
 
 

 

 
Abstract— Soft sensor models are used to infer the critical 

process variables that are otherwise difficult, if not impossible, 
to measure in broad range of engineering fields. Adaptive 
Neuro-Fuzzy Inference System (ANFIS) has been employed to 
develop successful ANFIS based sensor models. In addition to 
the structure of the model, the quality of the training as well as of 
the testing data also plays a crucial role in determining the 
performance of the soft sensor. This paper investigates the 
impact of data quality on the performance of an ANFIS based 
soft sensor model that is designed to estimate the average air 
temperature in distributed heating systems. The average air 
temperature is estimated based upon the available information, 
including solar radiation (Qsol), energy used by boiler (Qin) and 
external temperature (T0). For this problem, with the 
measurement errors caused by reading and equipment of all 
three variables, it is not unusual to have some uneven patterns 
in dataset which will decrease the model accuracy. The article 
investigates the impact of data quality on the performance of the 
soft sensor model. The results of two experiments are reported. 
The results show that the performance of ANFIS based sensor 
models is sensitive to the quality of data. The paper also 
discusses how to reduce the sensitivity by an improved 
mathematical algorithm.  

 

 
Index Terms— ANFIS-GRID, Data quality, Inferential 

control scheme, Soft sensor, Error rate, Magnitude of error 
 

I. INTRODUCTION 
  Soft sensing allows difficult to measure process variables 

to be inferred from other easily made measurements [1]. All 
soft sensors are based on an inferential model that represents 
the dynamics between the inputs, or easily measurable 
variables, and the output, or undetectable variables. Listed 
below are some commonly used approaches for the 
development of the inferential modeling module: 

• Physical Model 
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• Neural Network 

• Fuzzy Logic 

• Adaptive Neuro-Fuzzy Inference System (ANFIS) 

Recent research demonstrates the use of ANFIS in the 
development of a soft sensor model that estimated the average 
air temperature in a distributed heating system [2]. The 
estimated average air temperature allows for a closed-loop 
boiler control scheme (see the feedback loop through dashed 
line in Fig. 1), resulting in higher energy efficiency and 
improved comfort. In the current practice , due to the absence 
of economic and technically reliable method for measuring the 
overall comfort level in the buildings, the boilers are normally 
controlled to maintain the supply water temperature as a 
predefined level that normally does not reflect the heating 
demand of the buildings (see the solid feedback loop in Fig. 1) 
[3]. 

For ANFIS based soft sensor models, when 
estimation/prediction accuracy is concerned, it is assumed that 
both the data used to train the model and the testing data to 
make estimations are free of errors [4]. But rarely a dataset is 
clean before extraordinary effort having been made to clean 
the data. For this problem of average air temperature 
estimation, with the measurement errors in the input variables 
of the model, it is not unusual to have some uneven patterns in 
the dataset. This paper is aiming to analyze the impact of data 
quality of both training and testing datasets on the estimation 
accuracy of the developed model.  

The paper is organized as follows. Section 2 will discuss the 
development of ANFIS based soft sensor model. Impact of 
data quality on ANFIS performance is analyzed in section 3. 
Results are presented in Section 4. Finally, conclusion of the 
research is given. 

 

 
 

Fig. 1 Block diagram representation of closed-loop boiler control scheme. 
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II.  ANFIS BASED SOFT SENSOR MODEL 
As an AI technique, “Soft Computing”, integrates powerful 

artificial intelligence methodologies such as neural networks 
and fuzzy inference systems. While fuzzy logic performs an 
inference mechanism under cognitive uncertainty, neural 
networks posses exciting capabilities such as learning, 
adaption, fault-tolerance, parallelism and generalization. 
Since Jang proposed ANFIS, its applications are numerous in 
various fields, including engineering, management, health, 
biology and even social sciences [5].  

