 andF3 is in the form of de-
cision treesLDT1, LDT2 andLDT3, which define mapping
functions forz1 in terms of those forx1 andx2, for z2 in terms
of those forz1 andx3, and fory in terms of those forz2 and
x4.

However, it is not easy to define the labels for intermediate
attributes in terms of their children, as the intermediate at-
tributes are not directly related to basic attributes in thesystem
[2]. Therefore, we suppose all intermediate attributes areap-
proximations of the decision variabley with the same domain
and description labels. According to Jeffrey’s rule [4], given
an LDT, the mass assignment of the decision variable can be
calculated by:

mzi
(Fy) =

{

∑t1
j=1 µθ1

(x1)µθ2
(x2)m(Fy|Bij

), i = 1
∑ti

j=1 µθ1
(zi−1)µθ2

(xi+1)m(Fy|Bij
), i > 1

(3)
where,Bij

is the jth branch in theith LDT, and µθ(x) is
appropriateness measure, quantifying the degree of our belief
that label expressionθ is appropriate forx [6]. The appropri-
ateness measure can be calculated with mass assignments of
attributex according to Definition 2.5.

Information is propagated along the cascade LDTs from low
level to high level. For the example in Figure 1, given mass
functionsmx1

, mx2
,mx3

, andmx4
, the mass functionmz1

is
determined by propagatingmx1

andmx2
throughLDT1, mz2

is determined by propagatingmz1
andmx3

throughLDT2,
and finally,my is determined by propagatingmz2

andmx4

through decision treeLDT3 (see Figure 2). Here we con-

mm 2zz1m

m 4xx3mm 2xx1m

y

Figure 2: The cascade upwards information propagation

sider only classification problems where the goal variabley
belongs to the finite set of classes{C1, ..., Ct}. In this case,
F = {{C1}, ..., {Ct}}, and for input vector~x, my({Ci}) =
P (Ci|~x).

4 GA in wrapper to optimise cascade hierar-
chies

4.1 Chromosomes and Reproduction

To learn a linguistic cascade hierarchy, we use a genetic algo-
rithm as a search agent with the LID3 as an induction algo-
rithm in wrapper. For the optimisation of cascade hierarchies
with n attributes, the size of whole search space isn!

2 . The
performance of different hierarchies is judged on the basisof
the accuracy for the given classification task.

Chromosomes:The purpose of a GA is to evolve a popula-
tion of potential solutions each corresponding to the cascade
hierarchies in a multiple-attribute space. Therefore, theGA
in wrapper approach conducts a search in the space of pos-
sible cascade hierarchies. Different attribute orderingsdefine
different cascade hierarchies. So we define any possible per-
mutation of all attributes,π = {x1, ...xn}, andπ → H as a
genome of the genetic algorithm.

Reproduction: We use “roulette-wheel“ selection, according
to which, an individual with better fitness has higher proba-
bility of being selected. The probability that hierarchyHi is
selected is given by the nominalised fitness:

pi =
fi(Hi)

∑Γ
j=1 fj(Hj)

. (4)

A one-elitism strategy is included since it keeps the current
best individual in the next generation, and speeds up the con-
vergence of the evolution process. On the other hand, in order
to keep the diversity of solutions, a random hierarchy is gen-
erated in each generation.

We use two-point order crossover as follows (Figure 3): two
parental permutations,π1 and π2, are chosen randomly de-
pending on the probability chosen in 4. A continuous interval
of the permutationπ1 is chosen, and also an interval starting
at the same position and of the same length fromπ2. The
two parameters, ’starting position’ and ’length of interval’,
are produced randomly. Two new permutations,π′

1 andπ′
2,

are created such thatπ′
1 contains the interval fromπ2 with the

rest being the other elements ofπ1 in the same order as they
appeared inπ1. π′

2 contains the interval fromπ1 with the rest
being the other elements ofπ2 in the order as they were inπ2

(Figure 3). Mutation, which is the swapping of two randomly
picked elements of a permutation, is carried out with some
probability (m rate) on each child in the population.

4.2 Evaluation and Termination Criteria

Here we only consider binary classification problem with two
classes ’+’ and ’-’. First, we investigate the ordinary accu-
racy on a threshold, which is the ratio of the number of correct
classifications to the number of testing samples. When the
estimated probabilityp(C|~x) (equivalent tomy({C})) that a
sample with measurement vector~x belongs to classC is larger
than a thresholdα, then that sample is classfied asC. Con-
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Figure 3: Two-point order crossover

ventionally we use 0.5 as a threshold. Here we consider two
measures of accuracy, integrated accuracy and the area under
ROC curve, which measures how well the classifier separates
the two classes without reference to a decision threshold. The
closer the ROC plot is to the upper left corner, the higher the
ordinary accuracy of the test results.

