
 
 

 

  
Abstract—The aim of hybrid algorithm is to distinguish the 

best solution of optimization problem with a low cost function 
and CPU time. In this work we shall consider an effective 
method for solving inverse electromagnetic problem by applying 
a new hybrid algorithm. The new approach combines the 
adaptive simulated annealing and generalized pattern search 
method. The GPS algorithm is used for accurate local 
exploration to complement the global exploration provided by 
the ASA. To have the quality of this hybrid algorithm the 
performances of HASAGPS are compared with other 
algorithms such as hybrid genetic algorithm pattern search 
(HGAPS) and simplex genetic algorithm (SGA) in term of 
accuracy of the solution and computation time. The improved 
method ASAGPS is applied for solving inverse electromagnetic 
problem. The coupled electromagnetic circuits method (CECM) 
and the hybrid approach (HSAGPS) are used to characterize the 
electric conductivity and magnetic permeability of a circular 
material under test. The reached results suggest that the 
proposed algorithm has an excellent effectiveness in finding best 
solution.  
 

Index Terms—Coupled Electromagnetic Circuits Method, 
Generalized Pattern Search, Adaptive Simulated Annealing, 
Genetic Algorithm, Simplex method, Parameters Identification.  
 

I. INTRODUCTION 

  Optimization of devices is one of the main problems in 
electromagnetic area that is associated to a general set of 
inverse problems including synthesis, defect detection, 
identification [1][2][3]. Optimization is the hunt of the best 
solution of a function that is commonly referred to as cost 
function. This function is dependent on the propose variables, 
which are the unknown system parameters. The objective of 
the optimization process is to determine the values of these 
variables that minimize the cost function. In addition to 
optimizing the objective function, the design has to meet 
certain specifications which may be represented 
mathematically by constraint equations.   

Several heuristic tools have evolved in the past decades that 
facilitate solving inverse electromagnetic problem or 
optimization problem that were previously difficult or 
impossible to solve. These tools include evolutionary 
computation, simulated annealing, tabu search, particle 
swarm, and so forth [2]. It is required to make use several 
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well-known methods for decrease the time when we solve the 
inverse electromagnetic problem. The goal of this paper is to 
propose a new hybrid approach, for solving inverse 
electromagnetic problem in electrical engineering, for reduce 
the time CPU and reach the best solution. 

The inverse electromagnetic problem (IEP) needs a 
forceful technique to distinguish its optimal solution when it 
is multimodal. Sometimes, finding the global solution of an 
inverse electromagnetic problem is a principally difficult. To 
overcome this difficulty, robust methods were found to 
calculate the optimal solution. However, Methods used for 
finding of the global minimum or global solution demand 
much more time than methods for finding of a local minimum 
[3]. Indeed, at the worst it is necessary to find all local 
minima, and then by their comparison allocate the global 
minimum. To reduce the search time for the global minimum, 
methods of meta-heuristics [2] can be applied. A 
meta-heuristic, such as adaptive simulated annealing method 
[4][5][6] may provide a good solution to this problem. The 
ASA algorithm present some great advantage over classical 
gradient methods: they are able to find the global solution and 
they do not require the use of derivatives.   

Recently, the methods using adaptive simulated annealing 
are widely used because they are simple to use and are 
well-organized. But the convergence theory for ASA is 
reviewed, as well as recent advances in the analysis of finite 
time performance [5]. Especially, in the optimal 
electromagnetic field where the functions are frequently 
nonlinear and multimodal, the adaptive simulated annealing 
cannot afford the adequate fidelity of the electromagnetic 
inverse problem because the convergence to an optimal 
solution cannot theoretically be guaranteed after a number of 
iterations. To overcome the slow convergence of adaptive 
simulated annealing, we will integrate it with the generalized 
pattern search technique [7]. The pattern search, which does 
not require derivative information and indeed is one of the 
“derivative-free” direct search methods [8], can render the 
procedure efficient and robust and provided a very simple and 
effective means of searching the minima of objective function 
directly with several local solutions.   