ANFIS is a multi-layer adaptive network-based fuzzy 
inference system. An ANFIS consists of a total of five layers to 
implement different node functions to learn and tune 
parameters in a fuzzy inference system (FIS) structure using a 
hybrid learning mode. In the forward pass of learning, with 
fixed premise parameters, the least squared error estimate 
approach is employed to update the consequent parameters 
and to pass the errors to the backward pass. In the backward 
pass of learning, the consequent parameters are fixed and the 
gradient descent method is applied to update the premise 
parameters. Premise and consequent parameters will be 
identified for membership function (MF) and FIS by repeating 
the forward and backward passes. ANFIS has been widely 
used in prediction problems and other areas. 

ANFIS based soft sensor model developed in this research 
infers the average air temperature, Tavg, from three easily 
measurable variables. The three variables are external 
temperature, T0, solar radiation, Qsol, and energy consumed by 

the boilers, Qin [6]. The FIS structure is generated by Grid 
partitioning method.  

Grid partition divides the data space into rectangular 
sub-spaces using axis-paralleled partition based on 
pre-defined number of MFs and their types in each dimension. 
The wider application of grid partition in FIS generation is 
blocked by the curse of dimensions. The number of fuzzy rules 
increases exponentially when the number of input variables 
increases. For example, if there are m MFs for each input 
variable and a total of n input variables for the problem, the 
total number of fuzzy rules is mn. It is obvious that the wide 
application of grid partition is threatened by the large number 
of rules. According to Jang, grid partition is only suitable for 
cases with small number of input variables (e.g. less than 6). In 
this research, the average air temperature estimation problem 
has three input variables. It is reasonable to apply the grid 
partition to generate FIS structure, ANFIS-GRID. Fig. 2 
shows the model structure for ANFIS-GRID. 

Gaussian type MFs, as shown in Fig. 3, is used for 
characterizing the premise variables. Each input has four MFs, 
thus there are 64 rules. 

The developed structure is trained using hybrid learning 
algorithm. The parameters associated with the MFs change 
through training process. The shape of MFs also changes after 
training. This concept is clearly visible from the shape of MFs 
for T0 in Fig. 3. The shape of MFs for other two variables, Qin 
and Qsol, is not clearly changed after training process, but the 
associated parameters have changed significantly. 

 
 

Fig. 2 ANFIS-GRID model structure 
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Fig. 3 MFs for Qin, Qsol and T0 before and after training 

 

A. Training and Testing Data 
Experimental data obtained from a laboratory heating 

system is used for training and testing of the developed model 
[7]. The laboratory heating system is located in Milan, Italy. 
The details of experimental data collection for the four 
variables, Qin, Qsol, T0 and Tavg, are given by the authors [2], 

[6]. The dataset used for the training of ANFIS-GRID has 
1800 input-output data pairs and is shown in Fig. 4. 

The experimental data used for checking the performance of 
the developed model is shown in Fig. 5. The testing dataset has 
7132 data pairs, which is large enough as compared to training 
dataset used for the development of the model. 
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Fig. 4 Training dataset (February 2000: day 22 to day 27) 
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Fig. 5 Testing dataset (February 2000: day 1 to day 21) 
 

III. IMPACT OF DATA QUALITY 

Data quality is generally recognized as a multidimensional 
concept [8]. While no single definition of data quality has 
been accepted by the researchers working in this area, there is 
agreement that data accuracy, currency, completeness, and 
consistency are important areas of concern [9]-[12]. This 
study is primarily concerned about the data accuracy, defined 
as conformity between a recorded value and the corresponding 
actual data value. 

