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Abstract—Seed is a type of a regularity of strings.
A restricted approximate seed w of string T is a fac-
tor of T such that w covers a superstring of T under
some distance rule. In this paper, the problem of all

restricted seeds with the smallest Hamming distance

is studied and a polynomial time and space algorithm
for solving the problem is presented. It searches for
all restricted approximate seeds of a string with given
limited approximation using Hamming distance and
it computes the smallest distance for each found seed.
The solution is based on a finite (suffix) automata ap-
proach that provides a straightforward way to design
algorithms to many problems in stringology. There-
fore, it is shown that the set of problems solvable
using finite automata includes the one studied in this
paper.
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ming distance, stringology

1 Introduction

Searching regularities of strings is used in a wide area
of applications like molecular biology, computer–assisted
music analysis, or data compression. By regularities, re-
peated strings are meant. Examples of regularities in-
clude repetitions, borders, periods, covers, and seeds.

The algorithm for computing all exact seeds of a string
was introduced by Iliopoulos, Moore, and Park [1]. The
first algorithm for searching all seeds using finite au-
tomata was introduced by Voráček and Melichar [2].

Finding exact regularities is not always sufficient and thus
some kind of approximation is used. An algorithm for
searching approximate periods, covers, and seeds under
Hamming, Levenshtein (also called edit), and weighted
Levenshtein distance was presented by Christodoulakis,
Iliopoulos, Park, and Sim [3]. The algorithm for comput-
ing approximate seeds was originally introduced by these
authors in [4]. An algorithm for searching all covers un-
der Hamming, Levenshtein, and Damerau distance using
finite automata was introduced by Guth [5], optimized al-
gorithm for computing all covers with smallest Hamming
distance was presented by Guth, Melichar, and Balík [6].
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Finite automata provide common formalism for many al-
gorithms in the area of text processing (stringology), in-
volving forward exact and approximate pattern match-
ing and searching for borders, periods, and repetitions
[7], backward pattern matching [8], pattern matching in
a compressed text [9], the longest common subsequence
[10], exact and approximate 2D pattern matching [11],
and already mentioned computing approximate covers
[5, 6] and exact covers [12] and seeds [2] in generalized
strings. Therefore, we would like to further extend the set
of problems solved using finite automata. Such a problem
is studied in this paper.

Finite automaton as a data structure may be easily imple-
mented. Therefore, using it as a base for similar approach
to many algorithms is not only theoretical problem, as it
may make development of software related with above
mentioned areas easier, faster, and cost-reduced.

This paper is organized as follows: in Section 2, basic
definitions and previous works overview are placed. In
Section 3, the algorithm for the problem being studied is
presented. Its theoretical time and space complexity is
derived in Section 4 and experimental results are shown
in Section 5.

2 Preliminaries

An alphabet is a nonempty finite set of symbols, denoted
by A. The symbol of the alphabet is denoted by a.
A string over an alphabet is a finite sequence of sym-
bols of the alphabet. Having string T = a1, a2, . . . , a|T |,
reversed string T is denoted by T R and it is equal to
T R = a|T |, a|T |−1, . . . , a1. Empty string is an empty se-
quence of symbols, denoted by ε. An effective alphabet of
a string T is a set of symbols that occur in T , denoted by
AT . Only effective alphabet is considered in this paper.
A language is a set of strings. A set of all strings over
alphabet A is denoted by A∗. The length of a string w is
denoted by |w|, the i–th symbol of w is denoted by w[i].
Result of an operation concatenation of strings x, y ∈ A∗

is equal to xy, it may be denoted by x.y. An operation
superposition is defined in this way: x = pu, y = us,
superposition of x and y is pus.

A distance is the minimum number of editing operations
necessary to convert string x into string y. The maximum
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allowed distance is denoted by k. The Hamming distance
between strings x and y, denoted by DH , is equal to the
minimum number of editing operations replace (of one
symbol) that are necessary to convert x into y. Only
Hamming distance is considered in this paper.

Suppose p, p′, s, s′, u, w, x, T ∈ A∗. p is a prefix of T if
T = pu, s is a suffix of T if T = us, w is a factor (also
called a substring) of T if T = uwx (also T is a super-
string of w). Set of all factors of T is denoted by Fact(T ).
p′ is an approximate prefix of T with maximum Hamming
distance k if T = pu and DH(p, p′) ≤ k. Set of all approx-
imate prefixes of T with maximum Hamming distance k
is denoted by Pref

k(T ). An approximate suffix and set of
all approximate suffixes of T with respect to k is defined
by analogy and is denoted by Suff k(T ).

We say that string w occurs in string T if w ∈ Fact(T ).
Factor w occurs at position (end-position) i in string T
if ∀j ∈ {1, . . . , |w|} : w[j] = T [i − |w| + j]. An end-set
is a set of all i such that w occurs at position i in T .
String w occurs approximately with maximum Hamming
distance k at position i in string T (or w has approximate
occurrence at position i in T ) if there exists factor x of
T that occurs at position i in T and DH(x, w) ≤ k.