For the improved HASAGPS algorithm, the adaptive 
simulated annealing and generalized pattern search algorithm 
are integrated to obtain a robust and an efficient process. 
Interestingly, when a combination of adaptive simulated 
annealing and the generalized pattern search method was 
applied, an even better result was achieved. This can be 
explained with the fact that the two methods have different 
strengths. The adaptive simulated annealing is very good at 
finding the correct area of the solution, tolerant of local 
maxima and minima, and the generalized pattern search 
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method is excellent at refining a solution systematically to the 
nearest maximum or minimum. The new algorithm is better 
equipped for global optimization because it is more 
aggressive in the exploration of the search space. This 
improved hybrid algorithm can be worked adequately when 
the cost function is multimodal. 

In this paper deals with the identification of material 
parameters using an inverse approach. The method based on 
the use of coupled electromagnetic circuits method 
(CECM-code) and hybrid adaptive simulated annealing 
generalized pattern search algorithm (HASAGPS). The 
identified material parameters are the relative permeability 
and electric conductivity. In order to quantify the quality of 
the agreement between the measured and calculated 
responses, an objective or cost function has to be defined.  

 

II.  NEW HYBRID  METHOD 

A. Adaptive Simulated Annealing 

Simulation optimization by simulated annealing was first 
described by Kirkpatrick et al [9], and is based on work by 
Metropolis et al [2][5] in the area of statistical mechanics.  
Metropolis devised a method of simulating the behavior of a 
collection of atoms at various temperatures. For this, at higher 
temperatures atoms are more likely to move to new locations 
in a collection than they are at lower temperatures. SA is 
inspired from the heating process of a crystalline structure. 
That metal is slowly lowered until it achieves its regular 
crystal pattern. 

Simulated annealing (SA) is a random-search technique 
which exploits an analogy between the way in which a metal 
cools and freezes into a minimum energy crystalline structure 
(the annealing process) and the search for a minimum in a 
more general system; it forms the basis of an optimization 
technique for combinatorial and other problems [10]. 
Annealing is the physical process of heating up a solid metal 
above its melting point and then cooling it down so slowly 
that the highly excited atoms can settle into a (global) 
minimum energy state, yielding a single crystal with a regular 
structure. 

A simulated annealing optimization starts with a metropolis 
Monte Carlo simulation at a high temperature [1]. This means 
that a relatively large percentage of the random steps that 
result in an increase in energy will be accepted. After a 
sufficient number of Monte Carlo steps, or attempts, the 
temperature is decreased. The metropolis Monte Carlo 
simulation is then continued. This process makes a sequence 
of state for reach the final temperature with regular crystal 
pattern. If the new state is better than the previous, it becomes 
the current solution for the next steps. The acceptance of the 
novel solution is according to the Metropolis’s condition 
based on the Boltzman’s probability [2][9][10]. The 
acceptance probability of accepting solution point j', is 
defined by:  

 
 )/exp( ' kTCjCjP −=  (1) 

 
Where k is a physical constant known as the Boltzman’s 

constant and T is the temperature of the heat bath, C j' is the 
current energy state for the system and Cj is a subsequent 
energy state. If 0' ≤− CjCj , j' is accepted as a starting point 

for the next iteration; otherwise, solution j' is accepted with 
probability (1). The above procedure is repeated n time until 
temperature T is reduced. The aim of the Metropolis’s 
succession is to authorize the system to attain thermal 
equilibrium [10].   

In practice, a geometric cooling schedule is generally 
utilized to have SA settle down at some solution in a finite 
amount of time. It has been proved by some authors that by 
carefully controlling the rate of cooling of the temperature, 
SA can find the global optimum. However, this requires 
infinite time. Fast annealing and very fast simulated 
reannealing (VFSR) or adaptive simulated annealing (ASA) 
are each in turn exponentially faster and overcome this 
problem [5].  

