

Abstract—Even though software development (SD) is an

intrinsically collaborative process; with the emerging
importance of collaborative product development (CPD),
collaborative processes gained significant consideration.
Collaborative software development (CSD) encompasses an
increasingly competitive position with its dynamic and
innovative structure, as the complex nature of SD makes
collaboration indispensable.

This paper presents an Axiomatic Design (AD) based CSD
structure exploring factors affecting SD as well as CPD
dynamics, in order to offer a guideline to increase success and
effectiveness of collaborative efforts in SD.

Index Terms—Software Development, Collaboration,
Axiomatic Design.

I. INTRODUCTION

More than ever, organizations have been facing the challenge
of improving the quality of their work processes as a strategy
to remain alive and competitive and many companies are
struggling to reengineer, automate, and improve the way they
perform their business [1]. Software Development (SD) has
been a challenging task for several decades [2] and the
increasing complexity of software development (SD),
growing demands for different kinds of software as well as
the ongoing globalization require more efficient SD
processes [3].

The development of large and complex software systems is
considered to be a teamwork process that requires support for
coordinating cooperative activities, maintaining project
control and sharing information [4]. While Collaborative
Product Development (CPD) develops into a business
strategy creating competitive advantage for organizations in
product development (PD) by creating a collaborative
environment to share risks, reduce time to market and
innovate; SD collaborations also develop into a more
structured activity, since mastering large SD projects
becomes even more complex, not only because projects grow
larger, but also because software teams are increasingly
distributed across space and time due to globalization and
internationalization [4]. Supporting efficient knowledge

Manuscript received March 23, 2009. This work was financially

supported by Galatasaray University Research Fund.
Jbid Arsenyan is with the Industrial Engineering Department, Bahcesehir

University, Istanbul, 34100, Turkey (phone: +90.212.381.0855; e-mail:
jbid.arsenyan@bahcesehir.edu.tr).

Gülçin Büyüközkan is with the Industrial Engineering Department,
Galatasaray University, Istanbul, 34357, Turkey (phone: +90.212.227.4480;
e-mail: gulcin.buyukozkan@gmail.com).

collaboration and transfer is thus essential for SD
organizations to remain competitive [5]. While the software
industry deals with the ever-increasing complexity of its
products, collaboration among different people participating
in the same development project is essential and has already
been considered as an everyday part of professional SD [6].

However, CSD literature lacks of a systematic design of
the process from a strategic point of view. The aim of this
paper is to design a CSD structure by identifying its dynamics
and developing a model through these dynamics. Literature
offers many system design tools such as Quality Function
Deployment (QFD), Axiomatic Design (AD), Design for X
and TRIZ. Among these methodologies, AD is an appropriate
tool for the design of non-engineering systems such as
business plans and organizations [7]. Hence, a CSD structure
with a model based on AD is proposed in this paper, while
defining the dynamics, including goals, strategies and
methodologies, which affect the collaborative efforts in SD.
The proposed model forms a guideline for CSD from a
strategic point of view, investigating different goals to attain
in collaborative efforts in SD. To our knowledge, no previous
study exists which explore CSD based on system design.

The paper is organized as follows: in the next section, CSD
is described briefly. Third section reviews AD and presents
the proposed model. The paper is concluded with a few
remarks.

II. COLLABORATIVE SOFTWARE DEVELOPMENT

SD is a combined process of research, development,
modification, re-use, reengineering, maintenance and similar
activities that result in software products. However, SD
process and projects have a long and storied history of failure,
where 82% of projects today run late, while errors cost 80%
of the average project budget to fix according to The Standish
Group. The growing complexity of software systems and the
constant extension of new requirements necessitate the
cooperation of multiple persons such as analysts, developers,
testers, and customers [4]. While the SE industry deals with
the ever-increasing complexity of its products, collaboration
among different people participating in the development
project is essential and has already been considered as an
everyday part of professional SD [8]. Collaboration helps SD
teams to handle large software systems by knowledge sharing
and communication. Also human-centric SD methods, such
as Extreme Programming and other agile methods as well as
internet-based multi-site cooperation tools that support
remote CSD have been developed and implemented to deal
with this complexity [6], which benefits its participants in
time to market, reusability, robustness, extensibility,

