
 
 

 

  
Abstract— In this paper, we present an audio-visual 

recognition system which is insusceptible to illumination 
variation over internet protocol.  First, the multiband feature 
fusion method is proposed for face recognition under varying 
illumination. The wavelet packet transform decomposes an 
image into various frequency subbands. We show how to select a 
set of subbands that are invariant to illumination variations by 
using statistical method and modified Euclidean based method. 
More specifically, there exist a set of wavelet subbands that 
carry facial features which provide an effective representation 
for face recognition under wide range of lighting conditions. 
Histogram equalization is then applied on these subbands to 
enhance the contrast of the features. The recognition 
performance of the proposed method is validated on some 
standard data sets and high recognition accuracy is achieved. 
Then the audio-visual recognition system over internet protocol 
is developed. The compression and packet loss effects of sending 
the audio and video data over internet protocol on recognition 
performance are investigated. 
 

Index Terms— Audio-Visual recognition system, wavelet 
packet transform, illumination invariant subband, internet 
protocol. 
 

I. INTRODUCTION 

Audio-Visual (AV) recognition system is an automatic 
system that recognizes a person’s identity using audio and 
visual data. However, these data are easily influenced by 
acoustic noise. With the combination of visual and audio data, 
the recognition performance of the AV recognition system is 
improved even in acoustic noisy environment [1], [2]. 
Nevertheless, the recognition performance of the AV 
recognition system is degraded by face illumination variation.  

Research efforts to solve the illumination problem can be 
grouped into three streams: subspace methods [3], [4], 
Lambertian reflectance model [5-10], and normalization 
[12-14]. The first approach includes the popular face 
recognition methods which are the principle component 
analysis (PCA) [3] and the linear discriminant analysis (LDA) 
[4]. These approaches are highly sensitive to illumination 
variation. To improve the recognition performance of PCA 
under illumination variation conditions, [15] proposed to 
remove the first three eigenvectors to reduce the illumination 
factor in the subspace. The LDA has also been modified to 
handle illumination variations [16]. The second approach is 
based on the Lambertian reflectance model with varying 
albedo field. Under the Lambertian assumption, the 
illumination cone [5], harmonic images [6], and quotient 
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image based methods [8-10] are developed to solve the 
illumination problem. The third approach preprocesses 
images to appear stable under illumination variations. This 
approach removes illumination variations while keeping the 
main facial features unimpaired. For example, histogram 
equalization based methods [12], Gamma correction, and 
logarithm based methods [14]. 

Wavelet transform has been used in face recognition 
system [17], [18], [26]. Some methods based on wavelet 
transform [19-21] are developed to solve illumination 
problem. In Ekenel and Sankur paper [19], they search for the 
subbands that are insensitive to the variation in illumination 
by using wavelet transform. They find that the mid-range 
frequency subband (HALL) is successful against variations in 
illumination. However, the high-frequency subbands that are 
less affected by illumination [22], [23] are abandoned. Du and 
Ward [20] performs illumination normalization in wavelet 
domain. Histogram equalization is applied to the 
approximation subband and simple amplification is applied to 
the detail subbands. Image reconstruction is then performed 
on these modified subbands. More recently, Zhang et al. [21] 
proposed a wavelet-based method to estimate the illuminance 
in logarithm domain and then extract the invariant facial 
features. The parameter selection making this method 
difficult to be applied because it depends on the illumination 
conditions of the training and probe images.  