The first simulated annealing employed Gaussian 
distribution as a generator and was proposed by Kirkpatrick 
[9]. In 1987, Szu and Dartly [1] proposed a fast simulated 
annealing by using Cauchy/Lorentzian distribution. Another 
modification of the SA, the so-called adaptive simulated 
annealing was proposed by Ingber [6][5] and was designed 
for optimization problem in a constrained search space. For a 
parameter xk in dimension i at annealing time k with rang xk ∈  

[ max
ix , min

ix ], the new value is generated by:  
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Where iλ ∈ [-1, 1], max

ix and min
ix are the maximum and 

minimum of the i th domain. This is repeated until a legal ix  

between max
ix and min

ix is generated. The generating function 

for iλ is [6]:  
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To simplify this generating function for iλ a uniform 

distribution is preferred. Each parameter is generated using a 
cumulative function. By the procedure of Ingber it can be seen 
to choose ( ) ii uT,g =λ ; where iu  is the uniform 

distribution function. To calculate iλ  according to the 

preceding distribution, we can apply this formulation [5]:  
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Where ui is a distributed random variable between 0 and 1. 

A rule for decreasing the temperature T is a main element in 
cooling down the system in the ASA algorithm. According to 
the idea of Ingber a global optimum can be obtained 
statistically if the annealing schedule is:  
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Where ci is a user-defined parameter whose value should be 

selected according to the guidelines in reference [5][6] [10], 
but n is the dimension of the space under exploration. In 
calculation, the temperature may reduce after pre-determined 
increments of iterations.  

A significant component of an ASA code is the random 
number generator, which is used both for generating random 
changes in the control variables and for the (temperature 
dependent) increase-acceptance test.  

B. Generalized Pattern Search 

Pattern search, though less commonly used today than 
simulated annealing, has been used in many contexts since it 
was first described by Hooke and Jeeves in 1961.  Pegden and 
Gately [11] used pattern search as the basis for a simulation 
optimization module they designed to work with a simulation 
programming language. More recently, Torczon [12] 
introduced and analyzed the PS for derivative-free 
unconstrained optimization. This technique has been 
exploited by some authors to take account of non linear 
constrained.  

Generalized Pattern search method is a class of direct 
search method for solving non linear optimization problems. 
Compared to the direct search, the Generalized Pattern search 
is a relatively new heuristic approach to minimizing nonlinear 
and non differential functions in a real and continues space 
[7][8]. The advantage of this procedure is their aptitude to 
locate most favorable solution without the make necessary 
derivatives. The pattern search algorithms find a sequence of 
points that approaches the optimal point. 

 
                  Fig. 1 The sample used in pattern search 

 
The generalized pattern search is based on two ways, in 

each iteration, an optional search and local poll. The first is a 
user specified method, that is allowed to complete an 
exploration moves (mesh) around the current point. In the 
second, the complete poll computes the objective function 
values at all mesh points. The local poll computes the 
objective function at the mesh points to see if there is one 
whose function value is less than the function value at the 
current point. If the pattern search finds a mesh point that 
improves the value of the objective function, it stops the poll 
and sets that point as the current point for the next iteration. 
When this occurs, some mesh points might not get polled. 
Some of these unpolled points might have an objective 
function value that is even lower than the first one the pattern 
search finds.  

