
Abstract—Grid computing is gaining more significance in the
high-performance computing world. This concept leads to the
discovery of solutions for complicated problems regarding the
diversity of available resources among different jobs in the Grid.
However, the major problem is the optimal job scheduling for
heterogeneous resources, in which each job needs to be allocated
to a proper grid’s node with the appropriate resources. An
important challenge is to solve optimally the scheduling problem,
because the capability and availability of resources vary
dynamically and the complexity of scheduling increases with the
size of the grid. This paper, therefore, presents a framework
which combines the Fuzzy C-Mean clustering with an Ant
Colony Optimization (ACO) algorithm to improve the scheduling
decision when the grid is heterogeneous. In the proposed model,
the Fuzzy C-Mean algorithm classifies the jobs into appropriate
classes, and the ACO algorithm maps the jobs to the appropriate
resources. The ACO is characterized by ant-like mobile agents
that cooperate and stochastically explore a network, iteratively
building solutions based on their own memory and on the traces
(pheromone levels) left by other agents. The simulation is done
by using historical information on jobs in a grid. The
experimental results show that the proposed algorithm can
allocate jobs more efficiently and more effectively than the
traditional algorithms for scheduling policies.

Index Terms—Fuzzy C-Mean, ACO, Job Scheduling.

I. INTRODUCTION

In high-throughput computing, the grid is used to schedule the
independent jobs with respect to the dynamically distributed
resources [1]. Grid computing is the principle of sharing the
computational resources like processors, storage, network &
instruments in a secure way. Under this principle, grid
computing has faced a lot of problems in acquiring flexible,
secure, and coordinated sharing among dynamic collections of
resources [1, 3]. The main objective of the scheduler is to
maximize the resources utilization. The previous research on
scheduling for distributed systems, such as clusters and
supercomputers, focused on extracting the maximum
throughput from the entire system [4, 5]. Grid scheduling is
responsible for resources discovery, resources selection, and job

Manuscript received March 9, 2009. This work was supported in part by King
Fahd University of Petroleum and Minerals.

Tarek Helmy. Author is with College of Computer Science and Engineering,
King Fahd University of Petroleum and Minerals, Kingdom of Saudi Arabia (Tel
& Fax +96638601967, helmy@kfupm.edu.sa). On leave from the College of
Engineering, Department of Computers Engineering and Automatic Control,
Tanta University, Egypt.

Zeehasham Rasheed. Author is with Computer and Communication
Information Technology Research (CCITR) at Research Institute, KFUPM,
Kingdom of Saudi Arabia, hasham@kfupm.edu.sa.

assignment over distributed nodes of the gird. Grid scheduling
concentrates on improving response times in a grid containing
autonomous resources whose availability varies dynamically
with time. The grid scheduler must interact with the local
schedulers managing computational resources and must adapt
its behavior to the changing resources loads. Thus the
scheduling is conducted from the perspective of the
application or the user rather than that of the system. Grid
scheduling involves a series of challenging tasks. These
include: searching for resources in the collection of
geographically distributed nodes; and making scheduling
decisions according to the required quality of service. A grid
scheduler differs from a scheduler for conventional computing
systems in several respects. One of the primary differences is
that the grid scheduler does not have full control over the grid.
More specifically, the local resources are generally controlled
not by the grid’s scheduler, but by the local scheduler. Another
difference is that the grid scheduler cannot assume that it has
a global view of the grid. The demand for scheduling is to
achieve high-performance computing. It is very difficult to
find an optimal resource allocation for specific jobs that
minimizes the scheduled length of the jobs. The scheduling
problem is a NP-hard problem [6] and it is not trivial.

There are basically two approaches to solve this problem.
The first is based on job characteristics, and the second on a
distributed resources discovery and allocation system. We
have studied the feasibility and the usefulness of applying
heuristics and machine learning techniques to this field. We
provide a scheduling model [Figure 1] based on Fuzzy
C-Mean (FCM) clustering and Ant Colony Optimization
(ACO) algorithm for grid scheduling. In this paper, we
compare our algorithm with the performance of various
job-scheduling algorithms in grid computing environment.

This paper is organized as follows. Section II reviews
relevant research. Section III gives a brief overview of FCM
clustering and ACO algorithm. Section IV discusses problem
description. Sections V and VI present some theoretical
aspects of the proposed algorithm. Section VII and VIII
discuss the experimental setup and results. Our conclusion
and suggestions for future work are given in Section IX.

II.RELATED WORK

In grid computing, there are a lot of important issues,
including job scheduling, information service, information
security, resource management, routing, and fault tolerance.
The job scheduling is a major problem, since it is a
fundamental and crucial step in achieving high performance.
Job scheduling has been described as a combinatorial

Independent Job Scheduling by Fuzzy C-Mean
Clustering and an Ant Optimization Algorithm in

a Computation Grid

Tarek Helmy Zeehasham Rasheed

IAENG International Journal of Computer Science, 37:2, IJCS_37_2_03

(Advance online publication: 13 May 2010)

__

optimization problem. Scheduling in a grid can be seen as an
extension to the scheduling problem on local parallel systems.
In general, job scheduling predictions in a grid are dependent
on the job’s execution time and the job’s running time. For
example, the prediction engine module in [7] is a part of the
scheduler and offers a history-based approach for estimating
the run time of job submission.

