
 
 

 

  
Abstract— This paper presents a new deformable model based 
on level sets for medical image segmentation which plays a 
pivotal role in medical diagnosis.  The current popular Image 
segmentation deformable models such as Snakes, Geometric 
Active Contours, Gradient Vector Flow, Level sets and 
Variational Level sets have a limitation that the convergence of 
the contour towards the object boundary is slow and hence not 
suitable for real time medical diagnosis.  To counter this 
limitation we present an improved image segmentation 
algorithm which is computationally efficient and also the 
proximity of the contour towards the object is higher compared 
to existing algorithms.  A new speed term is introduced in the 
evolution step of variational level set in order to speed up the 
convergence process.  The variational level sets in images with 
intensity inhomogeneity, tend to be slower and prone to leakage 
of contour outside the object boundary. This is due to the 
selection of gradient information for the termination of 
convergence process. However, this limitation is overcome in the 
proposed algorithm by modifying the edge indicator function 
embedded with the speed term that optimizes the effective 
distance of the attractive force.  Experimental results are 
provided using real time medical images. Comparative tables 
and graphs highlighting the performance of various deformable 
models are also presented. 
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I. INTRODUCTION 

  Medical image segmentation is the process of labeling each 
voxel in a medical image data set to indicate its tissue type and 
provide information about the anatomical structure. The 
various confrontations in medical image segmentation are 
poorly defined boundaries, blur or weak edges, intensity 
inhomogeneity, inconsistency in image quality while doing a  
scan and variable object shapes in medical images [1]. Snakes 
[5], Geometric Active Contours (GAC) [6], [7], Gradient 
Vector Flow (GVF) [8], Level sets [9]-[11], and Variational 
Level sets [12], [13], are the deformable models available in 
this literature. This work aims to review the various 
deformable models and the limitations of these models. 
Further, this work aims to modify the variational 
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level sets to speed up the convergence for effective and fast 
segmentation.  
This paper is organized as follows. Section II presents the 
review of various deformable models with necessary 
mathematics and limitations. Section III proposes and 
discusses the deformable model based on Variational level set. 
Experimental results comparing the performance of the 
proposed method with existing techniques in terms of number 
of iterations for convergence to segment the image, 
computation time and also the accuracy in capturing the 
region to be segmented are presented in section IV and the 
concluding remarks could be looked up in section V. 

II.  REVIEW OF DEFORMABLE MODELS 

A. Snakes 

The classical energy based snake model has been initially 
proposed in [5], and was successful in dealing with a wide 
variety of computer vision applications. This framework 
matches a deformable model to an image by means of energy 
minimization and thereby exhibiting dynamic behavior. 
 Let us define a contour c  parameterized by arc length s  as 
 
          {{ }( ) ( ) ( ( ), ( )) : 0 :c s c s x s y s s L= = ≤ ≤ ℜ → Ω                 (1)  

 
where, L denotes the length of the contour c  and Ω denotes 

the entire domain of an image( ),I x y . An energy function 

( )E c  can be defined on the contour such as  

 
                    int( ) extE c E E= +                                             (2)  

                       

where, intE and extE  denote the internal and external 

energies respectively. The internal energy function 
determines the regularity, i.e., smooth shape, of the contour. A 
common choice for the internal energy is a quadratic function 
given by  

                
21 2

int
0

'( ) ''( )E c s c s dsα β= +∫                             (3) 

 
 Here α controls the tension of the contour, and β  controls 

the rigidity of the contour. The external energy term that 
determines the criteria of contour evolution depending on the 
image ( ),I x y can be defined as 

                ( )
1

0
( )ext imgE E c s ds= ∫                                        (4) 
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imgE ( , )x y , denotes a scalar function defined on the image 

plane, so that local minimum of imgE  attracts the snakes to 

edges. A common example of the edge attraction function is a 
function of the image gradient given by 
 

       ( ) ( )
1

,
,

imgE x y
G I x yσλ

=
∇ ∗

                                       (5) 

                                                                   
where, G denotes a Gaussian smoothing filter with standard 
deviation σ , λ  is the suitable constant chosen and ‘∗ ’ is the 
convolution operator. Solving the problem of snakes is to find 
the contour c  that minimizes the total energy term E  using 
Greedy algorithm [14] with the given set of weights α  andβ .  