For each possible thresholdα for discriminating between the
two classes, some positive cases will be correctly classified
as positive (TPα=number of True Positive), but some positive
cases will be estimated as negative (FNα=number of False
Negative ). On the other hand, some negative cases will be
correctly classified as negative (TNα=number of True Neg-
ative), but some negative cases will be classified as positive
(FPα=number of False Positive).

Accuracy: For a decision maker, theOrdinary Accuracy
(Aα) over a thresholdα can be calculated as below:

Aα(H) =
TPα + TNα

M
, (5)

where,M is the number of test examples. In order to reduce
the sensitivity to the thresholdα, we define the integrated ac-
curacy to be the integration of accuracies for allα ∈ [0.5, 1)
(Formula (6)):

Aα̃(H) =

∫ 1

0.5

Nα

M
dα ≈

∆(α)

M

m
∑

i=1

Nαi
, (6)

where, the interval [0.5, 1) is divided intom subintervals with
constant step length∆(α), and whereNαi

= TPαi
+ TNαi

.

ROC curve: Receiver Operating Characteristic (ROC) anal-
ysis originated from signal detection theory and has been in-
troduced to machine learning in recent years in order to eval-
uate algorithm performance in an imprecise environment. Itis
claimed [10] that ROC graphs can offer a more robust frame-
work for evaluating classifier performance than traditional ac-
curacy measure. The true positive rate is calculated with
η = TP

P
. The false positive rate is calculated withσ = FP

N
.

In a ROC curve, the true positive rate (η) is plotted as a func-
tion of the false positive rate (σ) for varing thresholds. Each
point on a ROC plot represents a (η, σ) pair corresponding to
a particular decision threshold.

Similarly, the integrated accuracy can be defined as the area
under ROC curve, which measures how well the decision
maker separates the two classes without reference to a deci-
sion threshold, as follows:

AROC(H) =

∫ 1

0

ηdσ (7)

Let p(+|~x) be the estimation of the probability that an in-
stance with measurement vector~x is positive. If we rank test
instances according to increasing positive probabilities, then
the area under the ROC curve (AROC) for a decision making
problem with two classes +,- can be calculated [3] by:

AROC =

∑P
i=1 ri − P (P + 1)/2

PN
, (8)

where,P andN are the numbers of positive and negative sam-
ples,ri is the rank of theith positive instance in the rank list
according to the probabilities of the positive class.

Termination criteria: Termination is an important parame-
ter, which affects the running time and quality of solutions.
Generally it heavily depends on the size of the chromosome.
The maximum generationsmax gen is linear function of the
number of basic attributes. The evolution procedure will bere-
peated until the maximum number of generations is reached.

4.3 LID3 algorithm for the induction of an LDT

In order to obtain an LAH embedded with LDTs, we need to
train in turn all LDTs in the hierarchy. The LID3 algorithm [9]
for training cascade LDTs is a black box as part of evaluation
in the wrapper of the Genetic Algorithm. LID3, an extension
of well-known ID3 algorithm [11], is used to build an LDT
based on a given linguistic database. The search is guided by
a modified measure of information gain in accordance with
label semantics.

Definition 4.1 (Branch Entropy) The entropy of branch B,
for a given goal variable belonging to class setC =
{C1, ..., Ct}, is

E(B) = −
t

∑

i=1

P (Ci|B)log2P (Ci|B) (9)

Given a branch B, supposexj is expanded to the branch B,
then the Expected Entropy is defined as follows:

Definition 4.2 (Expected Entropy)

EE(B, xj) =
∑

Fj∈Fj

E(B ∪ Fj)P (Fj |B). (10)

where,B ∪Fj represents the new branch obtained by append-
ing the focal elementFj to the end of branch B. The probabil-
ity of Fj given B can be calculated as follows:

P (Fj |B) =

∑

~x∈D P (B ∪ Fj |~x)
∑

~x∈D P (B|~x)
, (11)
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where,P (B|~x) = µB(~x) = µθ1
(x1) ∗ µθ2

(x2), θ1 and θ2

are two label expressions associated with the two edges in the
branchB, andx1 andx2 are incident to the two edges. Hence,
theInformation Gaincan be calculated by:

IG(B, xj) = E(B) − EE(B, xj). (12)

The most informative attribute will form the root of an LDT,
and the tree will expand into branches associated with all pos-
sible focal elements of this attribute. For each branch, the
free attribute with maximal information gain will be next node
until the branch reaches the specified maximum depth or the
maximum class probability arrives the given threshold. The
process forms a level order traversal.