In this paper, we propose the audio-visual recognition 
system which is insusceptible to illumination variation over 
internet protocol. First, the multiband feature fusion method is 
proposed to extract the illumination invariant facial features 
directly from the image. The wavelet packet transform (WPT) 
[25] is used to decompose image into various frequency 
subbands. Unlike the method proposed in [19], our proposed 
method searches for the invariant features from not only 
low-frequency subband, but also high-frequency subbands. 
We use a statistical method [26] and a modified Euclidean 
distance based method to choose the frequency subbands. The 
selected subbands form the Optimal Multiband Feature (OMF) 
and the histogram equalizer (HEQ) is applied on to the 
selected subbands to enhance the contrast of the features. 
Then the audio-visual (AV) recognition system is developed. 
Figure 1 depicts the block diagram of the AV recognition 
system. The face image is first being decomposed by WPT 
and the features in the optimal multiband (OMF) are extracted 
and then the contrast of OMF is enhanced by the HEQ. 
Mel-frequency cepstrum coefficient (MFCC) [27] is used to 
extract the audio features and the LDA is applied as a feature 
selection technique. Intra-modal feature fusion [28] combines 
both the audio and facial features and radial basis function 
(RBF) neural network [29] performs classification. The AV 
recognition system is then implemented over internet protocol 
(IP). The recognition performance of the OMF is tested on 
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Extended YaleB database [7], YaleB database [30], and AR 
database [31]. Experimental results show that the proposed 
method attains high recognition rate. The effects of 
compression and streaming of audio and video files over 
different link capacities on recognition performance of AV 
recognition system are also investigated.  

The paper is organized as follows. In section II, the 
multiband feature fusion method is explained. In section III, 
the important components for the implementation of the 
developed AV recognition system over IP are discussed. In 
section IV, experimental results for multiband feature fusion 
technique and AV recognition system over IP are presented. 
Finally, conclusion of the paper is given in section V.  

 

II.  MULTIBAND FEATURE FUSION METHOD 

Findings in a few published works [13], [22], [23], [32] 
show the evident of the existence of wavelet subbands that are 
invariant to illumination variations. For example, Naster et al. 
[22], [23] found that changes in illumination affect the 
low-frequency spectrum. This statement indicates that 
high-frequency components are invariant to illumination. We 
also know that smaller intrinsic structure that mostly 
comprised of the detail of the object such as the lines, edges, 
and small-scale objects is invariant to illumination variation 
[13]. Since the detail subbands (mid- and high-frequency 
subbands) carry the small intrinsic structure and 
high-frequency component, this led us to believe that the 
detail subband or mid and high-frequency subband is 
invariant to illumination variation.  

The main goal of the proposed multiband feature fusion 
method is to select the frequency subbands that carry the 
illumination invariant features. Although there are many 
methods designed to extract the illumination invariant 
features [13], [21], their methods either fail to extract detail 
information from multiscale space or involve complicated 
parameter selection. In order to extract the illumination 
invariant features from multiscale space, WPT is used to 
decompose the image into more compact frequency subbands. 
Since the selected subbands are expected to be invariant to 
illumination, we require these subbands to satisfy the 
following conditions: 
 
Condition 1. The similarity between classes should be at 
minimum. 
Since we know that if the class separation is large, it is easier 
to discriminate the classes. To test the class separation, one 
image per class (subject) is used. The face images are chosen 
randomly from the face database. The similarity matrix 

),( jiρ  with the data size m譵  where m  refers to number of 
classes in the database. It records the similarity between 
image i and image j. We propose to use Euclidean distance to 
form the similarity matrix ),( jiρ . For mi ,...2,1=   

ji xxjiEd -),( =   mj ,...2,1=                  (1) 

After that the ),( jiEd  is normalized to 0 to 1, the similarity 

matrix is  
),(-1),( jiEdji =ρ                               (2) 

For a good representation, ),( jiρ should be closed to one if 

ji = and ),( jiρ  should be close to zero if ji ≠ . The 

Average Unmatched Similarity Value (AUMSV) [26] is 
defined as below,  

=AUMSV ∑
1
∑

1
),(

)-2(

1 N

i

N

j
ji

NN = =
ρ                   (3) 

to give a single numerical value to the similarity performance 
of the subband. This term shows how well the subband 
representation distinguishes the images from different people, 
and it ranges from 0 to 1, which means the higher the 
discriminatory power, the smaller the AUMSV value.  
 
Condition 2. The ratio for the between-class distance and 
within-class distance should be maximized. 