String w is a cover of T if T can be constructed by con-
catenations and superpositions of w. We also say that
w covers T . String w is a seed of T if w covers some
superstring of T . For example, aba and ababa are some
seeds of ababaab.

String w is a restricted approximate cover of T with max-
imum Hamming distance k if w is a factor of T and there
exist strings s1, s2, . . . , sr; si ∈ Fact(T ) such that:

1. DH(w, si) ≤ k for all i where 1 ≤ i ≤ r,

2. T can be constructed by superpositions and concate-
nations of copies of the strings s1, s2, . . . , sr.

String w is a restricted approximate seed of string T with
maximum Hamming distance k if w is a factor of T and
w is a restricted approximate cover of some superstring
of T with maximum Hamming distance k.

The smallest Hamming distance of a restricted approxi-
mate seed w of string T is the smallest possible integer
lm such that w is a restricted approximate seed of T with
maximum Hamming distance lm.

A finite automaton M (also called finite state machine) is
a quintuple M = (Q, A, δ, q0, F ), where Q is a nonempty
finite set of states, A is an input alphabet, δ is a transi-
tion function, q0 ∈ Q is an initial state and F ⊆ Q is a set
of final states. Finite automaton is deterministic (abbre-
viated to DFA) if its transition function is δ : Q×A 7→ Q,
i.e. for each pair of state qi and symbol a, there exists at
most one state qj such that δ(qi, a) = qj . DFA is partial

if there may exist a pair of state qi and symbol a such
that δ(qi, a) is undefined. In this paper, partial DFA are
considered in general. A deterministic trie is a DFA that
may have its transition diagram represented as a tree,
i.e. for each state qj , there exists at most one state qi

such that for any symbol a ∈ A, δ(qi, a) = qj . Finite
automaton is nondeterministic (abbreviated to NFA) if
its transition function is δ : Q×A 7→ P(Q), i.e. for some
pair of state qi and symbol a, there may exist more than
one state qj such that qj ∈ δ(qi, a). A successor qj of
a state qi for symbol a is state from result of a transition
function, i.e. qj ∈ δ(qi, a) for NFA and qj = δ(qi, a) for
DFA. An extended transition function denoted by δ∗ is
for a DFA defined for a ∈ A, u ∈ A∗ in this way:

δ∗(q, ε) = q, δ∗(q, ua) = δ(δ∗(q, u), a)

An extended transition function of an NFA is defined as:

δ∗(q, ε) = {q}, δ∗(q, au) =
⋃

qi∈δ(q,a)

δ∗(qi, u)

String w is accepted by a DFA when δ∗(q0, w) = q for ini-
tial state q0 and some final state q. String w is accepted by
an NFA when q ∈ δ∗(q0, w) for initial state q0 and some
final state q. We also say that the automaton accepts
string w. Automaton M1 is equivalent to automaton M2

if M1 and M2 accept equal sets of strings. A left language
of a state q of a DFA is set of all strings w for that holds
δ∗(q0, w) = q for initial state q0. Left language of a state
q of a trie contains one string, denoted by factor (q).

A nondeterministic suffix automaton for string T and
maximum Hamming distance k, denoted by Mk

SN (T ), is
an NFA that accepts all strings from Suff k(T ) (see Figure
3 for an example of such automaton). Such an automa-
ton Mk

SN (T ) = (Q, AT , δ, q0, F ) may be constructed in
this way:

1. Create a layer of |T |+ 1 states:

(a) each state q0
i corresponds to a position i in T

(plus initial state q0, thus 0 < i ≤ |T |),

(b) for each state q0
i (but the last q0

|T |) define tran-
sition δ(q0

i , T [i]) = q0
i+1,

(c) define the last state q0
|T | final (note that until

now such automaton accepts exactly T ).

2. Similarly, create a layer for each “number of errors”
l, 1 ≤ l ≤ k (the only exception: we do not need any
state ql

i for l > i).

3. For each state ql
i (but the last q|T | in each layer and

but the last layer) and for each symbol a ∈ AT , a 6=
T [i] (not occurring in T at position i), define transi-
tion δ(ql

i, T [i]) = ql+1
i+1.

4. Create “long” transitions from q0: δ(q0, a) = {q0
i :

a = T [i], 1 ≤ i ≤ |T |} ∪ {q1
i : a 6= T [i], 1 ≤ i ≤ |T |}.
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A level of a state of Mk
SN (T ) corresponds to the number

of errors (order l of the layer mentioned above), a depth
of a state of this automaton is equal to the corresponding
position in T (number i mentioned above).

A deterministic suffix automaton for string T and maxi-
mum Hamming distance k, denoted by Mk

SD (T ), is a DFA
that accepts all strings from Suff k(T ) (see Figure 5).
A depth of a state q of the automaton is length of the
longest string w such that δ∗(q0, w) = q for initial state
q0. Deterministic automaton Mk

SD(T ) = (Q, AT , δ, q0, F )
accepting the same language as nondeterministic automa-
ton Mk

SN (T ) = (QN , AT , δN , qN
0 , FN ) may be created us-

ing subset construction:

1. Set Q = {{q0}} will be defined, state q0 = {qN
0 } will

be treated as unmarked.