Modelling Collaborative Software Development
Using Axiomatic Design Principles

Jbid Arsenyan, Gülçin Büyüközkan

IAENG International Journal of Computer Science, 36:3, IJCS_36_3_06
__

(Advance online publication: 1 August 2009)

testability, and/or adaptability [8].
Some of the most important differences between

traditional SD and collaborative SD (CSD) are organizational
culture, management, technical platform and development
team, and social and cultural issues [9]. Therefore, CSD
encloses many challenges as it involves geographically
distributed teams working within different units.

Improving awareness information about work processes
and about the collaboration intrinsic may help SD teams to
better accept the idea of defining, standardizing and
continuously improving their work [1]. In this context, this
study offers a structured approach for CSD in order to
implement a defined work process.

III. MODELLING CSD

A. Axiomatic Design

AD is first introduced by Suh in 1990 with the goal to
establish a scientific basis to improve design activities by
providing the designer with a theoretical foundation based on
logical and rational thought process and tools [10]. Its
applications include many areas such as software design [11],
quality system design [12], general system design [13; 14],
manufacturing system design [15; 16], ergonomics [17],
engineering systems [18; 19], and office cell design [20]. AD
is generally applied to the design of physical entities.
However, there exist studies that employ AD to design
intangible systems such as e-commerce strategies [7] and
e-commercial web-sites [21].

According to AD, the world of design has four domains:
customer domain with characteristic vector of customer
attributes (CAs), functional domain with characteristic vector
of functional requirements (FRs), physical domain with
characteristic vector of design parameters (DPs), and process
domain with characteristic vector of process variables (PVs),
as seen in Fig 1. The domain on the left represent “what we
want to achieve” and the domain on the right corresponds to
“how we want to achieve it”. The transition between left to
right occurs through mappings [12] as seen in Figure 1.

Figure 1. Four domains of design

AD consists of two axioms: independence axiom that

demands to maintain the independence of the FRs and
information axiom that states that the design with the
minimum information content is the best design.

During the mapping process where first level CA, FR, DP
and PV are decomposed into hierarchies, the independence
axiom must be satisfied. Moreover, while decomposing,
zigzagging between the design domains is required [12]. The

independence axiom can be also defined as the case where
DPs and FRs are related in such a way that a specific DP can
be adjusted to satisfy its corresponding FR without affecting
other FRs [7].

Mapping and decomposing represent an important phase
of the AD. Sub-levels of FRs and DPs are connected through
zigzagging while maintaining the independence. The relation
between FRs and DPs can be expressed as follows:

 DPAFR *

 FR and DP represent the functional and physical

vectors, respectively; whereas A is the design matrix that

displays the relation between each FR and DP.
The independence of FRs is defined by the structure of the

design matrix. To assure the independence, the design matrix
should be either diagonal or triangular [10].

There exist three types of design: coupled, decoupled, and

uncoupled. When A is diagonal as seen in Figure 2, the

design is called an uncoupled design and each of the FRs can
be satisfied independently by means of one DP. However,
this represents an ideal design and it cannot always be
achieved. Decoupled design is represented by a triangular
design matrix as seen in Figure 3, in which case the
independence of FRs can be satisfied if and only if the DPs
are determined in a proper sequence. Any other form of

 A as displayed in Figure 4 is called a coupled design and it

should be avoided as the design cannot guarantee the
independence axiom [10].

Figure 2. Uncoupled design

Figure 3. Decoupled design

Figure 4. Coupled design

AD does not possess wide applications in CPD literature.
AD is applied to CPD architecture to develop a teamwork
platform [22]. However, literature does not offer a systematic
approach for CSD requirements. The originality of the
proposed work lies in the application of AD principles to
determine CSD requirements and designing a structure
highlighting SD requirements in order to form a CSD
guideline for partners in the beginning of the collaboration.

AD approach is employed in order to develop a CSD
model, given that the use of AD in strategic formulation and
business planning assures a strong relationship between the
goals and strategies defined [7]. AD provides a basis to
define the path from what is aimed to how this goal should be
achieved.