5 Experiments and Evaluation

All attributes are discretised using an entropy-based approach
into three labels (L = {small,medium, large}), respec-
tively. Each label corresponds to a trapezoidal fuzzy set,
which has50% overlapping with neighbouring label fuzzy
sets. A missing value of an attribute in an instance of the train-
ing database is replaced with the mean value of the attribute
for the corresponding class.

The experiments are carried out using ten-fold cross valida-
tion. Data is split into 10 approximate equal partitions. Each
one is used in turn for testing while the remainder is used for
training i.e. 9/10 of data is used for training and 1/10 for test-
ing. The whole procedure is repeated 10 times.

A trained hierarchy is evaluated using two types of accuracy
measure described in Section 4.2. The ordinary accuracy is
evaluated at threshold 0.5. The area under a ROC curve is
calculated with Formula (8).

We examine the quality of cascade decision making and the
cost of a hierarchy, i.e. the total number of branches from all
decision trees in a cascade hierarchy, and compare the perfor-
mance with that of a single LDT providing a direct mapping
between input attributes and a classification variable.

5.1 On the Pima Diabetes database

The Pima database: The Pima Indian data set is a well-
known benchmark problem from the UCI repository [1]. The
problem relates to incidents of Diabetes mellitus in the Pima
Indian population living near Phoenix Arizona. The target at-
tribute is a binary valued decision variable indicating whether
or not the patient shows signs of Diabetes according to World
Health Organisation criteria. The database of Diabetes in-
cludes 768 samples, in which, 268 positive instances (with
Diabetes), 500 instances without Diabetes. There are 8 basic
attributes.

Solutions and Fitness values:The two orders of attributes
corresponding to the optimal cascade hierarchies (H1 andH2)
obtained by the GAW with fitness values evaluated byAa and
AROC respectively, are:H1: 3, 4, 2, 5, 6, 7, 0, 1;H2: 2, 4, 0,

6, 3, 5, 7, 1. Table 1 lists the accuracies at threshold 0.5 (Aa),
the integrated accuracies (Aã), the areas under ROC curves
(AROC) and the numbers of branches (β) for H1, H2 and the
single LDT. It can be seen thatH1 andH2 achieve similar
performance inAa, Aã andAROC . Their performance inAa

andAROC is better than that of a single LDT, while the single
LDT has higher integrated accuracy thanH1 andH2. The
branch numbers forH1 andH2 are much less than for the
single LDT.

Table 1: Evaluations of hierarchies obtained by GAW on the
Pima database

H Aa Aã AROC β

H1 0.747396 0.188281 0.783776 115
H2 0.748698 0.189437 0.790649 115
LDT 0.713542 0.244922 0.769687 14845

Accuracy and ROC curves: Figure 7 (a) and (b) show the
accuracy and ROC curves for the two hierarchies and the sin-
gle LDT, respectively. From the accuracy curves in Figure 7
(a), it can be seen thatH1 andH2 obtain approximately the
same accuracy curves, and achieve higher ordinary accuracies
at threshold 0.5 than the single LDT does. But the accuracies
obtained byH1 andH2 decrease as thresholds increase, and
become smaller than for the single LDT when thresholds are
over 0.65. Figure 7 (b) shows that the two optimal cascade
hierarchies obtain similar ROC curves to the single LDT, al-
though they have different performance in accuracies.

5.2 On the Wisconsin Breast Cancer Database

The Wisconsin Breast Cancer Database: The Wiscon-
sin Breast Cancer (WBC) database [1] was created by Dr.
William H. Wolberg from the University of Wisconsin Hospi-
tals, Madison [8]. There are 699 samples, in which 458 sam-
ples are Benign, and 241 samples are Malignant. There are
nine basic attributes, and each attribute is with lower bound
1 and upper bound 10. There are 16 instances that contain a
single missing (i.e., unavailable) attribute value. It is claimed
that the best result is93.7% trained on 200 instances and tested
on the other 169 in the first group of 369 samples with the 1-
nearest neighbor approach in [1].