The limitations of snakes are as follows: 
(i) The classic snakes provide an accurate location of the 
edges only if the initial contour is given sufficiently near the 
edges, since they rely on the local information along with the 
contour.  
(ii) Estimating a proper position of initial contour without 
prior knowledge is a hindrance. 
Classic snakes cannot detect more than one boundary 
simultaneously since the snakes maintain the same topology 
during the evolution stage, which implies that the snake 
cannot split to multiple boundaries or merge from multiple 
initial contours. 
 

B. Geometric Active Contours (GAC)  

   The Geometric active contour model [15], can be viewed as 
an ‘extension’ of classical Snakes since it overcomes the 
limitations of Snakes. This model does not impose any 
rigidity constraints ( )0β =  and is given by  

 

              
1

0

( ) ( ( ( )) ) sE c f c s c ds= ∇Ι∫                                   (6) 

                       ( )( )( )
( )

0

L c

f I c s ds= ∇∫                                   (7) 

 
where, the functionf is the edge detecting function defined in 

equation (5), dsis the Euclidean element of length and ( )L c  

is the Euclidean length of the curve c defined by 
 

              ( )
( )1

0 0

L c

sL c c ds ds= =∫ ∫                                         (8) 

 
Let us introduce an artificial time‘t ’ and considering family 
of curves ( )c s  such that the energy function   

 

            ( )( )( ) ( )
1

0

( ) , ,sE c f I c s t c s t ds= ∇∫                       (9) 

 
The first variation of the energy ( )E c  is then given as, 

          ( )
1

0

( )
, s

dE c s
f N N KfN c ds

dt t

∂ = ∇ − ∂ ∫                    (10) 

Hence, the direction for which ( )E c decreases most rapidly 

provides us the following minimization flow 
 

             ( ),
s

Kf f N N
t

∂ = − ∇
∂

                                           (11) 

 
where, N  is the unit normal to the curvec and K is its 
curvature. The 1st term on the right in (11) is the mean 
curvature motion also called curve shortening flow, weighted 
by the edge detection functionf . The 2nd term attracts the 

curve towards the boundaries of objects by creating a valley 
centered on the edges. The limitation of GAC is that, this 
model relies on a non parameterized curve, and evolves an 
initial curve according to the boundary attraction term 
towards one direction (inwards/outwards). Thus, in order to 
be properly used it demands a specific initialization step, 
where the initial curve should be completely exterior or 
interior to the real object boundaries. 
To overcome these short comings, efforts have been made by 
introducing some region based features which make the 
model independent from its initial conditions and more robust 
[16]-[18]. Although these approaches seem to have a 
reasonable behavior, they still suffer from the one direction 
flow imposed by the boundary term.   
 

C. Geometric Vector Flow (GVF) 

  GVF was defined in [19] as an external force to push the 
snake into objects concavity and discussed the shortcomings 
of the original snake and GAC. It is a 2-D vector field 

( ) ( ) ( ),V s u s v s =    that minimizes the following objective 

function  
                  

( ) 2 22 2 2 2
x y x yE u u v v f V f dxdyµ= + + + + ∇ − ∇∫∫          (12)     

                                                                                                                 
where, xu , yu , xv , yv are the spatial derivatives of the field, 

µ is the blending parameter, and f∇ is the gradient of the 

edge map which is defined as the negative external force i.e. 

extf E= − .The objective function is composed of two terms. 