Several studies have investigated the effect of data errors on 
the outputs of computer based models. Bansel et al. studied 
the effect of errors in test data on predictions made by neural 
network and linear regression models [13]. The training 
dataset applied in the research was free of errors. The research 
concluded that the error size had a statistically significant 
effect on predictive accuracy of both the linear regression and 
neural network models. O’Leary investigated the effect of data 
errors in the context of a rule-based artificial intelligence 
system [14]. He presented a general methodology for 
analyzing the impact of data accuracy on the performance of an 
artificial intelligence system designed to generate rules from 
data stored in a database. The methodology can be applied to 
artificial intelligence systems that analyze the data and 
generate a set of rules of the form “if X then Y”. It is often 
assumed that a subset of the generated rules is added to the 
system’s rule base on the basis of the measure of the 
“goodness” of each rule. O’Leary showed that the data errors 
can affect the subset of rules that are added to the rule base and 
that inappropriate rules may be retained while useful rules are 
discarded if data accuracy is ignored. 

Wei et al. analyzed the effect of data quality on the 
predictive accuracy of ANFIS model [15]. The ANFIS model 
is developed for predicting the injection profiles in the Daqing 
Oilfields, China. As the study is using experimentally 

collected data for training and testing of the ANFIS model, it 
is not unusual to have some extreme patterns in the dataset. 
The research analyzed the data quality using TANE algorithm. 
They concluded that the cleaning of data has improved the 
accuracy of ANFIS model from 78% to 86.1%. 

In this research the experimental data collected from a 
laboratory heating system is used for training and testing of 
the developed ANFIS-GRID model. The data collected has 
some uneven patterns. In this section we will discuss the 
experiments conducted to examine the impact of data quality 
on the predictive performance of the developed ANFIS-GRID 
model. 

A. Experimental Methodology 

Data errors may affect the accuracy of the ANFIS based 
models in two ways. First, the data used to build and train the 
model may contain errors. Second, even if training data are 
free of errors, once the developed model is used for estimation 
tasks a user may use input data containing errors to the model. 

The research in this area has assumed that data used to train 
the models and data input to make estimation of the processes 
are free of errors. In this study we relax this assumption by 
asking two questions: (1) What is the effect of errors in the test 
data on the estimation accuracy of the ANFIS based models? 
(2) What is the effect of errors in the training data on the 
predictive accuracy of the ANFIS based models? 

While many sources of error in a dataset are possible, we 
assume that the underlying cause of errors affect data items 
randomly rather than systematically. One source of inaccuracy 
that may affect a dataset in this way is the measurement errors 
caused by reading the equipment. This type of error may affect 
any data item in the dataset and may understate or overstate the 
actual data value. This study does not address the effect of 
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systematic data errors on the estimations made by the ANFIS 
based models.  

Two experiments are conducted to examine the research 
targets. Both the experiments used the same application 
(estimation of average air temperature) and the same dataset.  

Experiment 1 examines the first research question: What is 
the effect of errors in the test data on the estimation ability of 
the ANFIS based models? Experiment 2 examines the second 
research option: What is the effect of errors in the training data 
on the accuracy of the ANFIS based models? 

B. Experimental Factors 
There are two factors in each experiment: (1) fraction-error 

and (2) amount-error. Fraction-error is the percent of the data 
items in the appropriate part of the dataset (the test data in 
experiment 1 and the training data in experiment 2) that are 
perturbed. Amount-error is the percentage by which the data 
items identified in the fraction-error factor are perturbed. 
 
Fraction-error 
 Since fraction-error is defined as a percent of the data items 
in a dataset, the number of data items that are changed for a 
given level of fraction-error is determined by multiplying the 
fraction-error by the total number of data items in the dataset. 

Experiment 1 
The test data used in experiment 1, shown in Fig. 5, has four 

data items (one value for each of the four input and output 
variables for one entry of the total 7132 data pairs). This 
experiment examines all of the possible number of data items 
that could be perturbed. These four levels for fraction-error 
factor are: 25% (one data item perturbed), 50% (two data items 
perturbed), 75% (three data items perturbed), and 100% (4 
data items perturbed) 

 
Experiment 2 
 The training data used in experiment 2 contains 1800 data 
pairs (one value for each of the four input and output variables 
for 1800 entries). Four levels of the fraction-error factor are 
tested: 5% (90 data items are perturbed), 10% (180 data items 
are perturbed), 15% (270 data items are perturbed), and 20% 
(360 data items are perturbed). 
 