Solutions and Fitness values: The two permutations of at-
tributes corresponding to the two optimal cascade hierarchies
are: H3:6,2,4,3,8,7,5,1,0;H4:6,4,3,8,1,7,5,2,0. Table 2 lists
the accuracies at threshold 0.5 (Aa), the integrated accuracies
(Aã), and the areas under ROC curves (AROC) and branch
numbers (β) for H3, H4 and the single LDT. The experiment
results show thatH3 andH4 have similar performance in or-
dinary accuracies for different thresholds, and the areas un-
der ROC curves. They have ordinary accuracies at threshold
0.5 better than a single LDT, but they lose performance in the
integrated accuracy. The best ordinary accuracy at threshold
0.5 is 96.7% obtained byH3. Both algorithms for learning a
single LDT and a cascade hierarchy have computational com-
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plexity O(nβ), wheren is the length of a branch andβ is the
total number of branches. Table 2 shows that the number of
branches for the optimal cascade hierarchiesH3 andH4 are
close to that for the single LDT. However, for each LDT in a
cascade hierarchy, there are only two input attributes, thus the
length of a branch is at most 2. Therefore, the optimal cascade
hierarchies have better computational complexity than thesin-
gle LDT.

Table 2: Evaluations of hierarchies obtained by GAW on the
WBC database

H Aa Aã AROC β

H3 0.967096 0.409156 0.985831 100
H4 0.962804 0.408530 0.985867 100
LDT 0.934192 0.441863 0.932976 97

Accuracy and ROC curves: Figure 8 (a) and (b) show the
accuracy and ROC curves for the two optimal cascade hier-
archies and the single LDT, respectively. From the accuracy
curves in Figure 8 (a), it can be seen that the ordinary accu-
racy at threshold 0.5 ofH3 andH4 is better than for the single
LDT, but their ordinary accuracies when the threshold is larger
than 0.6 are worse than for the single LDT. The ROC curves
of H3 andH4 are slightly better than for the single LDT.

6 Information propagation on the optimal cas-
cade LAHs

Here, we use Pima Diabetes as an example to observe the in-
formation propagation on the optimal cascade hierarchyH2:
2, 4, 0, 6, 3, 5, 7, 1 (Figure 4). Table 3 shows the information
for all attributes.

Table 3: Attribute information in the database of Pima Dia-
betes, including Lower Bounds (LB),Upper Bounds (UB)

xi Description LB UB
x0 Number of times pregnant 0 17
x1 Plasma glucose concentration a 2 hours in

an oral glucose tolerance test
0 199

x2 Diastolic blood pressure (mmHg) 0 122
x3 Triceps skin fold thickness (mm) 0 99
x4 Two-Hour serum insulin (mu U/ml) 0 846
x5 Body mass index (weight inkg/(height in

m)2)
0 67.1

x6 Diabetes pedigree function 0.078 2.42
x7 Age (years) 21 81
y +/-. + indicates “tested positive for dia-

betes”
0 1

For the Pima Diabetes database, the goal should be the func-
tion of the eight input attributes. Through the optimal cascade
LAH (H2), the function mappingy = f(x0, ..., x7) is broken

z1 z2 z3 z4 z5 z6 y

x2 x4 x0 x6 x3 x5 x7 x1

Figure 4: Optimal cascade hierarchyH2 for the Pima diabetes
database

down to be a cascade of sub-functions as below:

y = f(x0, x1, x2, x3, x4, x5, x6, x7)

= f7(z6, x1)

= f7(f6(z5, x7), x1)

= f7(f6(f5(z4, x5), x7), x1)

= f7(f6(f5(f4(z3, x3), x5), x7), x1)

= f7(f6(f5(f4(f3(z2, x6), x3), x5), x7), x1)

= f7(f6(f5(f4(f3(f2(z1, x0), x6), x3), x5), x7), x1)

= f7(f6(f5(f4(f3(f2(f1(x2, x4), x0), x6), x3), x5), x7), x1)

Each sub-function is represented by a trained LDT, and each
sub-function decides an intermediate attribute, describing the
distributed degrees of belief on difference classes. The calcu-
lation is carried out from bottomf1 to topf7. Table 5 lists the
calculation results of each intermediate attribute for thesam-
ples shown in Table 4.

Table 4: Some samples of Pima Diabetes data
S x0 x1 x2 x3 x4 x5 x6 x7 y

s1 2 174 88 37 120 44.50 0.646 24 +
s2 1 109 58 18 116 28 0.219 22 -
s3 3 187 70 22 200 36.40 0.408 36 +
s4 3 108 62 24 0 26 0.223 25 -

Now, we examine the effects of each attribute in the process of
cascade decision making by observing the Table 5. Fors1 and
s3 that are positive samples, the process of decision making
are listed as below:

• step 1: The levels of attributesx2 andx4 (Diastolic blood
pressure and Two-hour serum insulin) do not make the
large difference between positive and negative probabili-
ties. Buts1 is with more positive probability, whiles3 is
with more negative probability

• step 2: The levels ofx0 (Number of pregnant times) re-
duce the positive probabilities as the values ofx0 for both
samples are small.

• step 3: The larger levels ofx6 (Diabetes pedigree func-
tion), the more the positive probabilities increase.