Fisher’s Linear Discriminant (FLD) [16] is a class specific 
method where it shapes the data scatter in such a way that the 
ratio of the between-class scatter and the within-class scatter 
is maximized. By maximizing this ratio, FLD is more reliable 
for classification. We use the same concept; a method based 
on Euclidean distance is proposed to show the subband 
representation in term of data scatter. For each class 

mkk ,...2,1, = , the center is generated as the mean value of the 
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where kn  is the total number of samples in class  k and k
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the i th sample belonging to class k . The average 
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The distance ),( jkdc  between the mean of class k and the 

mean of other class j , 
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Fig. 1. Block diagram of the proposed AV recognition system 
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The ratio for the between-class distance and within-class 
distance is described as  

k

c

d

d
BWR=                                        (8) 

The BWR term gives an idea of the scatter of the subband 
representation, which means the higher theBWR , the better 
the classification performance.   

Below are the steps proposed to select the optimal 
subbands:  
Step 1: Compute the AUMSV and BWR in each subbands 
from level 1 and 2. 
Step 2: Three subbands that obtain the lowest AUMSV and 
the highest BWR will be selected for further decomposition to 
level 3. This step reduces the computational complexity by 
avoiding decomposition of all subbands from level 2 to level 
3. 
Step 3: Further decompose the selected three subbands to 
level 3. 
Step 4: Two best performing subbands in terms of AUMSV 
and BWR in level-3 decomposition will be concatenated and 
the optimal feature set is named as Optimal Multiband Feature 
(OMF).  

After the OMF is found the histogram equalizer (HEQ) is 
applied on to the subband in OMF. The HEQ is one of the 
most useful contrast enhancement schemes which it maps the 
image pixel to uniformly distributed pixel values. The HEQ is 
normally used to enhance contrast of the global images 
because it does not consider the detail image [20]. Since the 
OMF is expected to contain the detail images or 
high-frequency components, we apply HEQ on the subbands 
to enhance the contrast of the detail images.  

III.  AV  RECOGNITION SYSTEM OVER IP 

After selecting the OMF, the multiband feature fusion 
method is implemented in the face recognition system of the 
AV recognition system and this system is implemented over 
internet protocol. Figure 2 depicts architecture of video and 
audio streaming over network for the AV recognition system. 
There are three areas that are important to the video and audio 
streaming architecture. The three areas will be briefly 
described as follows. 

1) Video and audio encoder/decoder: Raw video and audio 
must be compressed using video and audio encoding schemes 
before transmission to achieve efficiency. The ITU-T H.323 
standard for audio-visual communication systems that has 
been widely used across the internet is adopted in our 
application [33], [34]. For video codec, H.263 that is able to 
achieve lower bit-rate than H.261 is selected. The H. 263 
allows five standardized picture formats. These are CIF 
(common intermediate format), QCIF (quarter CIF), SQCIF 
(sub-CIF), 4CIF and 16CIF. The H.263 standard uses the 
discrete cosine transform (DCT) to remove spatial 
redundancy and motion estimation and compensation to 
remove temporal redundancy. For audio codec, G.723 with 
bit-rate of 8kbit/s and 16kbit/s that usually used for 
multimedia communication is selected.  

2) Protocols: Protocols are designed and standardized for 
communication between clients and servers [35]. The 
protocols can be categorized as network protocol and 
transport protocol. The network-layer protocol such as IP 
provides basic network service support such as network 
addressing. The transport protocol such as user datagram 
protocol (UDP), transmission control protocol (TCP) and 
real-time transport protocol (RTP) provide end-to-end 
network transport functions for streaming applications. 
Unlike UDP, TCP uses retransmission to recover lost packets 
and it introduces delays that are not acceptable for streaming 
application with stringent delay requirement [35], and 
therefore UDP is used as the transport protocol. The RTP is 
employed as the upper-layer transport protocols.  