To construct the defining mesh it is more important to find 

a set of positive spanning direction D in nℜ [7][12]. At each 
iteration, a set of positive directions is used to create trial 

points. The positive spanning sets are constructed by the 
vectors as{ }nn eeee −− ,..,,,.., 11

[12]. Where ie is the i th unite 

cartesian vector. The Fig. 1 illustrates the formation of the 
model used in pattern search. The mesh at the current iterates 
is given by:  

 
 { }Kkkk DddxM ∈+= :α    (6) 

 
Where D is a positive spanning domain of direction d, α  

the mesh size parameter for control the cost fitness.  
The essential of this intelligent method is as follows; at the 

first iteration, the poll step is accepted by computing the 
objective functions around the current point xk if the 
difference 0)(-)d ( k <+ kkk xfxf α  is verified, in this 

case the poll is successful. After a successful poll, the 
algorithm multiplies the current mesh size by 2. In the 
contrary case, if all the values on the pattern be unsuccessful 
to generate a reduced, the mesh dimension is decreased or the 
algorithm multiplies the current mesh size by 0.5. In this case, 
the poll is unsuccessful and the algorithm does not change the 
current point at the next iteration. The GPS algorithm will 
reiterate the poll and search phases until it finds the best 
solution of the cost function.  

C. Combining ASA and GPS 

The development of the hybrid adaptive simulated 
annealing was conducted through the combination of global 
and local search. The designed method has both the 
advantages of adaptive simulated annealing, the ability to find 
global result and evade premature convergence, and that of 
GPS algorithm, the capacity to perform a local search.  

The new hybrid ASAGPS algorithm is explained in the 
following section. First, the adaptive simulated annealing 
searches the global optimum in the total solution region to 
obtain an optimal solution. Second, the GPS then operates on 
the solution using poll search, and an optional search to 
produce optimistically better solution. The best solution 
obtained from GPS is the initial solution of ASA for the next 
iteration. The ASA and GPS exchange continues until the 
required number iterations and the final temperature are 
completed. 

 

III.  INVERSE ELECTROMAGNETIC PROBLEM RESOLUTION 

A. Description of the System 

The test configuration chosen for the evaluation of the new 
hybrid optimization is shown in Fig. 2.  

The simplified 2D configuration is a circular conductive 
plate placed underneath a flat spiral coil where the 
optimization target is to identify the electric conductivity and 
magnetic permeability from the coil impedance measurement. 
The flat spiral coil is constituted of a bobbin with Nw wires (in 
our problem two wires). The bobbin is supplied by a 
sinusoidal voltage source with constant amplitude U and 
pulsation w. 

The forward problem (CECM-code) predicts the coil 
impedance calculation with more excitation frequencies using 
the coupled electromagnetic circuits method [13][14]. 
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                   Fig. 2 Example of typical joining application   
 

B. Electromagnetic Field Computation  

Our 2D-axisymmetrical case is based on the coupled 
electromagnetic circuits method [13] which permits to 
calculate the coil impedance sensor. The CECM analysis is 
used to calculate the coil impedance and the current densities 
from the magnetic potential vector A. Generally, this method 
is suitable for some hypothesis: 1) the geometry of system is 
axisymmetric. 2) the materials are linear and homogeneous.3) 
the regime is quasi-static harmonic. In this work, we can 
exploit it for solving materials properties determination 
inverse problem because this model is fast-running.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    
 a. Equivalent electric circuits 

 
 
 
 
 
 
 
 
 
                  b. CECM discritization  

 
Fig.3 Model of Coupled Electromagnetic Circuits Method 

 
The CECM consists in associating the integral type of the 

solution to a portion in elementary loops. In CECM only the 
conductive regions are meshed. The current densities are the 
unknown vector in the inductive coil and the load. To, the 
materials are discretized in elementary loops for determine 
these unknowns. The bobbin and load are represented by Nb 
and Np elementary coaxial loops respectively (Nb; Bobbin 
and Np; Plate). Each elementary loop is in magnetic 
interaction with itself and with the other ones. Each loop is 
discretized in several elements (Ne discretizations). So, the 
total number of unknowns is Nb+Np. The CECM mesh 

generated for the regions conductive is shown in Fig. 3.b for 
two wires. The relations between two loops can be explicated 
with the electric transformer model (Fig.3.a). Our 
discretization scheme is an extension of this electric 
transformer model [13]. 