  
Amount-error 
 For both the experiments, the amount-error factor has two 
levels: (1) plus or minus 5% and (2) plus or minus 10%. The 
amount-error applied to the dataset can be represented by the 
following set of equations: 
 

0.05y y y′ = ± ×                 (1) 
0.1y y y′ = ± ×                 (2) 

 For equations (1) and (2), y′ is the value of the variable 
after adding or subtracting the noise error to the unmodified 
variable y . 

C. Experimental Design 
The experimental design is shown in Table 1. Both the 

experiments have four levels for the fraction-error factor and 
two levels for the amount-error. For each combination of 
fraction-error and amount-error, four runs with random 
combinations of the input and output variable are performed. 

Although the levels of the fraction-error are different in the 
two experiments, the sampling procedure is the same. For each 
fraction-error level, the variables are randomly selected to be 
perturbed. This is repeated a total of four times per level. Table 
2 shows the combinations of the variables for experiment 1. 

 

Table 1.  Experimental Design 

Experiment 1 (Errors in the Test data) 

Fraction-error levels (25%, 50%, 75%, and 100%) 4 

Amount-error levels (5%, and 10%) 2 

Number of random combinations of the variables considered 
within each fraction-error level 

4 

Total number of samples considered 7132 

Experiment 2 (Errors in the Training data) 

Fraction-error levels (5%, 10%, 15%, and 20%) 4 

Amount-error levels (5%, and 10%) 2 

Number of random combinations of the variables considered 
within each fraction-error level 

4 

Total number of samples considered 1800 

IAENG International Journal of Computer Science, 37:1, IJCS_37_1_08
______________________________________________________________________________________

(Advance online publication: 1 February 2010)



 
 

 

Table 2.  Four combinations of the variables for each fraction-error level in Experiment 1 
Fraction-Error 

Level 
 

Input and Output Variable Combination 

1 2 3 4 

25% ( )inQ  ( )solQ  ( )0T  ( )avgT  

50% ( )0,inQ T  ( ),in avgQ T  ( )0,solQ T  ( )0,avgT T  

75% ( )0, ,in solQ T Q  ( )0, ,in avgQ T T  ( ), ,in avg solQ T Q  ( )0 , ,avg solT T Q  

100% ( ), , ,in avg sol avgQ T Q T  ( ), , ,in avg sol avgQ T Q T  ( ), , ,in avg sol avgQ T Q T  ( ), , ,in avg sol avgQ T Q T  

Table 3.  Randomly assigned percentage increase (+) or decrease (-) for a given amount-error level in Experiment 1 

Fraction-Error 
Level 

 

Input and Output Variable Combination 

1 2 3 4 

25% ( )inQ  

- 
( )solQ  

+ 
( )0T  

+ 
( )avgT  

- 
50% ( )0,inQ T  

+,- 
( ),in avgQ T  

-,- 

( )0,solQ T  

+,+ 
( )0,avgT T  

-,+ 
75% ( )0, ,in solQ T Q  

+,-,- 
( )0, ,in avgQ T T  

-,+,- 
( ), ,in avg solQ T Q  

+,+,- 
( )0 , ,avg solT T Q  

+,-,+ 
100% ( ), , ,in avg sol avgQ T Q T  

-,+,-,+ 
( ), , ,in avg sol avgQ T Q T  

+,+,+,+ 
( ), , ,in avg sol avgQ T Q T  

-,-,+,+ 
( ), , ,in avg sol avgQ T Q T  

-,-,-,+ 
 

Table 4.  Experiment 1 Results: RMSE (0C) Values as Error Level in the Test Data Varies 
Fraction-Error  

 
 

Amount-Error 

 
0% 

 
25% 

 
50% 

 
75% 

 
100% 

0% 0.56     

5%  1.58 1.62 3.52 5.20 

10%  2.10 4.51 6.01 6.78 

 