3) Packetizer: An RTP packet can use one of the three 
modes for H.263 video streams depending on the desired 
network packet size and H.263 encoding options employed 
[36]. For each RTP packet, the RTP fixed header is followed 
by the H.263 payload header, which is followed by the 
standard H.263 compressed stream [36]. The shortest H.263 
payload header (mode A, four bytes) supports fragmentation 
Group of Block (GOP) boundaries. The long H.263 payload 
headers (mode B, eight bytes and C, twelve bytes) support 
fragmentation at Macroblock (MB) boundaries. Due to the 
simplicity of mode A, it is used as the H.263 payload header 
in our applications.  

At the client side, the raw video and audio signals will be 
first compressed by H.263 and G.723 encoder respectively. 
The bit-stream will be packetized and sent over the internet by 
RTP. Packets may be dropped or experience delay inside the 
network depending on the network congestion. For packets 
that are delivered to the server successfully, they are passed 
through the transport protocols and being depacketized to 
bit-streams before being decoded at the video and audio 
decoder. At the server side, the received packets will be 
depacketized and passed to the audio and video decoder. The 
decoded image frames will be decomposed by the WPT and 
the OMF is extracted. HEQ is then applied onto the subbands 
in OMF to enhance the image contrast. The audio signal will 
be the MFCC for audio feature extraction and LDA for feature 
selection. Both the audio and facial features will be fused by 
the intra-modal feature fusion method [28] and The RBF 
neural network performs classification. The RBF neural 
network intra-modal fusion algorithm is shown as below. Let 
V be the feature set from visual signal and A be the feature set 
from audio signal, 

]|...||[ 21 NvvvV =                                                        (9)     

]|...||[ 21 NaaaA =                                                         (10)   

The resulting fused matrix will be x  which combining V  
with the data matrix of size NP× and A with the data matrix 
size of NQ× , where P  and Q is the feature dimension of 

visual and audio respectively, putting V  and A  side-by-side 
we get   

TAVx ]|[=                                                                 (11)   

where x  is a input data with the size NS×  where QPS += . 

x  will be fed into RBF neural network for training and 
testing.  
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IV.  EXPERIMENTS AND RESULTS 

There are two experiments in this section. The first 
experiment shows the recognition performance of the 
proposed method and the second experiment shows the 
recognition performance of the AV recognition system over 
IP.  

A. Multiband Feature Fusion 

This experiment first shows how the proposed multiband 
feature fusion method selects the frequency subbands that are 
invariant to illumination variation. The Extended Yale face 
database B (EYaleB) that contains 38 subjects and AR 
database that contains 100 subjects are used in the selection. 
In EYaleB and AR database, there are total 152 and 400 
cropped faces respectively. Both the databases contain 
illumination variations in the images that occur due to 
intensity and direction of the light. All images are scaled to 
128 × 128 pixels resolution. For each subject in the set, two 
of their images that contain frontal illumination with normal 
light are used as the gallery set, and the remaining two images 
that contain illumination from sides are used for testing. 
Sample face images are shown in Figure 3. In this experiment, 
the nearest neighbor classifier based on Euclidean distance is 
employed for classification. 
 
a 

    
b 

    
Fig. 3. Some cropped faces used in this experiment: (a) EYaleB database; 
(b)AR database 

 
Experiments on the WPT level-1 and -2 are first carried out 

in both databases. The Haar wavelet is used in the proposed 
method. The AUMSV, the between-class distance and 
within-class distance ratio BWR and recognition error rate of 
all the subbands decomposed from level-1 and level-2 are 
generated. For notation, the A, H, V and D indicate the 
approximation, horizontal, vertical and diagonal subband in 
each of the LL, LH, HL and HH subbands. For example, ALL 
refers to the level-2 approximation subband decomposed 

from level-1 LL subband. Table I shows that the ALL, HLL 
and ALH achieve the lowest AUMSV and the highest BWR in 
both databases. These subbands potentially perform well in 
face classification under illumination variation conditions. 
Hence, these three subbands are further decomposed to 
level-3. Table II shows that the AALH achieves the lowest 
AUMSV, the highest BWR and the lowest error rate among 
the others in both the databases. AALH outperforms HALL 
which was found to be invariant to illumination variation in 
[19] in term of recognition accuracy. Next, we concatenate 
the HALL and AALH to form OMF. The OMF achieves 
recognition error rates of 18.4% and 14% in EYaleB and AR 
database respectively. The OMF achieves improvements of 
5.3% and 1% as compared to AALH in term of recognition 
error rate in EYaleB and AR database respectively. Figure 4 
shows the location of AALH and HALL in frequency 
subband.  