2. If each state in Q is marked, continue with step 4.

3. Unmarked state q will be chosen from Q and the
following operations will be executed:

(a) δ(q, a) =
⋃

δN (r, a) for r ∈ q and for all a ∈ AT ,

(b) Q = Q ∪ δ(q, a) for all a ∈ AT ,

(c) state q ∈ Q will be marked,

(d) continue with step 2.

4. F = {q : q ∈ Q, r ∩ FN 6= ∅, r ∈ q}.

Using subset construction of DFA Mk
SD (T ) equivalent to

NFA Mk
SN (T ), every state qD ∈ Q corresponds to some

subset of QN . This subset is called a d–subset (abbrevi-
ation of deterministic subset), denoted by d(qD). Each
element of the d–subset corresponds to some state of QN .
Where no confusion arises, depth of a state correspond-
ing to an element rj ∈ d(qD) of d–subset d(qD) is simply
denoted by rj . Note that considering only depths of el-
ements, any d–subset d(q) is equal to the end-set of all
strings from left language of q. In the algorithms below,
d–subset is supposed to be implemented as a list, pre-
serving order of its elements. An element of the d–subset
is denoted by ri, where the subscript i means an index
(order) of the element ri within the d–subset. In figures,
states of nondeterministic automata and elements of d–
subsets of deterministic automata are denoted by their
depths and levels, e.g. 3′′ means state or element with
depth 3 and level 2.

Problem formulation (All restricted seeds with the
smallest Hamming distance). Given string T and max-
imum Hamming distance k, find all restricted approx-
imate seeds of T with respect to k and compute their
smallest distances.

The algorithm for searching (exact) seeds in general-
ized strings presented in [2] obviously works for (non-
generalized) strings as well, because string is special case

of generalized string. It is based on the following idea.
First, MSN (T ) is constructed. Equivalent deterministic
automaton MSD(T ) = (Q, AT , δ, q0, F ) is computed us-
ing subset construction. One of conditions for any factor
to be a seed of string T is its length. Seed w must cover
central part of T (i.e. the part of T between the left-
most and the rightmost position of w within T ), and it
must cover the uncovered suffix of T and the uncovered
prefix of T . All sufficiently long factors are then checked
whether they cover the uncovered suffix, prefix of T , re-
spectively. If MSD (T ) accepts some prefix of factor w
then w covers uncovered suffix of T . If a suffix automa-
ton MSD(T R) for reversed string T accepts some prefix
of reversed factor w then w covers uncovered prefix of T .
When w satisfies all the conditions, w is a seed of T .

Computation of the smallest Hamming distance of a cover
(presented in [6]) is based on the following idea: when the
maximum approximation of the first and the last position
of cover w in T is lmin, for its smallest distance lm holds
lm ≥ lmin, because cover is an approximate prefix and suf-
fix of T and thus it cannot cover T without its first and
last position. When cover w of T has positions with ap-
proximation at most l, for its smallest distance lm clearly
holds lm ≤ l. When the positions of w with the maxi-
mum approximation equal to l are no longer considered
(the first and the last position must be still considered)
and w is still cover of T , then for lm holds lm ≤ l − 1.
lm is decremented till w still covers T . This may be used
with modifications for computation of seeds.

The algorithm for searching exact seeds from [2] uses
two phases: first, deterministic suffix automaton is con-
structed and then d–subsets are analyzed and seeds are
computed. This means that complete automaton or at
least all the d–subsets to be analyzed need to be stored
in memory at a time. By contrast, the algorithm for
searching covers from [6] uses merge of the phases, each
d–subset is analyzed just after its construction. A depth-
first search like algorithm is used and the states that are
no longer needed are removed. For approximate seeds
searching, there is also no need to store all elements of
d–subsets of the automaton in memory at a time.

3 Problem solution

Some properties are common for exact and approximate
seeds with Hamming distance. Hence the algorithm pre-
sented in [2] is used as a base of algorithm for the problem
studied in this paper, using some (but not all) techniques
for searching covers in [6] for further improvements.

Every approximate restricted seed of string T is neces-
sarily an exact factor of T with other possible approx-
imate occurrences. Suffix automaton constructed for T
and maximum Hamming distance k has extended transi-
tions defined for all factors of T with respect to k. When
Mk

SD(T ) is constructed using subset construction from
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Mk
SN (T ), each element of any d–subset of any state of

Mk
SD(T ) contains information not only about position

(depth within Mk
SN (T )) but also about approximation

(level within Mk
SN (T )). Therefore, it may be easily de-

termined whether string from left language of any state
of Mk

SD(T ) is an exact factor of T .

Note 1. For string T , string v such that v is not a factor
of T , and any string u being a superstring of v holds:

∀T, u, v ∈ A∗, v ∈ Fact(u) : v /∈ Fact(T )⇒ u /∈ Fact(T )

Lemma 1. For DFA Mk
SD(T ) = (QD, AT , δD, qD

0 , FD)
created using subset construction from Mk

SN (T ) and for
its state qi ∈ QD with d–subset d(qi) such that ∀r ∈ d(qi) :
level(r) > 0 holds that any successor of qi cannot contain
element rj such that level(rj) = 0.