Maxwell’s equations are a set of equations stating the 
relationship between the fundamental electromagnetic 
quantities. We are going to search from Maxwell’s equations 
and the Ohm’s law an equation that describes the 
electromagnetic phenomena in an elementary circular loop 
(Fig.4). This equation is the basis formulation of the coupled 
electromagnetic circuits method (CECM).  

 

 
Fig. 4 Representation of an elementary circular loop 

 
The magnetic and induction effects between the different 

domains in axisymmetric devices are represented by the 
Maxwell’s equations. Then, the mathematical model with 2D 
axisymmetrical case, for quasi-static problem can be written 
from Maxwell’s equations as follow:   

 

 
θσ

µ
eVdaGr

t

A
ARotRot

rr
)())(

1
( −

∂
∂−=  (7) 

 
Where V is the scalar potential due to the voltage U applied 

to one circle of the inductive loop (see Fig.4) andµ  is the 

magnetic permeability, σ is the conductivity of the 
investigated material (in this case is subdivided in 

sσ  and 

cσ for the source coil and the load respectively).  

The gradient of the potential in the circular reference is 
given by r2/Ue)V(daGr πθ −=rr

.In our problem the excitation 

varies sinusoidally with time then t/ ∂∂ can be written 
as ωj . 

From both the Maxwell’s equations and the Ohm’s law and 
considering the simplified notation of the gradient of the 
potential in the circular reference, the combination of 
electromagnetic system and the voltage supply, in elementary 
loop p, is given by:   

 

 ))(
)(

)((2)( pAj
pJ

prpU ω
σ

π +=  (8) 

 
To calculate the potential vector magnetic A at point p 

generated by the current densities J (q) at q point, we use Biot 
Savart’s law. This law is:    
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By simplification of this equation, the sum magnetic vector 

potential A in a known point p with the current densities, is 
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Note that:  
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WhereSis the gross section of the elementary loop p, r and 

z are cylindrical coordinates. The functions 1E and 2E  are 

the Legendre function of the first and second kinds. When 
applying circuit’s laws, the equation (10) is simplified (after 
elimination magnetic potential in our system) in a linear 
system as [14]:   

 
 ][]][[ BJZ =  (12) 

 
Where [J]  is the vector of current densities in the coil and 

the plate, [B]  is the vector of the elementary voltage at wire. 
But, the dimension of the square matrix [Z]  is the total 
number of the elementary loops in the source and the load and 
represents physically the impedance of the system (sensor).  

Once the magnetic vector potential has been determined, 
all electromagnetic field quantities can be calculated. The 
current densities in the conducting plate are expressed as:   

 
 )p(Aj)p(J ωσ−=  (13) 

 
The total impedance of the exciting coil can be calculated 

from the voltage supply and the current densities in the loops. 
In that case, the expression is: 
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Where Zcoil is the coil impedance of the eddy current 

sensor. 

C. Eddy Current Calculation 

The geometry of the problems considered is illustrated 
schematically in Fig.3.b. Considering the symmetry, the 
model is only designed for the half. The aim of the simulation 
study is to calculate the coil impedance from the current 
densities in the all system (bobbin). The parameters used in 
the computation for harmonic excitation are inner radius of 
the coil (r0 =2.5 mm), outer radius of coil (r1= 3.5 mm), coil 
width (l0 =1mm), the distance between coils is 1 mm (r2), 
relative permeability (

rµ =1 for coil and air, 100 for load), 

conductivity of half space (
sσ = 5.7e7 S/m for coil (copper) 

and 
cσ =7.6e6 S/m for load (steel)), lift off (e =1 mm). 

Frequencies used for excitation of the bobbin are 0.1 kHz to 
30 kHz. The piece to test is a cylinder of 0.80 mm thickness 
(l1) and the dimension of it is 14 mm length (l). The coil with 
two wires has been energized by voltage supply with U=30 V 

at several frequencies cited above. The model of the probe 
coil is showed in Fig.3.b. 