IAENG International Journal of Computer Science, 36:3, IJCS_36_3_06
__

(Advance online publication: 1 August 2009)

B. AD based CSD model

SD process is often introduced by considering ‘why’,
‘what’ and ‘how’: ‘why’ is defined by whoever commissions
the project, the architect’s primary concern in to specify
‘what’ must be done, and ‘how’ it is done is the software
engineer’s province [23]. In this study; ‘why’, ‘what’ and
‘how’ are transformed into CAs, FRs and DPs, translating
goals, strategies and methodologies.

The proposed model consists of three levels. The first level
of AD describes the three main domains of the CSD:
customer domain, functional domain, and physical domain.
The variables defined as CAs represent the goals of the CSD
efforts. FRs correspond to the strategies needed to be
implemented to achieve these goals. Subsequently, the
methodologies and tools used to implement these strategies
are symbolized by DPs. Basically, in this first level of CSD
structure design, initial goal, strategy and framework are
defined. Initial goal is set to be “Inter/intra-firm
collaborations for SD” since the main objective of the model
is to provide guidelines for successful SD collaborations. In
order to have a successful collaboration, initial strategy must
be to define a collaboration strategy to cover all possible
collaboration areas. Consequently, CSD framework,

including all methodologies and tools applied to CSD are
collected to satisfy the collaboration strategy. The variables
defined for the starting point are as follows:

CA0 = Inter/intra-firm collaborations for SD
FR0 = Define a CSD strategy
DP0 = CSD
It is important to become aware of the three different types

of goals to better understand a participative system, which are
individual goal, collective goal, and project goal [24]. In this
study, these goals are translated as effective partnership
process, effective collaboration process, and effective SD
process, respectively, in the first level decomposition of the
model. It is necessary to understand what the customer wants
most in supportability and to align the capability of the
organization to provide it [25]. Therefore, the starting point
of the model is the customer domain, where the strategic
goals of the CSD system are clearly defined.

Figure 5 displays the proposed three-level AD based CSD
model including mapping between functional and physical
domains, as well as FR-DP zigzagging. Lines represent the
decomposition into hierarchies, while arrows symbolize the
zigzagging between domains. The decompositions and the
hierarchical structure will be elaborated subsequently.

Figure 5. Proposed AD-based CSD model

The matrices presented throughout the decompositions
symbolize the relationships between the strategies and the
methodologies. The matrices for the relationships between
goals and strategies are not demonstrated given that each
strategy responds to only its corresponding goal and
therefore, independence is naturally achieved.

Level 1 Decomposition
First level goal is decomposed into three sub-goals:
CA1 = Effective partnership process

CA2 = Effective collaboration process
CA3 = Effective SD
Effective SD is an essential goal of CSD efforts. On the

other hand, CSD includes concurrently both collaboration
process and partnership process. Collaboration denotes all
collaborative activities such as communication, information
sharing, and interaction whereas partnership process includes
phases such as identification, selection of partners and
partnership sustainability.

IAENG International Journal of Computer Science, 36:3, IJCS_36_3_06
__

(Advance online publication: 1 August 2009)

FR1 = Define effective partnership strategy
FR2 = Define effective collaboration strategy
FR3 = Define effective SD strategy
Strategies to support these goals are determined

accordingly. Partnership strategy should be based upon a
win-win situation whereas collaborative technologies build
collaboration strategy. Some authors emphasize the
win-win approach in collaboration: A win-win model
assumes that the success of CSD projects depends on all
involved parties to positively gain benefits from the
collaboration and the different requirements to be equally
represented [3].

DP1 = Game Theory
DP2 = Collaborative technology
DP3 = Software engineering management
Different cooperation and competition strategies emerge

according to the level of competition and cooperation
between the “players” [26]. Therefore Game Theory is
applied in order to model an effective partnership strategy.
On the other hand, for an effective collaboration strategy, a
network based on collaborative technologies must be
employed in order to realize the integration of the
collaboration teams. SD strategy should be defined by
Software Engineering Management, which can be described
as the application of management activities – planning,
coordinating, measuring, monitoring, controlling, and
reporting – to ensure that the development and maintenance
of software is systematic, disciplined, and quantified.