Proof. It holds from the following property of transitions
of Mk

SN (T ) = (QN , AT , δN , qN
0 , FN ): for all successors

rj ∈ QN of ri ∈ QN holds that level(ri) ≤ level(rj).

Corollary. As only exact factor of T may be a restricted
seed of T , there is no need to construct any state of
Mk

SD(T ) having only non-zero-level elements in its d–
subset, as such state contains no exact factor of T in its
left language. Therefore, when such state is created dur-
ing construction, it may be removed and any of its suc-
cessors need not be constructed. Such deterministic suffix
automaton that contains only states having at least one
zero-level element in its d–subset is denoted by M̃k

SD(T ).

Note 2. Special type of deterministic suffix automaton,
suffix trie, is considered in this paper. Construction of
the trie and left language extraction is simpler than for
general suffix automaton. As left language of any state
of the trie contains exactly one string, extraction of left
language of any state takes linear time with respect to
length of the string (e.g. using inverted transition func-
tion). See Figure 5 for example of suffix trie.

The relation between length and positions of any seed
(presented in [2]) holds also for approximate positions
with Hamming distance, as the distance is defined for
strings of equal lengths only.

Note 3. When searching for covers with Hamming dis-
tance [6], it is possible to remove all states q of determin-
istic suffix trie that do not represent prefix, i.e. such q
that |factor (q)| < depth(r1), where d(q) = r1, . . . , r|d(q)|.
Similar property between the first position and length
of a factor is used for searching seeds: |factor (q)| ≤
depth(r1)

2 . Unlike in computing covers, this condition can-
not be used for removing states q and their successors.

Example 1. Let us consider suffix trie for string T =
bbbbbaaabb and maximum Hamming distance k = 2. Fac-
tor aaa cannot be a seed of T as its first approximate
position within T is 6. Factor aaabb is a seed of T with
respect to k. It is obvious that for states q1, q2 of the trie,

bbbbbaaa

bbba

bbba

bbba

bbba

bbba

Figure 1: Possible covering of string bbbbbaaa with string
bbba and Hamming distance 2 from Example 2

bbbbbaaa

bbba

bbba

bbba

bbba

b

Figure 2: Possible covering of a superstring of bbbbbaaa
with bbba and Hamming distance 1 from Example 2

where factor (q1) = aaa and factor (q2) = aaabb, holds: q2

is a successor of a state that is a successor of q1. There-
fore, q1 must not be removed to be able to find aaabb.

For computation of the smallest distance lm of each seed,
the idea used for searching covers ([6]) may be used for
searching seeds. Unlike searching covers, any position
may be removed, including the first and the last, thus
the only lower bound of lm is 0. Determination whether
continue to decrement l is for seeds more complex than
for covers, as computation of covering of central part of
T is not sufficient condition for seeds. For factor w of
T , not only positions and their approximation need to
be considered, but also distance of the uncovered prefix,
suffix, of T , and some suffix, prefix, of w, respectively.
See Algorithm 3 for further information.

Example 2. Let us have string T = bbbbbaaa and max-
imum Hamming distance k = 2. One seed of T with
respect to k is bbba. It may be seed of T with Ham-
ming distance 2, because its positions in T are 4, 5, 6, 7,
and 8 with maximum approximation 2 (see Figures 1, 5).
When the position 8 with approximation 2 is removed,
bbba is still seed of T with positions 4, 5, 6, and 7, all
with approximation at most 1 (see Figure 2).

The deterministic suffix trie is needed not only to deter-
mine positions of each factor w of T , but also for checking
whether w is able to cover uncovered prefix and suffix of T
(see Algorithm 4). Thus, the trie must be able to accept
strings of length at least |w| − 1. Therefore, the depth-
first search with removing states from [6] cannot be used.
By contrast, only elements of d–subset d(q) may be re-
moved after construction of all successors of q, transitions
must be preserved. Thus, breadth-first search in the au-
tomaton is used (see Algorithm 1 and usage of queues
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L, LR). As no state of trie M̃k
SD (T ) is removed and the

last element of each d–subset is preserved, it is possible to
recognize all approximate suffixes of T of length at least
|w| − 1 and their distance.

Like an exact seed, an approximate one must also cover
the uncovered prefix and suffix of T (i.e. some prefix
of seed w must be an approximate suffix of T and some
suffix of w must be an approximate prefix of T ). Similar
technique as for exact seeds ([2]) is used (Algorithm 4),
but with tries M̃k

SD(T ) and M̃k
SD(T R). When some suffix

of seed w of T (i.e. some prefix of reversed w) is accepted
by M̃k

SD (T R), i.e. w = factor (q) for some final state q

of M̃k
SD (T R), w covers the uncovered prefix of T with

approximation equal to level of the last element r|d(q)| of
d(q). Similarly for a prefix of w, the uncovered suffix of
T and M̃k

SD(T ).

For complete solution of the problem see Algorithm 1.

Algorithm 2 Compute state of a deterministic suffix trie
M̃ = QD, AT , δD, qD

0 , FD.