Table I shows the variation of the coil impedance with 
several frequencies using our CECM-code. The Fig.5 and 
Fig.6 show the distribution of the current densities in the load. 
It is important to choose an enough mesh to represent 
correctly the electromagnetic phenomena and then, to reduce 
the numerical errors that can influence the convergence of the 
identification process. In this case, every coil of this sensor 
contains 64 elementary loops distributed in 8 following the 
axial direction and 8 following the radial direction and we 
have considered 320 loops in the load (40 along the radial 
direction and 8 in the axial direction).  

 
Table I  The results from the CECM-code 

 
Calculations  

terms Results from CCM 

f (Hz) 100 400 1500 9000 30000 

Impedance  
Z(mΩ) 

1.612 1.898 3.997 21.037 69.042 

   

 
Fig. 5 Distribution of eddy current in load at frequency 3 kHz 

 

 
Fig. 6 Distribution of eddy current in load at frequency 10 kHz 
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In this test, when a voltage supply is used to excite a coil, a 
magnetic field is produced and magnetic lines of flux are 
concentrated at the center of the coil. Then, as the coil is 
brought near an electrically conductive material, the magnetic 
field penetrates the material and generates continuous, 
circular eddy currents. Larger eddy currents are produced 
near the test surface. As the penetration of the induced field 
increases, the eddy currents become weaker. The induced 
eddy currents produce an opposing (secondary) magnetic 
field. This opposing magnetic field, coming from the material, 
has a weakening effect on the primary magnetic field and the 
test coil can sense this change. In effect, the impedance of the 
test coil is reduced proportionally as eddy currents are 
increased in the test piece.  

The model in voltage source driven, gives the possibility to 
compute the inductive current and therefore the impedance of 
the system that is interesting for solving material properties 
determination inverse problem while using as "observables" 
the coil impedance of the eddy current sensor.  

D. Methodology of Parameters Materials 

For estimation parameters of the real parameters, a lot 
reiterate are required for predicting the permeability magnetic 
and the electric conductivity. In this step, we will explain the 
implementation of the hybrid algorithm in parameters 
identification approach. Fig.7 shows the scheme of 
electromagnetic inverse problem. Our proposed methodology 
can be summarized as follows: Step 1: Choose a true 
experimental test and used it for the identification procedure 
and saving the measured Zmes. Step 2: Generate randomly the 
input parameters. Step 3: The forward problem or the model 
program is applied to simulate the output vectors Zcal. Step 4: 
Identification analysis by hybrid algorithm HASAGPS 
simulation. This step is performed by the calculation of the 
error function for new materials parameters Xsim. Step 5: 
Verification of the HASAGPS results with original measured 
parameters Xmes. Step 6: The CECM-code is calculated for 
obtained the new results Zcal and compared it with original 
measured results Zmes. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

         Fig.7 Methodology of inverse problem procedure 

 

This figure (see Fig. 7) shows the identification procedure 
in the case of non destructive testing of material parameters 

(
cσ and

rµ ) from the measured (or true) impedance mesZ and 

the calculated impedancecalZ . If the calculated values are 

generally different from than that of measured values the 
HASAGPS algorithm is used for minimized this difference 
margin. We perform the estimation approach of the electric 
conductivity and the relative permeability of the material 
under test while solving an inverse problem. Here, the inverse 
problem to analysis is expressed as follow:     

 
To find ),( cr σµ giving 

mescrcal ZZ =),( σµ  (15) 

 
Where Zcal is the impedance calculate and Zmes is the 

impedance measured. In this paper, the measured values are 
replaced by those gotten while using the direct model 
(CECM-code). 