3

2

1

3

2

1

*

0

0

00

DP

DP

DP

XX

XX

X

FR

FR

FR

Figure 6. Level 1 Decomposition

As seen in Figure 6, a decoupled design is obtained in the
Level 1 decomposition. This is due to the fact that
implementing these methodologies requires a particular
sequence, i.e. collaboration strategy is applied after the Game
Theory is implemented and SD strategy is dependent of
collaborative technology.

Level 2.1 Decomposition
Effective partnership process is decomposed into three

sub-goals and these sub-goals present the stages of the
partnership process.

CA11 = Identification of potential partners
CA12 = Formation of partnership
CA13= Management of partnership
Initially, identification of potential partners is required in

order to evaluate and recognize partner[s] suitable for
collaboration. Subsequently, the next stage is the formation
of partnership including negotiation, selection and
initialization. However, effective partnership process also
requires an effective management of partnership.

FR11 = Proactive assessment
FR12 = Negotiation strategy
FR13 = Sustainability of partnership
During the mapping process, strategies are determined

accordingly. First strategy when identifying potential
partners is to act proactively, rather than reacting to
partnership proposals. Literature offers several studies
applying decision analysis to select collaborative partners

[27; 28]. A negotiation strategy has to be implemented in
order to collaborate on pre-defined ground rules. The
challenge of CSD is organizing the value creation process
through the coordination of their respective resources across
organization boundaries and consequently, contracts serve as
a coordinating device, clarifying mutual expectations,
enabling goal correspondence, and establishing a basis for
shared common ground [29]. Next strategy is to seek
sustainability of partnership and repetitiveness rather than to
form ephemeral alliances. Long-term commitment can
maintain a partnership relationship with competitors and can
neutralize possible conflicts [26]. Partnership management is
applied in order to maintain the collaboration between the
parties.

DP11 = Decision analysis
DP12 = Contract management
DP13 = Partnership management

13

12

11

13

12

11

*0

00

DP

DP

DP

XXX

XX

X

FR

FR

FR

Figure 7. Level 2.1 Decomposition

Similarly to the Level 1; in this sub-level a decoupled
design is observed as seen in Figure 7. This is essentially
caused by the fact that strategies in partnership process are
implemented progressively, each methodology at a time. This
results in a triangular design matrix, where the each DP
affects its successors.

Level 2.2 Decomposition
Effective collaboration process differs from effective

partnership process given that this goal focuses on the profits
acquired by CSD efforts. Four sub-goals are determined for
effective collaboration process.

CA21 = Coordination
CA22 = Trust
CA23 = Co-learning
CA24 = Co-innovation
Coordination, which can be defined as making different

people work together for a goal, is naturally the main goal of
collaboration process. SD is a cooperative game of invention
and communication [30]. CSD concerns both methods and
tools supporting the communication and coordination
requirements within a distributed SD process, which is
essential for planning, execution, and coordination of all
task-based as well as organizationally, temporally and
spatially distributed activities incorporating all process- and
product-related activities [3]. Information sharing is another
important characteristic of collaboration process [9]. All
these issues are handled within coordination goal.

In CSD, trust is required in order for developers to
collaborate effectively given that without trust, developers
will not normally share transient information and permanent
knowledge, thus limiting their productive capacity [8].
Therefore; trust is defined as another goal to achieve in
collaboration process. On the other hand, co-learning;
whether corporate, individual or technical; is another goal to
attain in effective collaboration process in order to benefit
from the synergy emerged in collaboration. Co-learning can
be defined as the knowledge, experience and expertise
gathered through the collaboration process, and therefore it is

IAENG International Journal of Computer Science, 36:3, IJCS_36_3_06
__

(Advance online publication: 1 August 2009)

included in collaboration strategy. Another goal for
collaboration process is co-innovation, as innovation is a
value-adding by-product of the collaboration process.