Input: NSA (QN , AT , δN , qN
0 , FN ), state qt ∈ QD, sym-

bol a ∈ AT , queue L of states.
Output: Modified M̃ with possibly added successor qu

of state qt for symbol a, modified queue L.
1: create new state qu

2: define depth(qu) = depth(qt) + 1
3: for all ri ∈ d(qt) (in order as stored in d(qt)) do

4: append all rj ∈ δN(ri, a) to d(qu) in ascending or-
der by depth(rj)

5: end for

6: if exists r ∈ d(qu) where level(r) = 0 then

7: QD ← QD ∪ {qu}
8: enqueue(L, qu)
9: if ru

|d(qu)| ∈ FN , d(qu) = ru
1 , . . . ru

|d(qu)| then

10: FD ← FD ∪ {qu}
11: end if

12: end if

Algorithm 3 The smallest distance of a seed of T .
Input: d–subset d(q) = r1, r2, . . . , r|d(q)| representing
seed w of T .
Output: The smallest distance lm of w.
1: t← d(q)
2: lmax ← maxr∈t{level(r)}
3: l ← lmax

4: repeat

5: for all r ∈ t : level(r) = l do

6: remove r from t
7: end for

8: l ← l − 1
9: until w is a seed of T using positions determined by

t with respect to l (Algorithm 4)
10: lm ← l + 1.

0 1 2 3 4 5 6 7 8
b b b b b a a a

b b b b a a a

1′ 2′ 3′ 4′ 5′ 6′ 7′ 8′
b b b b a a a

a a a a a b b b

a a a a b b b

2′′ 3′′ 4′′ 5′′ 6′′ 7′′ 8′′
b b b a a a

a a a a b b b

Figure 3: Transition diagram of the nondeterministic
approximate suffix automaton Mk

SN (T ) for string T =
bbbbbaaa and maximum Hamming distance k = 2 from
Example 3

Example 3. Let us compute set of all seeds with max-
imum Hamming distance k = 2 for string T = bbbbbaaa.
Nondeterministic suffix automata Mk

SN (T ) (see Figure 3)
and Mk

SN (T R) (see Figure 4) are constructed. Next, sub-
set construction of deterministic suffix trie Mk

SD(T ) from
Mk

SN (T ) starts state-by-state (see transition diagram of
Mk

SD(T ) with all states, that need to be constructed, at
Figure 5), the same is done with trie Mk

SD(T R) from
Mk

SN (T R). Some states may have only elements with
non-zero level in its d–subset (e.g. 7′′8′). Such states
are removed and their successors are not constructed as
strings from their left languages (e.g. aaaa) are not fac-
tors of T (follows by Corollary of Lemma 1).

All other states need to be checked whether their left
languages contain some seeds. For example, state with
d–subset 6′′7′8 contains string aaa in its left language.
The string occurs approximately at positions 6, 7 in T
and exactly at position 8 in T , thus it cannot be seed of
T , as its leftmost occurrence within T ends at position 6
and its length is 3 (i.e. the occurrence starts at position
4), so any proper suffix of aaa cannot cover the uncovered
prefix (positions 1 to 3) of T .

Other example is state with d–subset 4′5′67′8′′, which
contains string bbba in its left language. This string covers
T with Hamming distance 2, and therefore it is seed of
T (see Figure 1). When all positions with the maximum
distance (i.e. 8) are not considered, bbba is still seed of
T , as proper prefix b of bbba covers uncovered suffix a of
T with Hamming distance 1 (see Figure 2). See resulting
table of all seeds and their distances in Table 1.

4 Time and space complexities

Note 4. As parts of Mk
SD (T ) and Mk

SD(T R) are con-
structed the same way in Algorithm 1, the time and space
complexities of their construction are the same.

Lemma 2. Left languages of states of deterministic suffix
trie M̃k

SD(T ) = (QD, AT , δD, qD
0 , FD) are distinct, i.e.

q1, q2 ∈ QD; q1 6= q2 ⇒ factor (q1) 6= factor (q2)
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Algorithm 1 Compute set of seeds of T with the smallest Hamming distances.
Input: String T , maximum Hamming distance k.
Output: Set hseedsk(T ) of all seeds of T .
1: hseeds

k(T )← ∅
2: construct Mk

SN (T ) = (QN , AT , δN , qN
0 , FN )

3: construct Mk
SN (T R) = (QR

N , AT , δR
N , qNR

0 , FR
N )

4: create new state qD
0 as the initial one of the deterministic suffix trie Mk

SD(T ) = (QD, AT , δD, qD
0 , FD)

5: create new state qDR
0 as the initial one of the deterministic suffix trie Mk

SD(T R) = (QR
D, AT , δR

D, qDR
0 , FR

D )
6: define factor (qD

0 ) = ε, depth(qD
0 ) = 0, depth(qDR

0 ) = 0
7: create L, LR new empty queues of states
8: enqueue(L, qD

0 ), enqueue(LR, qDR
0 )

9: while LR is not empty {construct complete M̃k
SD(T R) in this loop} do

10: qtR ← dequeue(LR)
11: for all a ∈ AT do

12: compute new state quR as a successor of state qtR for symbol a using Algorithm 2
13: discard all elements of d(qtR) but the last one {all successors of d(qtR) have just been computed}
14: end for