They are the regularization term and the data driven term. The 
data driven term dominates this function in the object 
boundaries (i.e. f∇  is large), while the regularization term 

dictates the function in areas where the information is 
constant (i.e. f∇  tends to zero). The GVF is found by 

solving the following Euler equations by using calculus of 
variations and the normalized GVF is used as the static 
external force of the snake 
 

                  ( )( )2 2 2 0x x yu u f f fµ∇ − − + =                      (13a) 

                  ( )( )2 2 2 0y x yv v f f fµ∇ − − + =                      (13b) 

where, 2∇ is the Laplacian operator.   Limitations of Gradient 
Vector Flow are as follows: 
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(i) According to the definition of the objective function, the 
boundary information is not used directly (only its gradient 
affects the flow), which might be considered as a drawback. In 
other words strong edges as well as weak edges create a 
similar flow due to the diffusion of the flow information. 
(ii) The generation of GVF is iterative and computationally 
intensive. 

 

D. Level sets  

   Level set is a vital category of deformable models. Level set 
theory, a formulation to implement active contours was 
proposed by Osher and Sethian [20]. They represent a contour 
implicitly via two dimensional Lipchitz continuous 
function ( ), :x yφ Ω → ℜ , defined in the image plane. The 

function ( ),x yφ is called level set function, and a particular 

level, usually the zero level of ( ),x yφ  is defined as the 

contour, such as                       

 ( ) ( ){ } ( ), : , 0 , ,C x y x y x yφ= = ∀ ∈ Ω                           (14)   

 

             
                       (a)                                       (b) 
Fig.1. Level set evolution and the corresponding contour 
propagation: (a) topological view of level set ( ),x yφ  

evolution (b) the changes on the zero level set. 
 
Fig.1 (a) shows the evolution of level set function ( ),x yφ and 

Fig. 1(b) shows the propagation of the corresponding 
contourc . As the level set function ( ),x yφ increases from its 

initial stage, the corresponding set of contoursc , propagate 
towards outside. With this definition, the evolution of the 
contour is equivalent to the evolution of the level set function, 

i.e., 
( ),x yc

t t

φ∂∂ =
∂ ∂

 , the advantage of using the zero level set 

is that a contour can be defined as the border between  
positive and  negative areas, so the contours can be identified 
by just checking the sign of( ),x yφ . The initial level set 

function ( )0 ,x yφ : Ω → ℜ  may be provided by the signed 

distance from the initial contour such as 
 

       ( )0 ,x yφ ( ){ }, : 0x y tφ= =  

                     =  ( ) ( )( )0, , xyD x y N c±   

where, ( ),D a b±  denotes a signed distance between a  and 

b , and ( )0xyN c  denotes the nearest neighboring pixel on 

initial contours ( )0c c t o= =  from ( ),x y as a pixel ( ),x y is 

located further inwards from the initial contours0c . The 

initial level set function is zero at the initial contour points 
given by, ( ) ( )0 , 0, , 0x y x yφ = ∀ ∈ . The deformation of the 

contour is generally represented in a numerical form as a 
partial differential equation. A formulation of contour 
evolution using the magnitude of the gradient of  ( ),x yφ  was 

initially proposed by Osher and Sethian [9] and is given by  
 

               
( ) ( ) ( )( )( ),

, ,
x y

x y k x y
t

φ
φ ν ε φ

∂
= ∇ +

∂                (15) 

where, ν denotes a constant speed term to push or pull the 
contour, k denotes the mean curvature of the level set 

function ( ),x yφ , and ε  controls the balance between the 

regularity and robustness of the contour evolution. 
Limitations of level sets are 
 (i) while implementing the traditional level set method, it is 
numerically necessary to keep the evolving level set function 
close to a signed distance function [21],[22].  
(ii) Re-initialization, a technique for periodically 
re-initializing the level set function to a signed distance during 
the evolution, has been extensively used as a numerical 
remedy for maintaining stable curve evolution and ensuring 
reliable results. However, as pointed out by Gomes and 
Faugeras [23], re-initializing the level set function is 
obviously a disagreement between the theory of the level set 
method and its implementation. 