Strategies related to these goals are as follows:
FR21 = Communicate
FR22 = Establish a culture of trust
FR23 = Implement a learning system
FR24 = Generate flexible environment
Communication, the strategy for coordination, is

implemented through information technologies to support
coordination of development teams. Coordination
concentrates on planning, decision making, organizing, and
controlling the work of others, and on the loose interaction
between people and hence, a common language for
communication is crucial for efficient information exchange
[31]. Therefore, information technologies are implemented in
order to provide the common language required.

Even though trust represents a challenging goal to
accomplish between various partners, managers can expect
significant rewards by establishing a culture of trust in their
partnerships [32]. Therefore, establishing a culture of trust,
cultivated by Information Technologies, is implemented
through the application of Conflict Management. As a result
of intensive cooperation with competitors, conflict inevitably
occurs and hence, a good conflict management system, which
enables gathering information, understanding context and
participating in decision making, enhancing the capacity to
deal with conflict before it escalates, is needed to maintain
successful collaboration [26].

A learning system has to be implemented as a strategy for
co-learning, and knowledge management is the associated
methodology. Knowledge management attempts to ensure
growth and continuity of performance by protecting critical
knowledge at all levels, applying existing knowledge in all
pertinent circumstances, combining knowledge management
in synergistic ways, continuously capturing, managing, and
sharing relevant knowledge, and developing new knowledge
through continuous learning that builds on internal
experiences and external knowledge [33].

Finally, to promote co-innovation, strategy to follow is to
generate a flexible environment for collaborative team to
work in. Innovation management is determined as the related
methodology. Workplace flexibility constitutes a platform to
base and build other levels of flexibility in the firm to deploy
employees’ embedded knowledge and access external
knowledge needed to innovation capabilities [34].

DP21 = Information Technologies
DP22 = Conflict management
DP23 = Knowledge management
DP24 = Innovation management

24

23

22

21

24

23

22

21

*

00

00

00

000

DP

DP

DP

DP

XX

XX

XX

X

FR

FR

FR

FR

Figure 8. Level 2.2 Decomposition

 As seen in Figure 8, Level 2.2 Decomposition results also
in a triangular matrix. However, this structure does not
represent a process. Instead, the importance of

communication strategy is highlighted within the design
matrix, as the main support for the collaboration process is
the information technologies implemented. Therefore, each
strategy is related with DP21. On the other hand, remaining
FRs are independent and executed separately.

Level 2.3 Decomposition
As SD differs considerably from classical PD approach,

which essentially includes design, manufacturing, and
marketing; an industry-specific model is developed to design
the SD process. “Effective SD” is decomposed into SD
customers’ needs: effective understanding of needs, effective
design, and effective performance.

CA31 = Effective understanding of needs
CA32 = Effective design
CA33 = Effective performance
To satisfy these goals, an iterative approach consisting of

three steps is adopted for designing effective SD process. The
strategies to meet the customer attributes are defined as
follows:

FR31 = Define requirements
FR32 = Design
FR33 = Maintain
The first goal in the customer domain is the effective

understanding of user needs. The success of a software
system is measured with how well it responds to the purpose
of customer. Requirements Engineering (RE) is therefore the
appropriate methodology to implement to define
requirements, as RE is the process of discovering the purpose
of the software by identifying customer needs and
documenting these in a form that is amenable to analysis,
communication, and subsequent implementation [35].

The next strategy is to design effective software to fulfil
the effective design goal. The design decisions include the
choice of programming paradigm, architectural style,
application framework, component-based software
engineering standards, and design principles, as well as
assumptions that may lead to architectural mismatch [36]. In
SD coding, testing and debugging, and what typically are
called software design is still part of design [37].Therefore,
software design framework is defined as the appropriate
methodology to fulfil the design strategies.

Naturally, effective performance represents another goal
for the SD process. Software maintenance is essential in
achieving global software competitiveness [25]. Therefore,
the appropriate strategy to follow is to maintain the software
after it is implemented, through software maintenance
methodologies. Software maintenance is different from
hardware maintenance because software doesn't physically
wear out, but often gets less useful with age and software
maintenance is the process of modifying existing operational
software while leaving its primary functions intact [38].