15: end while

16: while L is not empty {construct M̃k
SD(T ) and compute seeds in this loop} do

17: qt ← dequeue(L)
18: for all a ∈ AT do

19: compute new state qu as a successor of state qt for symbol a using Algorithm 2
20: if exists r ∈ d(qu) where level(r) = 0 {only state qu that is part of M̃k

SD(T ) is further processed} then

21: define w = factor (qu) = factor (qt).a
22: if w is a seed of T using positions determined by d(qu) (Algorithm 4) then

23: compute the smallest distance lm of w (Algorithm 3)
24: if |w| > k or lm < |w| {all strings of length less or equal to lm are seeds} then

25: hseeds
k(T )← hseeds

k(T ) ∪ {(w, lm)}
26: end if

27: end if

28: end if

29: end for

30: discard all elements of d(qt) but the last one
31: end while

Algorithm 4 Determine whether string w is a seed of T with maximum Hamming distance l.
Input: Already constructed parts of deterministic suffix automata Mk

SD(T ) = (Q, AT , δ, q0, F ) and Mk
SD(T R) =

(QR, AT , δR, qR
0 , FR), d–subset t = r1, r2, . . . , r|t| for q ∈ Q and w ∈ factor (q), maximum Hamming distance l.

Output: Resolution whether w is a seed of T with respect to l and t.
1: if for all i = 2, 3, . . . , |t| : ri − ri−1 ≤ |w|

and ∃p ∈ Pref 0(w), |p| ≥ |T | − r|t| : δ∗(q0, p) = q1, q1 ∈ F ∧ level(rq1

|d(q1)|) ≤ l

and ∃s ∈ Suff 0(w), |s| ≥ r1 − |w| : δ∗R(qR
0 , s) = q2, q2 ∈ FR ∧ level(rq2

|d(q2)|) ≤ l then

2: return true

3: else

4: return false

5: end if
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Figure 5: Transition diagram of the constructed part of the suffix trie Mk
SD(T ) for string T = bbbbbaaa and maximum

Hamming distance k = 2 from Example 3; dashed states are removed as their left language do not contain exact
factor of T and thus they are not states of M̃k

SD (T )

Table 1: All seeds of string T = bbbbbaaa with maximum
Hamming distance k = 2 and their smallest distances lm;
p is used prefix of a seed, s is used suffix (both computed
by Algorithm 4); see Example 3

seed d–subset lm occurrences p s

ba 2′3′4′5′67′8′ 1 2,3,4,5,6,7,8 ε ε
baa 3′′4′′5′′6′78′ 2 3,4,5,6,7,8 ε ε
bba 3′4′5′67′8′′ 1 3,4,5,6,7 b ε
bbb 3456′7′′ 2 3,4,5,6,7 b ε
baaa 6′′7′8 2 6,7,8 ε aa
bbaa 4′′5′′6′78′ 2 4,5,6,7,8 ε aa
bbba 4′5′67′8′′ 1 4,5,6,7 b ε
bbbb 456′7′′ 2 4,5,6,7 b ε
bbaaa 6′′7′8 2 6,7,8 ε a
bbbaa 5′′6′78′ 1 6,7,8 ε a
bbbba 5′67′8′′ 1 5,6,7 b ε
bbbbb 56′7′′ 2 5,6,7 b ε
bbbaaa 6′′7′8 1 7,8 ε a
bbbbaa 6′78′ 1 6,7,8 ε ε
bbbbba 67′8′′ 1 6,7 b ε
bbbbaaa 7′8 1 7,8 ε ε
bbbbbaa 78′ 1 7,8 ε ε
bbbbbaaa 8 0 8 ε ε

0 1 2 3 4 5 6 7 8
a a a b b b b b

a a b b b b b

1′ 2′ 3′ 4′ 5′ 6′ 7′ 8′
a a b b b b b

b b b a a a a a

b b a a a a a

2′′ 3′′ 4′′ 5′′ 6′′ 7′′ 8′′
a b b b b b

b b a a a a a

Figure 4: Transition diagram of the nondeterministic ap-
proximate suffix automaton Mk

SN (T R) for reversion of
string T , i.e. T R = aaabbbbb, and maximum Hamming
distance k = 2 from Example 3

Proof by contradiction. Let us have following considera-
tion: if there existed two states q1, q2 ∈ QD, q1 6= q2 and
factor (q1) = factor (q2) = w, it would mean existence of
two distint sequences of transitions: δ∗D(qD

0 , w) = q1 and
δ∗D(qD

0 , w) = q2. As Algorithm 1 creates new state for
every a ∈ AT , the resulting automaton M̃k

SD (T ) is de-
terministic, so such distinct sequences of transitions for
the same string are not possible, thus either q1 = q2 or
factor (q1) 6= factor (q2).