 

E. Variational Level sets 

   In image segmentation, active contours are dynamic curves 
that move towards the object boundaries. To achieve this goal 
the external energy that can move the zero level curves 
towards object boundaries is defined. Let I  be an image, and 
g  be the edge indicator function defined by                                                        

                        
2

1

1
g

Gσ

=
+ ∇ ∗Ι

                                  (16)                                                                   

where, Gσ is the Gaussian kernel with standard deviation σ . 

An external energy for a function ( , )x yφ  can be defined as  

 
                     . . ( ) ( ) ( )g g gL Aλ νξ φ λ φ ν φ= +                          (17) 

 
where, λ  and ν are constants, and the terms ( )gL φ and 

( )gA φ  are defined as  

 

                              ( ) ( )gL g dxdyφ δ φ φ
Ω

= ∇∫                     (18)                                                         

                             ( ) ( )gA gH dxdyφ φ
Ω

= −∫                          (19)   

                                                
where, δ  is the univariate Dirac function, and H is the 
Heaviside function which is  defined as 
 

                  
0 ,

1
( ) sin 1 ,

2 2

1 ,

H

φ ρ

πφφ ρ φ ε
ρ

φ ρ

 ≤ −


   
= + − < <    

  
 ≥

                (20) 
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Now the total energy functional  
 
                      , ,( ) ( ) ( )gp λ νξ φ µ φ ξ φ= +                              (21) 

 
The external energy  , ,g λ νξ  drives the zero level set towards 

the object boundaries, while the internal energy ( )pµ φ  

penalizes the deviation of ( )φ  from a signed distance 

function during its evolution. . By calculus of variations [24], 
Gateaux derivative (first variation) of the function ξ in (21) 

can be written as  
 

( ) ( ) ( )div div g g
ξ φ φµ φ λδ φ ν δ φ
φ φ φ

   ∂ ∇ ∇= − ∇ − − −    ∂ ∇ ∇    

                 (22)       

                                                                                                                                                  
(22) is the evolution equation of the level set used in [25]. 
Advantages of Variational Level sets are as follows: 
(i)Significantly larger time step can be used for numerically 
solving the evolution of partial differential equation, and 
therefore speeds up the curve evolution. 
(ii)The level set function can be initialized with general 
functions that are more efficient to construct and easier to  
use than widely used signed distance function. 
(iii)The level set evolution in this method can be easily 
implemented by simple finite difference scheme and is 
computationally efficient. Limitations of Variational Level 
sets are:  
(i) The gradient function in (22) give very small values at the 
boundary and makes the speed of the moving contour low. 
(ii) In case of images with intensity inhomogeneity, the 
gradient based term can never stop the level set evolution 
completely even for ideal edges, making leakage often 
inevitable. 

III.  MODIFIED VARIATIONAL LEVEL SET 

   To overcome the above mentioned drawbacks a modified 
variational level set method is proposed. This offers a 
long-range attraction generated by the object boundary and 
acting on the evolving contour for solving the segmentation 
problem. This frame work is generic and can be applied to 
images which are noisy, having weak and blurred edges along 
with intensity inhomogeneity. It is experimentally shown that 
this method is effective in detecting elongated and overlapped 
tissues structures. 
 In existing level set techniques, the gradient information is 
used as stopping criteria for curve evolution, and provides the 
attracting force to the zero level set from a target boundary. 
However, in case of images with intensity inhomogeneity, the 
gradient based term can never fully stop the level set 
evolution even for ideal edges, making leakage often 
inevitable. 
 In this work a novel frame work for level set evolution by 
introducing a new speed term, is proposed. This work 
explores a new edge indicator function embedded with a 
speed term, which optimizes the effective distance of the 
attracting force and also provides robust edge estimation. By 
using this term, the leakage problem is avoided effectively in 
most cases and also capture range is improved compared to 
traditional level set methods. 
In this section a speed term q  for interaction between object 
boundary and moving contour during the contour evolution is 