Table 5.  Experiment 2 Results: RMSE (0C) Values as Error Level in the Training Data Varies 
Fraction-Error  

 
 

Amount-Error 

 
0% 

 
5% 

 
10% 

 
15% 

 
20% 

0% 0.56     

5%  2.32 1.62 1.58 7.20 

10%  3.21 4.51 5.11 8.12 
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Second, for each level of the amount-error factor, each 
variable is randomly assigned either a positive or negative sign 
to indicate the appropriate amount-error to be applied. Table 3 
shows the randomly assigned amount-error levels in 
experiment 1. The procedure for experiment 2 differs only in 
the number of variables that were randomly selected to be 
perturbed for the four levels of the fraction-error factor. 

D. Experimental Result 
 For both the experiments, the measured average air 
temperature values and ANFIS-GRID estimated average air 
temperature values are compared using Root Mean Square 
Error (RMSE) as a measure of estimation accuracy. 
 
Experiment 1 Results: Errors in the Test Data 
 Estimation accuracy results, using the simulated 
inaccuracies for amount-error and fraction-error for the 
average air temperature estimation are given in Table 4. Table 
4 shows that as fraction-error increases from 25% to 100%, 
RMSE increases indicating a decrease in predictive accuracy. 
As amount-error increases from 5% to 10%, RMSE increases 
also indicating a decrease in estimation accuracy. Both 
fraction-error and amount-error have an effect on predictive 
accuracy. 
Experiment 1 Results: Errors in the Test Data 
 Predictive accuracy results, using the simulated 
inaccuracies for amount-error and fraction-error for the 
average air temperature estimation are given in Table 5. Table 
5 shows that as fraction-error increases from 5% to 20%, 
RMSE increases indicating a decrease in predictive accuracy.  

IV. TANE ALGORITHM FOR NOISY DATA DETECTION 
Data quality analysis results show that the errors in the 

training data as well as in the testing data affect the predictive 
accuracy of the ANFIS based soft sensor models. This section 
discusses an efficient algorithm, TANE algorithm, to identify 
the noisy data pairs in the dataset.  

A. Functional Dependencies 

The raw data is analyzed using approximate functional 
dependence mining method. An approximate dependency, or 
an approximate functional dependency, is a functional 
dependency that is almost valid with the exception of data 
tuples. A functional dependency studies the relationship of 
attributes in one or several tables, and claims that the value of 
an attribute is uniquely determined by the values of some other 
attributes. The discovery of functional dependencies in 
databases leads to useful knowledge and data quality 
problems. 

More formally, a functional dependency over a relation is 
expressed as X A→ , where X R⊆  and A R⊆ . The 
dependency is valid in a given relation r  if for all pairs of 
records t , u r∈ , following statements hold: if 

( ) [ ]t B u B=  for all B X∈ , then ( ) [ ]t A u A= . A 

functional dependency X A→  is trivial if A X∈ . The 
task in functional dependency mining is to find all minimal 
non-trivial dependencies that hold in r . 

Approximate dependencies arise in many databases when 
there are natural dependencies between attributes, but some 
records contain errors and inconsistencies. For example, the 
relationship between zip code and the combination of city and 
state in a country. Another example is the social security 
number (SSN) and a corresponding person residing in the 
USA. Theoretically, these attributes have consistent 
relationships, as one person associated with one SSN, and one 
zip code associated with one combination of city, state in a 
country. But if errors are somehow introduced, the 
relationships between these attributes will be violated, which 
leads to the approximate dependencies. 

 

B. TANE Algorithm 
The TANE algorithm, which deals with discovering 

functional and approximate dependencies in large data files, is 
an effective algorithm in practice [16]. The TANE algorithm 
partitions attributes into equivalence partitions of the set of 
tuples. By checking if the tuples that agree on the right-hand 
side agree on the left-hand side, one can determine whether a 
dependency holds or not. By analyzing the identified 
approximate dependencies, one can identify potential 
erroneous data in the relations. 
In this research, relationship of the three input parameters (Qin, 
Qsol, and T0) and the average air temperature (Tavg) is analyzed 
using TANE algorithm. For equivalence partition, all the four 
parameters are rounded off to zero decimal points. 