After obtaining the OMF, the recognition performance of 
OMF with histogram equalizer (HEQ) is evaluated. Since the 
OMF contains the detail image, we apply HEQ on the AALH 
and HALL individually to enhance the contrast of the detail 
images and then we concatenate these AALH and HALL to 
form the OMF again. Figure 5 displays faces of one subject 
from the EYaleB database illuminated by a light source and 
faces after HEQ is applied on the faces. Figure 4a shows the 
effect of HEQ on the approximation subband AALL at level-3, 
the HEQ enhances the global image but not the detail image. 
Figure 5b and c show that the contrast of the detail images in 
AALH and HALL are enhanced and we can see definite detail 
in both the subbands.  

The recognition performance of OMF+HEQ is evaluated 
on the Yale database B (YaleB). This database contains face 
images with large illumination variation. There are ten 
subjects under 64 different lighting conditions. The database 
is divided into four subsets according to the angle between the 
lighting source direction and the camera axis. Table III shows 
the subset with the corresponding angles and number of 
images. Comparison results with other methods dealing with 
illumination variations on YaleB database are shown in Table 
IV. Since our proposed method does not involve any training 
process, training images are not needed. We used subset 1 as 
the gallery set. Some listed results of other methods are 
directly taken from other papers since they are based on the 
same database. We can see from Table IV that the 
OMF+HEQ outperforms most of the existing methods in term 
of recognition accuracy except cone-cast method and 
multiscale representation + PCA. However, it should be 
pointed out that the cone-cast method needs much more 
complicated modeling steps. There is no complicated 

 

Fig. 2. Block diagram of the developed AV recognition system over IP 
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parameter selection in the proposed method as compared to 
the multiscale representation + PCA method. 

 
Table I AUMSV, ratio R and recognition error rate values in EYaleB and AR 
databases for level-1 and -2 decomposition 

  EYaleB AR 

Subband AUMSV BWR 
 Rate  
(%) AUMSV BWR 

 Rate  
(%) 

LL 0.360 0.740 56.6 0.479 1.197 52.5 

ALL 0.358 1.000 67.1 0.338 1.201 57 

HLL 0.295 1.097 31.6 0.451 1.299 32.5 

VLL 0.438 0.866 57.9 0.490 0.707 61 

DLL 0.442 0.887 69.7 0.468 0.796 69.5 

LH 0.454 0.841 77.6 0.469 1.075 54 

ALH 0.248 1.259 26.3 0.469 1.333 24 

HLH 0.486 0.806 73.7 0.505 0.839 66.5 

VLH 0.414 0.738 84.2 0.476 0.836 70 

DLH 0.503 0.664 85.5 0.556 0.677 91.5 

HL 0.42 0.797 65.8 0.543 0.694 73.5 

AHL 0.432 0.848 47.4 0.476 0.803 24 

HHL 0.359 0.890 59.2 0.479 0.869 66.5 

VHL 0.499 0.868 80.3 0.479 0.776 70 

DHL 0.522 0.555 84.2 0.524 0.730 91.5 

HH 0.554 0.768 80.3 0.518 0.652 91 

 
Table II AUMSV, ratio R and recognition error rate values in EYaleB and 
AR databases for level-3 decomposition 

  EYaleB AR 

Subband  AUMSV BWR 
Rate  
(%) AUMSV BWR 

Rate  
(%) 