defined. Let φ  be the level set function. The evolution is 

given as 
 

                            q
t

φ φ∂ = ∇
∂

                                              (23) 

 
where, q  represents the speed term, in which the values of 

speed are well defined in the whole space. We now define the 
speed term q  of a two dimensional moving contour( )c s , as 

shown in Fig.2 represents the object boundary and another 
contour             represents the moving contour. At any point p  

on the moving contour, the speed is derived based on the 
elastic interaction between line defects [26]-[28], the speed 
term q  is defined as  

 

                              

( )

.

c s

l n
q ds

l
= − ∫                                        (24) 

 

where, l is a vector defined as  ( ) ( )( ),l x x s y y s= − −  

between the point ( ),x y  and a point ( ) ( )( ),x s y s  on ( )c s  

and 2 2( ( )) ( ( ))l x x s y y s= − + − , and n  represents the 

normal direction. Under this definition, the speed inside the 
object boundary and outside the object boundary differs in 
sign. We describe how the speed function defined above can 
be used for image segmentation problem. Let an image be 

( , )I x y located in the 0Z =  plane. 

 

  
                                 
Fig.2. Interaction between object boundary and moving 
contour. 
 
The speed term is set to depend on the intensity values in the 
image by replacing the normal direction n  in (24) by the 
image gradient I∇ . However, the image based speed function 

is singular on the contour( )c s . The singularities can then be 

smeared out if the normal direction n is replaced with the 

gradient of the smoothed image( )G Iσ∇ ∗ , where Gσ  

represents a Gaussian smoothing filter with standard 
deviationσ . Therefore, the image based speed term‘q ’ is 

given as  
 

                              
( )l G I

q
l

σ

Ω

⋅∇ ∗
= ∫                                       (25) 

 

l

Pn

y

xObject

boundary

Moving

contour•

( )sγ

( )c s
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where, Ω denotes the image domain and( ),x y ∈ Ω . Another 

important property of the speed term q  is that it is a long 

range speed generated by the object boundary, and there is no 
need to place the initial contour entirely inside or outside the 
object. Also, the sign of the speed depends on the direction of 
the contour and the object boundary, so that the contour is not 
necessary to be placed entirely inside or near the object 
boundary.  
In the above definition of speed function, the image noise also 
generates a speed term for the moving curve, resulting in 
spurious contours. The speed generated by the noise is 
relatively small as compared with that by the object boundary. 
We remove this contribution of the noise by adding the 
interaction within the moving contour, so that the relative 
weak interaction between the noise and the moving contour 
can be overcome. The speed term q  is now defined as 

 

         
( )( )l G I wH

q dxdy
l

σ φ

Ω

⋅∇ ∗ +
= −∫                            (26) 

 
where, w is the adjustable weight, ( )H φ is the Heaviside 

function defined in (20) and ρ is constant. The value of speed 

term is calculated using the FFT algorithm. Now we can 
introduce a small curvature term associated with a small 
weightµ , along with the weighted length term and weighted 

area term then the new evolution equation becomes 
 

              ( ) ( )( ) ( )k g k q g
t

φ µ φ λδ φ δ φ∂ = ∇ − + ⋅ + ⋅
∂

               (27) 

 
where, k is the mean curvature of the level set function given 
as 
 

            ( )( ),k x y div
φφ
φ

 ∇=   ∇ 
                                       (28) 

 

                       

( )
2 2

3
22 2

2xx y x y xy yy x

x y

φ φ φ φ φ φ φ

φ φ

− +
=

+
                         (29) 

 
where, xφ , xxφ , yφ , and yyφ denotes the first and second 

order partial derivatives of  ( ),x yφ  with respect to x  and y . 