Definition 1. Let us consider string T and maximum
Hamming distance k. When a factor w approximately
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occurs e-times in T with respect to k, we say that number
of repetitions of w in T with respect to k, denoted by
Rk

w(T ), is e−1. Then number of repetitions of all factors
of T with respect to k, denoted by Rk(T ), is defined as

Rk(T ) =
∑

w∈Fact(T )

Rk
w(T )

Lemma 3. Number of states of M̃k
SD(T ) is

1

2
· (|T |2 + |T |)−Rk(T ) + 1

Proof. Number of exact factors of T is 1
2 · (|T |

2 + |T |). As
left language of each state of M̃k

SD(T ) contains exactly
one string, the number of states of M̃k

SD(T ) cannot be
greater. By Lemma 2, a factor of T is contained in left
language of exactly one state independent of number of
its repetitions, therefore Rk(T ) is subtracted.

Note 5. As restricted approximate seeds of string T are
exact factors of T , it is meaningful to consider effective
alphabet AT only and |AT | ≤ |T | always holds (recall
that effective alphabet AT consists only of symbols that
occur in T ). It is also meaningless to consider high k,
because every factor of T having length less or equal to
k is always approximate seed of T . Thus k ≤ |T | always
holds. Usually k and |AT | are independent of |T |.

Lemma 4. Number of states of Mk
SD(T ) constructed us-

ing Algorithm 1 is at most

|AT | · (
1

2
· (|T |2 + |T |)−Rk(T )) + 1

Proof. By Lemma 3, number of states of M̃k
SD (T ) =

(Q̃D, AT , δ̃D, q̃D
0 , F̃D) is 1

2 · (|T |
2 + |T |)−Rk(T ) + 1. But

using Algorithm 1 there are also constructed (but not
stored) more states that have strings not being factors of
T in their left languages. For every state q ∈ Q̃D there
is constructed a successor qj for each a ∈ AT , but not
every qj is in Q̃D. Number of such successors varies from
0 to |AT | for each state of M̃k

SD(T ) (but the initial one,
which has successors in Q̃D for all a ∈ AT ), thus there
could be at most |AT | ·(

1
2 ·(|T |

2 + |T |)−Rk(T ))+1 states
constructed.

Lemma 5. For every d–subset of M̃k
SD(T ) constructed by

Algorithm 1 holds that there are no two elements having
the same depth.

Proof. It holds from properties of transition function of
Mk

SN (T ) = (QN , AT , δN , qN
0 , FN ): for successors of the

initial state qN
0 holds:

∀a ∈ AT : ∀ri, rj ∈ δN (qN
0 , a) : depth(ri) 6= depth(rj)

Therefore, d–subsets of successors of initial state of
M̃k

SD(T ) = (Q̃D, AT , δ̃D, q̃D
0 , F̃D) contain elements with

distinct depths only. For any successors rj of all states ri

of Mk
SN (T ) but the initial one holds:

∀a ∈ AT , ∀ri : ∀rj ∈ δN(rj , a) : depth(rj) = depth(ri) + 1

Let us use induction. Successors of initial state of
M̃k

SD(T ) have no elements with the same depth in its
d–subset. Let us consider any state qi ∈ Q̃D \ {q̃D

0 }
having no elements with the same depth in its d–subset.
Any successor qj of such state qi cannot have d–subset
having some elements with the same depth, as any ele-
ment rs of d(qj) is constructed from element ri ∈ d(qi)
this way: rs ∈ δN (ri, a), a ∈ AT and thus depth(rs) =
depth(ri) + 1. Therefore, the Lemma holds for all d–
subsets of M̃k

SD(T ).

Lemma 6. Number of elements of all d–subsets of
M̃k

SD(T ) is not greater than

1

2
· (|T |3 + |T |2)− |T | ·Rk(T ) + 1

Proof. By Lemma 3, number of states of M̃k
SD (T ) is at

most 1
2 ·(|T |

2+|T |)−Rk(T )+1. As for transition function
of Mk

SN (T ) = (QN , AT , δN , qN
0 , FN ) holds:

∀a ∈ AT : |δN (qN
0 , a)| = |T |

and

∀a ∈ AT , ∀r ∈ QN \ {q
N
0 } : |δN (r, a)| ≤ 1

and by Lemma 5, it is obvious that for all states q of
M̃k

SD(T ) holds |d(q)| ≤ |T | and moreover for initial state
q̃D
0 of M̃k

SD(T ) holds |d(q̃D
0 )| = 1. Therefore, number of

elements of all d–subsets cannot be greater than |T |-times
number of states but the initial one.

Lemma 7. Number of elements of all d–subsets of
Mk

SD(T ) constructed using Algorithm 1 is not greater
than

|AT | · (
1

2
· (|T |3 + |T |2)− |T | ·Rk(T )) + 1

Proof. Clearly holds by Lemma 4 and 6.

Lemma 8. Time complexity of the check whether d–
subset d(q) of M̃k

SD (T ) represents a seed w = factor (q)
of T (Algorithm 4) is at most

2 · |d(q)|+ 2 · |w| − 2

that is O(|T |).