AALL 0.348 0.646 39.5 0.397 1.183 64.5 

HALL 0.271 1.282 55.3 0.396 1.493 15.5 

VALL 0.389 0.981 68.4 0.451 0.743 64 

DALL 0.363 0.933 75.0 0.398 1.200 31 

AHLL 0.281 1.219 61.8 0.414 1.399 21 

HHLL 0.382 1.11 60.5 0.487 1.357 43.5 

VHLL 0.361 0.883 69.7 0.399 0.997 51.5 

DHLL 0.329 0.904 68.4 0.398 0.907 49 

AALH 0.241 1.29 23.7 0.368 1.494 15 

HALH 0.312 1.13 47.4 0.453 1.346 36 

VALH 0.278 0.944 68.4 0.400 1.111 49.5 

DALH 0.508 0.848 71.1 0.411 0.893 57 

 

 HALL    AALH     
        
        
        
        
        
        
        

Fig. 4. Location of the HALL and AALH in frequency subband 
 
 

   

 
(a) 

 
(b) 

 
(c) 

Fig.5. The top row displays the faces before the HEQ and the second row 
display the effect of HEQ on the faces in the top row. a) the approximation 
subband face image AALL, b) the AALH, and c) the HALL. 

 
Table III Subsets divided according to light source directions 

Subset 1 2 3 4 
Lighting angle (°) 0~12 13~25 26~50 51~77 
Number of images 70 120 120 140 

 
Table IV Recognition error rates (%) of different methods 

Method Subset 2 Subset 3 Subset 4 

PCA w/o3 [16] 4.4 27.7 - 

Fisherface [16] 0 4.6 - 

Linear subspace [30] 0 15 - 

Cone-attached [30] 0 0 8.6 

Cones-cast [30] 0 0 0 

Harmonic images [6] 0 0.3 3.1 

Quotient image [8] 1.7 38.1 65.9 
Quotient illumination 
 relighting [12] 0 0 9.4 

Self Quotient Image [10] 2.0 1.0 3.0 

Illumination ratio images [9] 0 3.3 18.6 

DCT in Log domain [14] 0 0.18 1.71 

Wavelet Reconstruction [20] 0 0 5.24 
Multiscale representation 
+PCA [21] 0 0 0 

OMF 0 0 10.8 

OMF + HEQ 0 0 5 

 
The recognition performance of the proposed OMF+HEQ is 
compared with the recognition performance of PCA [3], PCA 
w/o 3 [15] and Independent Component Analysis (ICA) [38] 
under larger variations. The EYaleB, AR and CUAVE 
databases [24] are included in this experiment. The number of 
distinct subjects, the number of gallery images and the 
number of testing images in the respective databases are 
tabulated in Table V. The setting of the EYaleB database is 
the same with the previous experiment. However, unlike the 
setting in the previous experiment, in the AR database, other 
than ligting from left and right, it also contains facial 
expression variations. For CUAVE AV database, it contains 
moving subjects with different facial expressions and constant 
lighting. Images with neutral facial expression and constant 
lighting conditions are chosen to be the gallery images from 
these databases. Table VI shows that the OMF+HEQ 
outperforms PCA, PCA w/o 3 and ICA in term of recognition 
accuracy in the three databases. 
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Table V The databases used in the experiments 