We define the error function as the difference between the 
properties measured and calculated values by the coupled 
electromagnetic circuits method. Then, the identification is 
considered as nonlinear problem to find a solution x that 
minimizes the function f. This is written as follow:       

 

{ +−= ∑ 2
m,mes

M

1 crm,cal )X),(X(
2

1
f σµ             

                                      }2
m,mescrm,cal )R),(R( −σµ    (16) 

 
Where Rcal and Xcal denote the resistance and reactance 

calculated by the CECM-code, Rmes and Xmes are the resistance 
and reactance measured at the mth point due to a frequency. 
This function is minimized by using the new hybrid 
CECM-HASAGPS. The values of 

cσ and 
rµ are predicted 

through minimization of this cost function.  
 

Table II The parameters for the hybrid approach 

Problem  Two tests 

Termination tolerance tol 1e-20 
Maximum number of iterations  500*length(x) 

Epoch length 4 
Cooling rate 0.9 

Reduction factor of mesh size 0.7 
Step size for descent directions 1e-3 

 

E. Identification of Relative Permeability and Electric 
Conductivity in Presence Noise 

The first experiment involved the use of additive noisy data 
to examine the proposed method. Two cases are investigated; 
the same parameters geometric and physic are used. The 
material properties of cases are respectively set as: 

 
1. Case 1: 

cσ = 7.6e6 and
rµ =100. 

2. Case 2: 
cσ = 1.0e6 and 

rµ =112. 

 
It should be mentioned that these material properties are 

used only to provide the simulated measurements of 
impedance responses using CECM-code and to check the 

Verification 
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Materials 
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accuracy of the material properties determined by the inverse 
analysis (CECM-HASAGPS) using these simulated 
measurements. The settings of parameters used in this method 
are shown, for the two tests, in Table II. Minimal and maximal 
initial values of the materials were respectively for 

cσ  (1e6 

to 15e6) and 
rµ (50 to 120).  The bounds on the materials 

parameters are required to define a finite search space for the 
HASA. In engineering practice, a narrower range is always 
preferred for accuracy in inverse solution and for 
computational efficiency.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Noise is inevitably involved in the measured data in 

practice. A few test cases were also run considering noisy 
data. The results are shown in Table III.  In order to simulate 
the measured impedance, a Gaussian noise defined by 
traditional equation ( δτ  where τ is a random number in the 
range [-1, 1], and δ  represents the standard deviation of the 
measurement errors) is directly added to the coil impedance 
responses and then the noise-contaminated responses are used 
as inputs for the identification. To investigate the sensitivity 
and stability of the present inverse procedure to the noise 
level, two noise levels of 4 and 9% are considered.  

The presence of noise can make the identification much 
more complicated compared to the noise-free case. If the 
noise is too large, a local optimum could be found as the true 
results rather than the global optimum. It has been found that 
when the noise is larger than 9%, the true results were not 
identified. If the noise is less than 4%, the true results can still 
be found, as shown in Table III, and the characterized result 
remains stable regardless of the presence of the noise.  

F. Compared with Other Methods 

The performances of adaptive simulated annealing 
generalized pattern search algorithm are compared with the 
similar approaches such as hybrid genetic algorithm pattern 
search [15] and simplex genetic algorithm [16]. Table IV 
shows the values of parameters of the material under test, and 
the results of optimal computations, using the HASAGPS and 
SGA, HGAPS for the noise-free case.  

The suitable choice of starting values of parameter electric 
conductivity and magnetic permeability are necessary to 
assure the stability of the identification parameters.  

In Fig.8.a is shown the process parameters evolution of the 
relative permeability and electric conductivity with respect to 
identification iterations for the Test n°2. We note from that 

the determination of converges toward the real values of the 
materials.  

The cost function during the iterations process is shown in 
Fig. 8.a obtained by the HASAGPS algorithm. If we consider 
the number of necessary iterations to obtain a correct solution, 
we can remark the superiority of the HASAGPS method 
compared to the other algorithms. 