In the proposed method, the Dirac function ( )xδ in (27) is 

slightly modified to achieve additional control by introducing 
ς  term and is given by 

 

      
( )

0, ,

1
1 cos , ,

2

x

x
x xς

ς

πδ ς
ς ς

 >


   
= + ≤    

  



                         (30)   

     
we use 1.2ς = and all the spatial partial derivative and 

temporal partial derivative are approximated by the central 
difference, and the backward difference scheme respectively.  
 

The right hand side in (27) by the difference scheme can be 
simply written as  
 

                          
1

, ,
k k
i j i jφ φ

τ

+ −
                                               (31) 

 
The difference equation (31) can be expressed as the 
following iteration 
 

                   ( )1
, , ,
k k k
i j i j i jRφ φ τ φ+ = +                                     (32) 

 
where,  τ  is the time step, using larger time step can speed up 
the evolution, but may cause error in the boundary location if 
the time step chosen is too large. 
 

A. Initialization of Level set Function 

   In this method not only the re-initialization procedure is 
completely eliminated, but also the level set function φ  is no 

longer required to be initialized as a signed distance function.   
Here we propose the region based initialization of level set 
function, it is computationally efficient and allows for 
flexibility in some situations. The proposed initial level set 
functions are computed from an arbitrary region 0Ω  in the 

image domainΩ .   For example, if the regions of interest can 
be roughly and automatically obtained in some way, such as 
thresholding, and then we can use these roughly obtained 
regions as the region 0Ω to construct the initial level set 

function 0φ . Then the initial level set function will evolve in 

an uniform fashion according to the evolution equation and 
level set curves converged to the region of interest. 
 

B. Implementation 

  The implementation of the various deformable models starts 
with the identification of all adjustable parameters for each 
method. In this work, MATLAB 7.1 is used on dual core 
Pentium–IV processor with 1GB RAM in implementing 
various deformable models. The selected methods have all the 
following common simple characteristics: A Gaussian 
blurring filter is the pre-processing performed on the image 
and no post-processing is used; the gradient magnitude 
images or their thresholded results of the Gaussian blurred 
images are used as the edge maps; the initial contour is formed 
as a circle centered around the initial location, a selected 
image point defined by the user; no prior information of the 
object shape or texture pattern is available. The parameters, 
within each group of deformable contour methods, are very 
similar and are described in the next section. 
 

C. Parameters for Deformable models 

  The Snake model, Geometric Active contour and Gradient 
Vector flow have six parameters in common: elasticity (α ), 
rigidity ( β ), viscosity (γ ), external force field (,u v ) and 

deformation step (DS). The α and β parameters are 

associated with the internal force in the original snake model 
in (3). The γ  and DS parameters are used in iteratively 

updating contour location (i.e., deformation), thus not 
explicitly included in the deformation equations. The 
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combination of α and β parameters allows the contour to 

maintain smoothness during the deformation process. 
Decreasing α or β will result in corners and self 

intersections in the deforming contour, while increasing them 
will shrink the contour to a line or point. The γ  parameter is a 

weight parameter to adjust the viscosity used in updating the 
contour position. Increasing γ  will slow down the contour 

deformation process and make the deformation more stable. 
The external force field determines the strength of the effect 
of the image features that make up the external force. The 
GVF snake has two additional parameters, namely 
regularization µ and iterationsN . The GVF regularization 

parameter, µ in (13a) and (13b), has a correlation with the 

noise level of the image. The image noise is directly 
proportional toµ .  

The level set method has two common parameters and they 
are: iteration step (IS) and deformation step (DS). The 
iteration step is related to the discrete implementation of the 
level set contour deformation process. Decreasing iteration 
will result in a slow deformation process but a more stable 
deformation.  
The componentλ  is used in the variational level set active 
contour, is a variable used to weight the area and length 
functionals, in (17). In the modified variational level set, the 
speed term q  is used in (25) for the interaction between the 

object boundary and the moving contour to speed up the 
convergence process and the additional parameterς  to 

modify the Dirac delta function in (30).  
 