 EYaleB AR CUAVE 
Number of subjects 38 100 36 

Number of gallery images 76 300 108 
Number of testing images 76 400 108 

 
Table VI Recognition error rates (%) of different methods in three databases 

Database OMF+HEQ PCA PCA w/o 3  ICA 

EYaleB 18 70 53 61 

CUAVE 14 20 23 20 

AR 6 36 19 11 

B. Audio-Visual Recognition System over IP 

The proposed method is then implemented in the AV 
recognition system over IP. The recognition performance of 
the system is evaluated. The CUAVE AV database [24] is 
used in the following experiments. The database consists of 
36 subjects. It is recorded in an isolated sound booth at a 
resolution of 720x480 with NTSC standard of 29.97fps. The 
data is then compressed into individual MPEG2 files for each 
speaker. The MPEG2 files are encoded at a data-rate of 
5000kbps with multiplexed 16-bit, stereo audio at 44 kHz 
sampling rate. JMstudio is used to transmit and receive the 
data [37]. We organize our presentation as follows. Part 1 
shows the recognition performance of speech compression to 
speaker recognition system over IP. Part 2 shows the 
recognition performance of video compression to face 
recognition system over IP. For part 1 and 2, the link capacity 
between the client and server sides is 10Mbits/s. At last part 3 
shows the recognition performance of audio and video under 
varying network link capacities. Bandwidth Limiter 
Enterprise [11] is used to control the link capacities.  
 

1) Audio over IP 
In this experiment, we evaluate the influence of speech 

compression and speech quality over IP on speaker 
recognition performance. At the client side, the “wav” format 
audio files are compressed by the audio codec G.723 to bit 
rate of 8kbit/s and 16kbit/s. These data are then streamed to 
the server side for recognition performance evaluations. As 
shown in Figure 2, MFCC and LDA are used as the feature 
extraction and selection methods for the audio and RBF 
neural network is used as the classifier. Three training 
samples per subject are used for the RBF training. The width 
of the neuron is 10 and the number of neuron is 25. Table VII 
shows that the speaker recognition performance is less 
affected when the speech with 16kbit/s when it is streamed 
over IP. This is because peer-to-peer network link capacity 
offers enough transfer speed for the data.  

 
Table VII Speaker recognition results for standalone system (without going 
through IP) and transcoded data over IP 

Audio bit-rate Error rate (%) 

Standalone (16Kbits/s) 14 

Over IP G.723 (16Kbits/s) 15 

Over IP G.723 (8Kbits/s) 36 
 

2) Video over IP 
In this experiment, we evaluate the influence of the video 

dimension to image quality over IP on face recognition 
performance. At the client side, the video are first being 

encoded to three different video dimensions (Mode A): 
SQCIF (128x96), QCIF (176x144) and CIF (352x288) and 
then the files are streamed to the server side for recognition 
performance evaluations. All images are scaled to 128 × 128 
pixels resolution for feature extraction. The OMF is extracted 
and the HEQ is applied, then the RBF neural network is used 
as the classifier. Three training samples per subject are used 
for the RBF training. The width of the neuron is 30 and the 
number of neuron is 100. The result shows that the 
recognition error rate increases when the video dimension 
decreases. 
 
Table VIII Face recognition results for standalone system (without going 
through IP) and transcoded data over IP 

Video Dimension Error rate (%) 

Standalone (720x480) 5.6 

Over IP CIF (352x288) 19.4 

Over IP QCIF (176x144) 25 

Over IP SQCIF (128x96) 38.9 

 
3) Audio-Visual over IP 

In this experiment, we evaluate the recognition 
performance of AV recognition system under varying 
bandwidth. The link capacity at the client side is fixed at 
10Mbits/s and the link capacity at the server sides varies from 
160Kbits/s, 400Kbits/s, and 8Mbits/s. G.723 with 16Kbits/s 
is selected as the codec in this part of the experiment due to its 
low error rate as shown in Table VII. Three training samples 
per subject are used for the RBF training. The width of the 
neuron is 30 and the number of neuron is 100. Table IX shows 
the recognition performance of the system under low link 
capacity (160Kbits/s). Due to the limited link capacity, the 
result shows that when the high dimensional video CIF is 
transmitted, the packet loss ratio is the highest and causes the 
highest recognition error rate. Figure 6 illustrates the packet 
loss and delay jitter effect caused by the network congestion 
for CIF video. When QCIF and SQCIF are at the same limited 
link capacity, the packet loss ratio is 11.8% and 0% 
respectively and causing the same error rate at 25%. Table X 
shows that only CIF encounter packet loss and as the link 
capacity increases to 400Kbits/s, the packet loss ratio 
deceases and as a result, the error rate reduces. Smaller video 
formats QCIF and SQCIF achieve a constant error rate at 
13.9% and 25% across link capacity of 400Kbits/s to 
8Mbits/s as shown in Table X and XI. At larger link capacity 
8Mbits/s, there is no packet loss for CIF and it achieves the 
lowest error rate. From all the results shown, we see that due 
to the large video size of CIF, the recognition performance of 
the system is highly influenced by the link capacity, whereas 
due to the small video size of SQCIF, the recognition 
performance of the system is not influenced by the link 
capacity, however, the error rate is high. We can also see that 
the recognition performance of QCIF is the most promising 
one. This is because the recognition performance of QCIF is 
less affected by the link capacity variations. 