Proof. The check whether w covers central part of T
(comparison of each two subsequent elements’ depth)
takes 2·|d(q)|−2, which is O(|T |) by Lemma 5. The check
of existence of a prefix of w to cover uncovered suffix of
T takes |w|, that is O(|T |), as it is found during reading
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w as input for constructed part of M̃k
SD(T ). The check of

existence of a suffix of w to cover uncovered prefix of T
takes also |w|, as it is found during reading w backwards
as input for constructed part of M̃k

SD(T R).

Lemma 9. Time complexity of the computation of the
smallest distance of seed w = factor (q) of T (Algorithm
3) is at most

|d(q)|+ k · (3 · |d(q)|+ 2 · |w| − 2)

that is O(k · |T |).

Proof. Retrieving lmax takes |d(q)|. Then there are at
most l ≤ k iterations in Algorithm 3. Each iteration
means removal of some elements of a d–subset and check
whether w is still seed of T (Lemma 8).

Note 6. Number of all seeds is O(|T |2) (like number of
factors). Thus, the sum of their lengths is O(|T |3), de-
noted by |hseedsk(T )|.

Theorem 1. Time complexity of computation of all seeds
with their smallest distance for string T with maximum
Hamming distance k (Algorithm 1) is

O(k · |AT | · |T |
3)

Proof. Construction of nondeterministic suffix automa-
ton Mk

SN (T ) = (QN , AT , δN , qN
0 , FN ) for T and k takes

O(k · |AT | · |T |). For each state of M̃k
SD(T ) (Lemma 3)

and for each symbol of AT , new d–subset is constructed.
As each element of any d–subset may be constructed in
constant time (just using already known δN ) and the ele-
ments are naturally ordered (no need to sort – proven in
[6]), all d–subsets are constructed in at most

|AT | · (
1

2
· (|T |3 + |T |2)− |T | ·Rk(T )) + 1

time. Each d–subset is checked whether it contains el-
ement with zero level in linear time. The left language
extraction of state takes linear time and by Lemma 8 and
3 the theorem holds.

Lemma 10. During construction of M̃k
SD (T ) (Algorithm

1), there are at most O(|T |2) elements of d–subsets stored
in memory at a time.

Proof. Number of factors of T of equal length z is at most
min(|T |−z+1, |AT |z). Number of approximate positions
of such factor is also at most |T | − z + 1. As Alg. 1 uses
breadth-first search for the construction, there are some-
times states with equal length z only. In such case, there
are O(|T |2) elements in L. Otherwise, there are stored
states with depths z and z + 1, so number of elements in
L stored at a time is O(|T |2) +O(|T |2) = O(|T |2).

Theorem 2. Space complexity of computation of all
seeds is

O(|T |2 + |hseedsk(T )|)

Proof. Space complexity of construction of Mk
SN (T ) is

O(k·|A|·|T |) (proven in [6]). By Lemma 10, number of el-
ements stored in memory at a time is O(|T |2), as no more
elements of d–subsets than those in L plus O(|T |) new are
in memory at a time. By Lemma 3, number of states of
M̃k

SD(T ) is O(|T |2) (they all are stored in memory with
one element each). As the constructed automaton is trie,
number of transitions is also O(|T |2). The space com-
plexity also depends on size of result, |hseedsk(T )|.

5 Experimental results

The algorithm was implemented in C++ using STL and
compiled using GNU C++ 3.4.6 with O3 optimizations
level. The dataset used to test the algorithm is the nu-
cleotide sequence of Saccharomyces cerevisiae chromo-
some IV1. The string T consists of the first |T | characters
of the chromosome.

The first set of tests was run on an AMD Athlon 64 3200+
(2200 MHz) system, with 2.5 GB of RAM, under Gentoo
Linux operating system (see Figures 6 and 7).

Athlon64 2.2 GHz, for k=78 (solid) and k=55 (dotted)
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Figure 6: Time consumption of the experimental run on
the Athlon64 with respect to the text size (see Section 5)

The second set of tests was run on an AMD Athlon (1400
MHz) system, with 1.2 GB of RAM, under Gentoo Linux
operating system (see Figure 8).
Note 7. In comparison to experimental results presented
in [3], the algorithm presented in this paper runs a bit
faster for the same data, even on a slightly slower com-
puter (1.3 seconds in [3] for text length 100 vs. maximum
0.7 second for text length 113 – see Figure 8).

6 Conclusion

In this paper, we have shown that an algorithm design
based on determinization of a suffix automaton is appro-

1The Saccharomyces cerevisiae chromosome IV dataset could be
downloaded from http://www.genome.jp/.
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Athlon64 2.2 GHz, for |T|=279 (solid) and |T|=159 (dotted)
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Figure 7: Time consumption of the experimental run on
the Athlon64 with respect to the maximum distance (see
Section 5)

Athlon 1.4 GHz, for |T|=113 (solid) and |T|=149 (dotted)
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Figure 8: Time consumption of the experimental run on
the Athlon with respect to the maximum distance (see
Section 5)

priate for computation of all restricted seeds with the
smallest Hamming distance. The presented algorithm is
straightforward, easy to understand and to implement
and its theoretical and experimental time requirements
are comparable to the existing approach ([4]).

For the future work, we would like to extend the algo-
rithm for searching seeds to other distances and to utilize
similar approach for searching other types of regularities.
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