After data pre-processing, four approximate dependencies 
are discovered, as shown in Table 6. Although all these 
dependencies reflect the relationships among the parameters, 
the first dependency is the most important one because it 
shows that the selected input parameters have consistent 
association relationship with the average air temperature 
except a few data pairs, which is a very important dependency 
for average air temperature estimation. 

To identify exceptional tuples by analyzing the 
approximate dependencies, it is required to investigate the 
equivalence partitions of both left-hand and right-hand sides 
of an approximate dependency. It is non-trivial work that 
could lead to the discovery of problematic data. By analyzing 
the first dependency, conflicting tuples are identified as some 
of them are given as bold entries in Table 7. From Table 7, one 
can see that detected tuples contain conflicting relationships 
or associations among parameter, and some of them contain 
severe ones. For example, as the same parameters in tuples 3 
and 4, and tuples 7 and 8, the average air temperature values 
for these cases bear large difference. These data pairs could 
create trouble for average air temperature estimation. Based on 
the data trend, pairs 4, 7, 23, 24 are detected as conflicting 
tuples and are fixed using appropriate methodology. Table 2 
shows only a small part of the total dataset. The total dataset 
has 7132 data pairs. For the first approximate dependency 
from Table 6, 42 conflicting data pairs are present which needs 
to be fixed for better performance of ANFIS-GRID model. 

The TANE algorithm, which deals with discovering 
functional and approximate dependencies in large data files, is 
an effective algorithm in practice [16]. The TANE algorithm 
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partitions attributes into equivalence partitions of the set of 
tuples. By checking if the tuples that agree on the right-hand 
side agree on the left-hand side, one can determine whether a 
dependency holds or not. By analyzing the identified 
approximate dependencies, one can identify potential 
erroneous data in the relations. 

In this research, relationship of the three input parameters 
(Qin, Qsol, and T0) and the average air temperature (Tavg) is 
analyzed using TANE algorithm. For equivalence partition, all 
the four parameters are rounded off to zero decimal points. 

After data pre-processing, four approximate dependencies 
are discovered, as shown in Table 6. Although all these 
dependencies reflect the relationships among the parameters, 
the first dependency is the most important one because it 
shows that the selected input parameters have consistent 
association relationship with the average air temperature 
except a few data pairs, which is a very important dependency 
for average air temperature estimation. 

Table 6.  Approximate functional dependencies detected 
using the TANE algorithm 

Index Approximate 
dependencies 

Number of rows with 
conflicting tuples 

1 0, ,in sol avgQ Q T T→  42 

2 
0, ,in avg solQ T T Q→  47 

3 
0, ,in sol avgQ Q T T→  43 

4 
0, ,sol avg inQ T T Q→  54 

V. RESULTS 

A. Model Validation 

The developed ANFIS-GRID model is validated using 
experimental results [7].The model performance is measured 
using the following statistical indices: 

RMSE 

( )
1

1 ˆ( ) ( )
N

avg avg
i

RMS E T i T i
N =

= −∑                (3) 

R2, Coefficient of determination, tells us how much of the 
experimental variability is accounted for by the estimate 
model.  

2

2 1

2

1

ˆ ( )

( )

N

avg avg
i
N

avg avg
i

T i T
R

T i T

=

=

 − 
=

 − 

∑

∑
,                         (4)  

For equations (3) and (4), N is the total number of data 

pairs, âvgT is the estimated and avgT is the experimental value 

of average air temperature. avgT is the average of experimental 

data. 