D. Parameter settings 

  Once the parameters are identified, the next question is how 
to determine and adjust the parameter values to obtain good 
results with small errors compared with the expert contours. 
In practice, for a new set of images with similar characteristics 
some preliminary training and testing are normally required. 
In the experiments we used a course to fine scheme on the  
image test set to achieve the best parameter set based on both 
the qualitative and quantitative error measures. The following 
steps outline the process used to determine parameter settings 
and tuning of the deformable models under consideration. 
(i) Except for the selected adjustable parameter and the 
deformation step parameter, fix all other parameters to their 
initial values or their acceptable ranges. 
(ii) Adjust the selected parameters and run the program. 
(iii) Determine the suitable range for the parameter in which 
the resultant contour converges to the object boundary. 
Repeat the above steps for the other parameters with the 
assumptions that the parameters are independent, thus the 
order in choosing parameters does not matter. Intuitively, if 
the parameters were dependent on each other then the 
resultant contours would not converge or provide accurate 
results.  
 

E. Contour Initialization 

  To broaden the scope of the deformable models test, the 
initial contour being formed as a circle around the user 
selected location, included two variations of initial contour 
locations and sizes, as illustrated in Fig.3. In general, initial 
contours for deformable models in medical image 

segmentation can be constructed by (a) placing a small 
contour within the object, (b) placing a large contour outside 
the desired boundary. The main experiments focused on the 
first condition because it requires the least user interaction for 
automated image segmentation. Fig. 3(b) shows the contour 
initialized around the object boundary. The differences in unit 
iteration times among the various images are functions of the 
initial contours as well as the type of image. For example, the 
number of iterations depends on how close the initial contour 
is placed to the region of interest.  
 

                              
                                (a)                          (b)    

                      
                                (c)                         (d) 

                      
                                (e)                         (f) 
Fig. 3. Contour initialization. (a) Original image. (b) Contour 
position for original image. (C) Image with Gaussian noise 
( 0.02σ = ). (d) Contour position for noisy image. (e) Image 
with weak object boundary. (f) Contour position for image 
with weak object boundary. 

IV.  EXPERIMENTAL RESULTS AND DISCUSSION 

   The performance of the above mentioned deformable 
models have been tested and analyzed with three types of real 
image data sets of size 512 x 512 pixels. These images are the 
MRI slice of brain attained of tumors pathology, obtained 
from M S Ramaiah Medical College and Hospital, Bangalore.                                                    
 Experimental results are obtained by implementing various 
deformable models [29]-[33]. In the following section, 
performance is tested considering the images with weak edges 
and also images affected by Gaussian noise.  
The goal of the MRI brain image without noise experiment 
was to determine which method could segment an object that 
has diverse contrast in the region within the target boundary. 
In this test image, the Snake model, GAC, and GVF has almost 
same result, because there is no contour topology change, as 
shown in Fig. 7(a), (d) and (g). Level set and Variational level 
set also had poor results. All the results, except the proposed 
deformable model, Fig. 7(p), the contours could not reach or 
converge to the region of interest. From the visual observation 
of the radiologist, the proposed method gives the best 
segmentation result for MRI image without introducing noise. 
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   In case of MRI brain image with Gaussian noise  0.02σ =  
in Fig. 7 (b),  the Snake model, GAC, GVF, are sensitive to 
noise and incapability of contour topology change and thus, 
unable to converge exact boundary as displayed in Fig.7 (b), 
(e) and (h). The Level set and variational level set were 
determined to provide the best qualitative results with small 
leakage in the contour near the object boundary as shown in 
Fig. 7(k) and 7(n). Therefore, the proposed method could 
yield acceptable result for the noisy image as displayed in Fig. 
7(q).  
 In case of MRI brain image with weak edges, the 
segmentation problems result from the complex shape with 
inhomogeneous interior and gaps.  Due to the proximity of the 
gaps, we observe that the contour leaks through the low 
contrast edges in Snake model, GAC, GVF, and Level set as 
shown in Fig. 7(c), (f), (i) and (l). Whereas the proposed 
method survives both weak and strong edge as shown in Fig. 
7(r).      
 It is observed that the contour is converging towards the 
object boundary from iteration to iteration. However, the final 
result in terms of accuracy in converging to the object 
boundary is varying from one technique to another. It is also 
observed that, the method based on variational level sets is 
performing well for accurate boundary detection. However, it 
is computationally intensive and the performance is poor in 
the presence of noise. Hence, the modified variational level set 
with speed term, is used to speed up the segmentation process 
and also accurate convergence to the object boundary. Several 
visual results are presented. The computation time, and the 
number of iterations are reported in the following tables.  
 