DP31 = Requirements engineering
DP32 = Software design
DP33 = Software maintenance

33

32

31

33

32

31

*0

00

DP

DP

DP

XXX

XX

X

FR

FR

FR

Figure 9. Level 2.3 Decomposition

IAENG International Journal of Computer Science, 36:3, IJCS_36_3_06
__

(Advance online publication: 1 August 2009)

A decoupled design is observed in Figure 9 for Level 2.3
Decomposition once more, since SD is represented as a
process. Each FR is dependent of its predecessor, however in
a proper sequence. Therefore, the achievement of each goal
stimulates the realization of the next one.

IV. CONCLUSION

 This paper presented an AD based collaboration model
within the context of software industry. A three level
hierarchic structure for CSD was developed defining
strategic goals to attain in collaborative efforts for SD,
strategies to follow to fulfil these goals, and methodologies to
implement to realize the strategies. CSD does not differ from
the CPD in partnership process and collaboration process.
However, SD process has its specific steps and consequently,
requires customized evaluation of its strategies and
methodologies. The aim of this model was to present a
strategic framework for implementing a collaborative
structure for SD in software industry.

REFERENCES
[1] Araujo, R.M., Borges, M.R.S., 2007. The Role of Collaborative Support to

Promote Participation and Commitment in Software Development Teams.
Software Process Improvement and Practice, 12, 229–246.

[2] Eberlein, A., Jiang, L., 2007. Description of a process development methodology.
Software Process: Improvement and Practice 12(1), 101-118.

[3] Hildenbrand, T., Rothlauf, F., Geisser, M., Heinzl, A., Kude, T., 2008.
Approaches to Collaborative Software Development. International Conference
on Complex, Intelligent and Software Intensive Systems.

[4] Altmann, J., Pomberger, G., 1999. Cooperative Software Development:
Concepts, Model and Tools. Proceedings of the TOOLS-30 conference, 1 – 5
August, USA, IEEE Society Press, 194 – 277.

[5] Ye, Y., Yasuhiro Yamamoto, Kouichi Kishida, 2004. Dynamic Community: A
New Conceptual Framework for Supporting Knowledge Collaboration in
Software Development. Proceedings of the 11th Asia-Pacific Software
Engineering Conference APSEC’04, 472-481.

[6] Hadar, I., Sherman, S., Hazzan, O. 2008. Learning Human Aspects of
Collaborative Software Development. Journal of Information Systems Education,
19(3), 311-319.

[7] Martin, S.B., Kar, A.K., 2002, Axiomatic Design for the development of
enterprise level e-commerce strategies, Proceedings of ICAD2002, Second
International Conference on Axiomatic Design, MIT, Cambridge, USA, June
10-11.

[8] Che, H., Zhao, D., 2005. Managing Trust in Collaborative Software
Development. Software Engineering Conference APSEC 2005 workshop, Dec.
17, Taipei, Taiwan.

[9] Nayak, M.K., Suesaowaluk, P., 2008. Risk Factors that Affect Collaborative
Software Development. Proceedings of the 2008 IEEE ICMIT.

[10] Suh, N.P., 2001, Axiomatic Design: Advances and Applications, New York:
Oxford University Press.

[11] Kim, S.J., Suh, N.P., Kim, S., 1991, Design of software systems based on AD,
Annals of CIRP, 40(1), 165–70.

[12] Suh, N.P., 1995a, Designing-in of Quality Through Axiomatic Design, IEEE
Transactions On Reliability. 44 (2), 256–64

[13] Suh NP., 1995b, Design and operation of large systems. Annals of CIRP , 44 (3),
203–13.

[14] Suh NP., 1997, Design of systems. Annals of CIRP, 46(1):75–80.
[15] Suh, N.P., Cochran, D.S., Paulo C. L., 1998, Manufacturing System Design,

Annals of the. CIRP, 47 (2), 627-639
[16] Cochran, D.; Campinas, J.D.; Lobo, C.; Lima, P., 2001. Using axiomatic design

to support the development of a balanced scorecard. International Journal of
Business Performance Management, 3(2-4), 154-166.

[17] Helander, M.G., Lin, L., 2002, Axiomatc design in ergonomics and an extension
of the information axiom, Journal of Engineering Design, 13(4), 321-339.