The experiment was run on a Dell, witch contain an Intel 
Pentium 4, 3.6 GHz CPU and 256 Mb RAM. The program 
was implemented in MATLAB 7.1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For this problem, all methods were successful in finding the 

ferromagnetic materials properties in the proposed tests. It 
can be seen from Table IV and Fig.8 that the combined 
optimization technique using the hybrid HASAGPS is quite 
effective for solving inverse problem using noise-free cases. It 
is noticeable that the low cost value obtained using 
HASAGPS is less than the minimum cost function and that the 
CPU time is little than those of other algorithms.  

From the comparison between obtained and expected 
parameters of the material under control, one can see the good 
agreements between these ferromagnetic parameters, 
demonstrating that the association of the CECM-code and 
HASAGPS in very powerful in the solution of inverse 
problems like materials properties determination inverse 
problem of a material under tests. 

 
 

Table IV Simulation results for various search algorithms 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

obtained 
 

HASA SGA  HGAPS 
 Test  N° 1 

rµ =100 99.99 99.89 99.91 
Expected 

σ =7.6e6 7.60e6 7.58e6 7.59e6 

Cost function  2.20e-10 7.35e-7 6.37e-9 

CPU  time (s) 880 1440 1260 

Iterations 52 120 70 
 Test  N° 2 

rµ =112 112.01 111.98 111.99 
Expected 

σ = 1e6 9.99e5 9.92e5 9.96e5 
Cost function  7.96e-12 3.51e-7 4.64e-10 
CPU  time (s) 936 1800 1332 

Iterations 60 220 80 
 

Test  N° 1 
 

Noise Free Noise 4 % Noise 9 % 

 

expected 
obtained Error % obtained Error % obtained Error % 

rµ =100 99.999 0.01 97.251 1.41 105.872 12.24 

σ =7.6e6 7.600e6 0.02 7.43e6 2.57 7.71e6 48.50 
 Test  N° 2 

rµ =112 112.01 0.05 110.41 1.35 115.23 23.25 

σ = 1e6 9.99e5 0.06 9.91e5 6.25 10.84 e5 14.65 

 

Table III HASAGPS results with different noise levels 
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Fig.8 Results of the identification using new hybrid algorithm (Test N°2) 

 

IV.  CONCLUSION 

A new methodology, combining the hybrid optimization 
with a semi-analytical method called coupled electromagnetic 
circuits method (CECM), is applied to inverse 
electromagnetic problem. The CECM-code is used in the 
optimization procedure to calculate the impedance response 
corresponding to the identified ferromagnetic parameters for 
all iterations. This approach is an efficient model to 
characterize the electric conductivity and relative 
permeability because it has a considerable potential for 
solving computing time problems related to the inverse 
identification without losing accuracy. It is experienced on the 
parameters identification problem of material under test as 
reported in this document.   

The paper has presented the application of new 
optimization and illustrated their applicability to solve inverse 
problem. The new method combines the adaptive simulated 
annealing and generalized pattern search algorithm. In order 
to improve the routine or the performance of adaptive 
simulated annealing algorithm, we have integrated it with 
local procedure as generalized pattern search method for 
solve inverse electromagnetic. It is expected to combine 
adaptive simulated annealing and a fast optimization method 
so as to provide an ideal performance for the optimization 
procedure, which is often vital in nonlinear identification 
problems. As such, not only can the global optima be ensured 
but results can also be obtained at a reasonably fast speed. 

When compared the HASAGPS with the genetic algorithm 
pattern search method (HGAPS) and simplex genetic 
algorithm (SGA), the numerical results show that the hybrid 
adaptive simulated annealing outperforms the other methods 
an excellent forcefulness and convergence. The other 
advantages of HASA are the capability to escape from the 
local optima in presence noise (see Table III).  

Finally, the new hybrid algorithm can be extensively used 
in any other situation to solve different optimization problems 
of electromagnetic devises. 

Overall, this work makes the following contributions:1) a 
semi-analytical model of eddy current sensor, 2) an approach 

to identify the ferromagnetic materials from the coil 
impedance of eddy current sensor.    
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