B. Results 

Initially, ANFIS-GRID model uses the raw data for both the 
training as well as the testing. Fig. 6 compares ANFIS-GRID 
estimated average air temperature values with the experimental 
results. ANFIS-GRID estimated average air temperature 
values are in agreement with the experimental results, with 
RMSE 0.560C. However there are some points at which 
estimation is not following the experimental results. For 
example, around 1900-2200 and 5100-5200 hour of the year 
time, there is a significant difference between estimated and 
experimental results. 

For checking the effect of data quality on ANFIS-GRID 
performance, the training and testing datasets are cleaned 
using TANE algorithm. The conflicting data pairs are replaced 
with the required data pairs. Then the cleaned dataset is 
applied for the training and the testing of ANFIS-GRID 
model. A comparison of the model output with clean data and 
the experimental results is shown in Fig. 7. 

Table7.  Conflicting tuples identified by analyzing the 
first approximate dependency in Table 6 

Index Qin Qsol  T0 Tavg 

1 276 0 2 17 

2 5168 283 3 17 

3 6415 4576 3 18 

4 6412 4572 3 21 
5 12030 8579 5 21 

6 12601 4306 6 21 

7 11778 8896 4 21 

8 10501 8875 4 18 

9 12651 3107 6 21 

10 12575 0 5 21 

11 9448 0 4 18 

12 5296 0 3 22 

13 10595 0 1 18 

14 9384 0 0 18 

15 8794 0 -1 18 

16 7340 0 -1 18 

17 7465 0 -2 18 

18 6886 0 -3 17 
19 7605 0 -3 18 
20 7409 115 -2 18 
21 11406 5262 1 21 
22 6367 0 8 18 
23 7344 0 -1 21 
24 7456 0 -2 21 
25 8472 1014 7 17 
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Fig. 6 Comparison of ANFIS-GRID estimated and measured average temperature values. 
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Fig. 7 Comparison of ANFIS-GRID estimated (with clean data) and the measured average air temperature values. 
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Fig. 8 Coefficient of determination with raw data 
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Fig. 9 Coefficient of determination with clean data 
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Table 3.  Comparison of results 

Model RMSE 
(0C) 

R2 

ANFIS-GRID using 
raw data 

0.56 0.7831 

ANFIS-GRID using 
cleaned data 

0.35 0.8945 

 
Fig. 7 and Table 3 clearly show the effect of data quality on 

predictive accuracy of ANFIS-GRID model. The RMSE is 
improved by 37.5% to 0.350C. RMSE is considered as a 
measure of predictive accuracy. Less RMSE means less 
difference between the estimated values and the actual values. 
Finally, predictive accuracy is improved with decrease in 
RMSE. Fig. 8 and Fig. 9 show the improvement in R2 values.  

VI. CONCLUSION  

ANFIS-GRID based soft sensor model has been developed 
to estimate the average air temperature in distributed heating 
systems. This model is simpler than the subtractive clustering 
based ANFIS model [2] and can be used as the air temperature 
estimator for inferential control scheme for distributed heating 
systems (Fig. 1). Grid partition based FIS structure is used as 
there are only three input variables. The training dataset is also 
large enough as compared to the modifiable parameters of the 
ANFIS. As the experimental data is used for both the training 
as well as the testing of the developed model, it is expected 
that data can have some discrepancies.  The discrepancies in 
the data can be the measurement errors due to reading and 
equipment. TANE algorithm is used to identify the 
approximate functional dependencies among the input and the 
output variables. The most important approximate dependency 
is analyzed to identify the data pairs with uneven patterns. The 
identified data pairs are fixed and again the developed model 
is trained and tested with the cleaned data. Table 3 shows that 
the RMSE is improved by 37.5% and R2 is improved by 12%. 
Therefore, it is highly recommended that the quality of 
datasets should be analyzed before they are applied in ANFIS 
based modelling. 

Future work can be focused on analyzing the affect of 
adding feedback to ANFIS-GRID model. From the analysis, it 
can be concluded that if the model output is less sensitive to 
the errors in the dataset. Further research can be concentrated 
on the development of an adaptive and robust control scheme 
using the average air temperature estimator (Fig. 1). 
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