[18] Guenov, M.D., Barker, S.G., 2005, Application of axiomatic design and design
structure matrix to the decomposition of engineering systems, Systems
engineering, volume 8, no1, pp. 29-40.

[19] Thielman, J., Ge, P., 2006,, Applying axiomatic design theory to the evaluation
and optimization of large-scale engineering systems, Journal of Engineering
Design, 17 (1), 1-16.

[20] Durmusoglu, M., Kulak. O., 2008, A methodology for the design of office cells
using axiomatic design principles. Omega, 36, 633 – 652.

[21] Yenisey, M.M., 2007, Axiomatic Design Approach for E-Commercial Web Sites,
Lecture Notes in Computer Science, 4550, 308-315.

[22] Hou, L., Han, D., Wen, Z., Chen, F., 2007, Integrated Management System for
Product Collaborative Development Chain, IEEE International Conference on
Control and Automation, May 30-June 1, Guangzhou, China

[23] Walters, H.R., 2004. Structuring professional cooperation. Information and
Software Technology, 46, 415–421.

[24] Nakakoji, K. Yamada, K. Giaccardi, E., 2005. Understanding the nature of
collaboration in open-source software development. Software Engineering
Conference APSEC '05. 15-17 Dec. 2005, Taipei, Taiwan.

[25] O'Neill, D., 1998. Software Maintenance and Global Competitiveness. Journal of
Software Maintenance: Research and Practice, 9 (6), 379 – 399.

[26] Chin, K.-C., Chan, B.-L., Lam, P.-K., 2008, Identifying and prioritizing critical
success factors for coopetition strategy, Industrial Management & Data Systems,
Volume 108, No. 4, 437-454.

[27] Hacklin, F., Marxt, C., Fahrni, F., 2006, Strategic venture partner selection for
collaborative innovation in production systems: A decision support system-based
approach, International Journal of Production Economics, 104, 100–112.

[28] Yoshimura, M., Izui, K., Kida, S., 2005, Decision Support System for Selecting
Collaborative Product Development Partners, Concurrent Engineering, Volume
13 (1), 5-11.

[29] Madhok, A., Mellewigt, T., Weibel, A., 2004. Trust and Formal Contracts in
Interorganizational Relationships- Substitutes and Complements. Available at
SSRN: http://ssrn.com/abstract=611161.

[30] Cockburn, A., 2002. Agile Software Development. Addison-Wesley.
[31] Fagerstrom, B., Jackson, M., 2002. Efficient collaboration between main and

sub-suppliers. Computers in Industry, 49, 25–35.
[32] Bstieler, L., 2006, Trust Formation in Collaborative New Product Development,

Journal of Product Innovation Management, Volume 23, 56-72.
[33] Chen, Y.-J., Chen, Y.M., Chu, H.C., 2008. Enabling collaborative product design

through distributed engineering knowledge management. Computers in Industry,
59, 395–409.

[34] Martínez-Sánchez, A., Vela-Jiménez, M.-J., Pérez-Pérez, M., de-Luis-Carnicer,
P., 2008, Workplace flexibility and innovation: The moderator effect of
inter-organizational cooperation, Personnel Review, Volume 37, No. 6, 647– 665

[35] Juran, J.M., 1998. Quality in Software Development. McGraw-Hill Professional ,
page 20.8-20.12.

[36] Nuseibeh, B., Easterbrook, S., 2000. Requirements engineering: a roadmap.
ICSE '00: Proceedings of the Conference on The Future of Software Engineering;
ACM Press: New York, NY, USA,.35-46.

[37] Reeves, J.W., 1992. What is Software Design?. C++ Journal.
[38] Kaner, C.; Falk, J., Nguyen, H.Q., 1999. Testing Computer Software, 2nd Ed..

New York, John Wiley and Sons, Inc.
[39] Hunt, B., Turner, B., McRitchie, K., 2008. Software Maintenance Implications

on Cost and Schedule. Aerospace Conference, IEEE, 1-8 March, 1-6.

IAENG International Journal of Computer Science, 36:3, IJCS_36_3_06
__

(Advance online publication: 1 August 2009)