   
Fig. 6. Examples of CIF images contains packet loss and delay jitters taken 
under link capacity of 160Kbits/s and 400Kbits/s 
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Table IX Packet loss ratio and recognition error rate of the AV recognition 
system over 160Kbits/s link capacity 

Video  
Dimension 

Audio  
bit-rate 

Packet Loss Ratio  
(%) 

Error rate 
 (%) 

Standalone  
(720x480) 

Standalone  
(16kbit/s) 0 2.8 

Over IP CIF  
(352x288) 

Over IP G.723  
(16kbit/s) 65.4 47.2 

Over IP QCIF  
(176x144) 

Over IP G.723  
(16kbit/s) 11.8 25 

Over IP SQCIF  
(128x96) 

Over IP G.723  
(16kbit/s) 0 25 

 
Table X Packet loss ratio and recognition error rate of the AV recognition 
system over 400Kbits/s link capacity 

Video  
Dimension 

Audio  
bit-rate 

Packet Loss Ratio  
(%) 

Error rate  
(%) 

Standalone  
(720x480) 

Standalone  
(16kbit/s) 0 2.8 

Over IP CIF  
(352x288) 

Over IPG.723 
 (16kbit/s) 22.6 33.3 

Over IP QCIF  
(176x144) 

Over IP G.723  
(16kbit/s) 0 13.9 

Over IP SQCIF  
(128x96) 

Over IP G.723  
(16kbit/s) 0 25 

 
Table XI Packet loss ratio and recognition error rate of the AV recognition 
system over 8Mbits/s link capacity 

Video  
Dimension 

Audio  
bit-rate 

Packet Loss Ratio  
(%) 

Error rate  
(%) 

Standalone  
(720x480) 

Standalone  
(16kbit/s) 0 2.8 

Over IP CIF  
(352x288) 

Over IP G.723  
(16kbit/s) 0 8.3 

Over IP QCIF  
(176x144) 

Over IP G.723  
(16kbit/s) 0 13.9 

Over IP SQCIF  
(128x96) 

Over IP G.723  
(16kbit/s) 0 25 

 

V. CONCLUSION 

In this paper, the audio-visual recognition system which is 
insusceptible to illumination variation over internet protocol 
is presented. The multiband feature fusion method is 
proposed to select the illumination invariant subbands. The 
selected AALH and HALL form the OMF. The OMF is 
proved to be invariant to illumination variation by the 
statistical method, the modified Euclidean based method and 
the recognition accuracy. Recognition performance of the 
proposed method achieves higher recognition accuracy as 
compared to most of the existing methods.  Then the 
audio-visual recognition system over internet protocol is 
developed where the proposed method is implemented in the 
face recognition system. The compression and packet loss 
effects of audio and video data sent over varying link 
capacities on recognition performance are investigated. The 
result has shown that low bit-rate speech compression and 
lower-dimensional video degrade the recognition 
performance in speaker and face recognition system over IP. 
Besides, the results show that large data size video (CIF) 
encounters serious packet loss effect when the video is sent 
over the limited link capacity network. As a result, the 
recognition performance of the system is degraded. The QCIF 
is shown to be most suitable to be used in the AV recognition 
system over IP because it achieves promising recognition 
performance in both limited and unlimited link capacities. 
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