Table 1. Comparison of No. of Iterations and computation 
time for original image. 
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Fig. 4. Comparative performance of original image in terms of 
number of iterations and computation time for different  
Deformable models. (a) No. Iterations, (b) Computation time 
in sec. 

Table 2. Comparison of No. of Iterations and Computation 
time for image corrupted by Gaussian noise (0.02σ = ). 
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 Fig. 5. Comparative performance of noisy image in terms of 
number of iterations and computation time for different 
Deformable models. (a) No. Iterations, (b) Computation time 
in sec. 
Table 3. Comparison of No. of Iterations and Computation 
time for image with weak object boundary. 
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 F ig.  6.  Comparative performance of image with weak edges 
in terms of number of iterations and computation time for 
different Deformable models. (a)No. Iteration  
(b) Computation time in sec.                                                              
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Fig. 7. Final segmentation results for original image, noisy 
image ( 0.02σ = ) and image with weak edges: (a) – (c) 
correspond to Snakes model, (d) – (f) correspond to GAC 
model, (g) – (i) correspond to GVF model, (j) – (l) correspond 
to Level set method, (m) – (o) correspond to Variational Level 
set method and (p) – (r) correspond to the proposed method.      
 
It is also observed that, in the modified variational level set, 
the speed term q embedded with edge indicator function is 
adjusted. This in turn reduces the computation time compared 
to variational level set as shown in the tables, and the number 
of iterations are reduces from 1055 to 510. Further the 
performance is also tested in the presence of Gaussian noise 
with 0.02σ = , in both variational level set and also in 
modified variational level set. It is observed that the modified 

variational level is superior in terms of convergence to the 
object boundary compared to the variational level set.                              
The experimental results are presented considering various 
deformable models shown in Fig. 7. The comparative result 
shows that, the proposed method survives both the image with 
weak edge and the strong edges (Fig. 7. (p) - (r), where as 
other methods, the contour leaks through the low contrast 
edges and noisy images (Fig. 7. (a) - (o). Level set method 
overcomes previous problems faced by Snakes, GAC, and 
GVF. Meanwhile, computation is intensive, so modified 
variational level set methods attempts to speed up the process. 
Comparative results shows that the proposed method is 
accurate in terms of locating the tumor in the image, and can 
be used for medical diagnosis to segment tumors 
automatically without much manual intervention. 

V. CONCLUSION 

  The challenges of medical image segmentation are addressed 
by using deformable models and the effectiveness of the 
proposed technique in extracting features from noisy medical 
images has been demonstrated. The experimental results show 
that, for images with noise, the algorithm is able to speed up the 
process considerably while capturing the desired object 
boundary compared to other methods. Fine tuning the 
parameters in the associated equations might improve the 
performance of the algorithm. In the analysis and derivation of 
information in the image at different scales, removing 
unnecessary and irrelevant details, multi-resolution method can 
greatly improve the convergence and the computation speed. 
More emphasis should be placed on using adaptive edge 
detectors and smoothing operators on the image to eliminate 
noise and weak edge problems.  
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