• step 4: The levels ofx3(Triceps skin fold thickness) re-
duce the positive probabilities.
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Table 5: Upwards results for the samples in Table 4
zi -/+ s1 s2 s3 s4

- 0.4969 0.7365 0.5567 0.7119
z1 = f1(x2, x4)

+ 0.5031 0.2635 0.4433 0.2881
- 0.7164 0.7585 0.6804 0.6917

z2 = f2(z1, x0)
+ 0.2836 0.2415 0.3196 0.3083
- 0.5967 0.7075 0.6763 0.7040

z3 = f3(z2, x6)
+ 0.4033 0.2925 0.3237 0.2960
- 0.6110 0.7900 0.6854 0.6466

z4 = f4(z3, x3)
+ 0.3890 0.2100 0.3146 0.3534
- 0.5161 0.7093 0.5474 0.8833

z5 = f5(z4, x5)
+ 0.4839 0.2907 0.4526 0.1167
- 0.7761 0.8710 0.5114 0.7730

z6 = f6(z5, x7)
+ 0.2239 0.1290 0.4886 0.2270
- 0.2150 0.7883 0.1804 0.7871

y = f7(z6, x1)
+ 0.7850 0.2117 0.8196 0.2129

• step 5: The levels ofx5 (body mass index) increase the
positive probabilities.

• step 6: The level ofx7 (Age) for samples1 reduces the
positive probability, while the level ofx7 for samples3

increases the positive probability. At this step, the nega-
tive probabilities are lager than the positive probabilities
for both samples, ands3 has larger positive probability
thans1.

• step 7: However, the results are completely turned down
by function f7, due to the introduce of attributex1

(Plasma glucose concentration at 2 hours in an oral glu-
cose tolerance test). The final decision made by the top
LDT is thats1 ands3 are positive with probability 78.5%
and 81.96%, respectively.

Hence, we observe the top LDT representing function
f7(Figure 5). Obviously, ifx1 is {m, l} or x1 is {l}, then
the sample is with larger positive probability than a negative
probability (i.e. py(+) > py(−)). Namely, the level ofx1

(Plasma glucose concentration at 2 hours in an oral glucose
tolerance test) dominates the final decision.

{s}

y y

z6 z6z6z6z6

yyyyyyyyyyyyy

x1

0.816

0.1840.0

0.823 0.0

0.177
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0.443

0.577

0.0

0.0
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Figure 5: The top LDT inH2

Fors2 ands4 that are negative samples, we conclude the effect

of each attribute on the positive probability during the process
of decision making in the Table 6. From the process of cascade
decision making, it can be seen that the decisions have been
done clearly at the bottom level, and decision making at the
following step only adjusts the probabilities up (↑) or down
(↓) slightly.

Table 6: Effect of each attribute on the positive probability in
cascade decision making

S x2 andx4 x0 x6 x3 x5 x7 x1

s2 low p(+) ↓ ↑ ↓ ↑ ↓ ↑

s4 low p(+) ↑ ↓ ↑ ↓ ↑ ↓

Hence, we observe the bottom decision tree (LDT1)(Figure
6) representing functionf1. It can be seen that ifx4 is {s},
{s,m}, or {m}, no matter which levelx2 is at, the negative
probability on a branch is larger than the positive probability
on a branch. The levels ofx4 for s2 ands4 are allocated in the
range described above, so the results are obvious.

Figure 6: The bottom LDT inH2

7 Conclusion

In this paper, the process of information propagation through
a cascade hierarchy of Linguistic Decision Trees for multi-
attribute decision problems is investigated. We develop a ge-
netic algorithm with the training algorithm LID3 in wrapperto
optimise cascade hierarchies for decision making, and exam-
ine the performance of the optimal cascade hierarchies on two
benchmark databases, Pima Diabetes and Wisconsin Breast
Cancer databases from UCI machine learning repository. The
experimental results show that an optimal cascade hierarchy
can achieve better performance in the ordinary accuracy at
threshold 0.5 and in the area under ROC curves than a sin-
gle LDT. The number of rules induced by the optimal cascade
hierarchy is much lower than a single LDT, when the relation-
ship between a class and the input attributes is highly uncer-
tain and nonlinear. However, accuracy tends to decrease with
higher thresholds. More importantly, the cascade linguistic at-
tribute hierarchy present cascade transparent linguisticrules,
which are useful for analyzing the effect of different attributes
on the decision making.
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Figure 7: Accuracy and ROC curve forH1, H2, and the single
LDT on the Pima database
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Figure 8: Accuracy and ROC curve forH3, H4, and the single
LDT on the WBC database
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