Figure 1: Model for Job Scheduling in Grid Environment

The authors in [8] proposed two modules for predicting the
completion time of jobs in a service grid and for applying
evolutionary techniques to job scheduling. The problem of
estimating a job’s run time from historical data has been
studied in [9, 10, 11]. All of them adopt the method of making
predictions for future jobs by applying different job
characterizations to classify similar previous jobs and then
using them to make predictions. After detailed analysis, we
noticed that those methods have unclear definitions of jobs, i.e.
what are the important features used in measuring the
similarity of jobs which can be included in the prediction
module. Another approach to predict application performance
and to detect of unexpected execution behavior has been
proposed in [12]. These authors found that the unexpected
execution behavior is typically caused by an unanticipated load
on the shared grid resources. Similar predicting application’s
performance on a given parallel system has been the most
widely studied in [13, 14]. More recently those studies have
been extended to distributed systems [15, 16, 38, 39, 40].
Traditional performance prediction techniques often focus on
performance models that are specific to a single architecture or
a static set of resources. However, computational grid
environments consist of a collection of dynamic,
heterogeneous resources and a collection of different jobs. Our
approach especially examines the implications of the fact that
the characterization of jobs is expected to affect the mentioned
resource utilization. Even more interestingly for researchers
on performance quality. We use information about static
workload data from the standard workload archive [17] and
from experiments reported in several publications [18, 19, 20,
21]. Moreover, these workload traces were used for the
evaluation of different scheduling strategies for parallel
systems [22, 23, 24, 25] and for grid research [26, 27, 28, 29,
30]. These workload traces consist of information about all job
submissions on a node for a certain period of time which
usually ranges over several months and several thousands of
jobs. Therefore, it is reasonable to start with the available
workload traces information from the computing centers to

evaluate the impact of jobs characterization in grid. Our
approach separated the workload data into three classes
based on job run-time historical data [Figure 1]. Other
algorithms such as Min-Min, Max-Min, Fast greedy Tabu
search and Ant system are some of the heuristic algorithms
which create a static environment. They must predict the
execution time and workload in advance. In [31], the authors
have proposed a simple grid simulation architecture using
ACO. They used the response time and the average
utilization of resources as the evaluation index. In [32] and
[33], the authors proposed ACO algorithms, such as job
finishing ratio which could improve the performance.

III. OVER VIEW OF FCM AND ACO ALGORITHMS

A. Fuzzy C-Mean Clustering

This paper aims to cluster jobs according to their
similarities into groups. Fuzzy C-Mean (FCM) is a famous
clustering algorithm for building Fuzzy partitions. FCM will
be used in this approach as the basic tool for building job
characterizations in grid. The FCM algorithm was
introduced by Bezdek [15] as an extension to Dunn’s
algorithm [16] to generate Fuzzy sets for every observed
feature. Fuzzy clustering methods allow for uncertainty in
the cluster assignments. Rather than partitioning the data
into a collection of distinct sets (where each data point is
assigned to exactly one set), Fuzzy clustering creates a Fuzzy
pseudo partition, which consists of a collection of Fuzzy sets.
Fuzzy sets differ from traditional sets in that membership in
the set is allowed to be uncertain. A Fuzzy set is formalized
by the following definitions. Let X = {x1, x2, …, xn} be a set
of given data, where xi є Rn is a set of feature data. The
minimization objective function of the FCM algorithm is
frequently used in pattern recognition as follows:
 2

(,)
1 1

m in (,)
n c

m
m ij i j

i j

J u D
= =

⎧ ⎫
=⎨ ⎬

⎩ ⎭
∑ ∑

U V
U V (1)

1

1 ,
c

ij
j

u j
=

= ∀∑ , i = 1, 2, …n, j = 1, 2, …c (2)

 22
i j i jD = −

A
x v (3)

Where m is any real number > 1, V= {v1, v2, ..., vc} are the
cluster centers. U= (μij) nxc is the degree of membership of
vector xi in cluster k. The value of U must satisfy the
condition in equation (3). Dik is the norm Euclidean distance
expressing the similarity between any measured data and the
center. The cluster centers V can be calculated according to
the following equations:

1 1

,
n n

m m
j i j j i j

j k

u u j
= =

⎛ ⎞
= ∀⎜ ⎟
⎝ ⎠
∑ ∑v x

, j=1, 2,…c (4)

 12

1

1

, ,
c m

i j
i j

k i k

D
u i j

D

−

−

=

⎡ ⎤
⎛ ⎞⎢ ⎥

= ∀⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥⎣ ⎦
∑

 (5)

The algorithm will stop if 1k kE
−

= −V V < T, where T

is the termination threshold and k is the iteration number.

B. Ant Colony Optimization Algorithm

The ACO algorithm is based upon a heuristic approach
and on the behavior of real ants. Each ant deposes the
chemical pheromone on its path when it searches for food
from its nest. When each ant moves in a particular direction,

IAENG International Journal of Computer Science, 37:2, IJCS_37_2_03

(Advance online publication: 13 May 2010)

__

the strength of the pheromone increases. With this guidance,
other ants can also trail along. This idea inspired the discovery
of the ACO algorithm. This algorithm uses a colony of
artificial ants that behave as cooperative agents in a
mathematical space, where they are allowed to search and
reinforce pathways (solutions) in order to find the optimal
ones. This approach, which is population-based, has been
successfully applied to many NP-hard optimization problems.
The ACO is characterized by ant-like mobile agents that
cooperate and stochastically explore a network, iteratively
building solutions based on their own memory and on the
traces (pheromone levels) left by other agents. At regular
intervals, a forward ant is launched from a random source node
to another random destination node. In its trip, the forward ant
will select the next processor using a random scheme that
accounts the path selection probabilities, given by the
pheromone levels in each neighbor link, and a heuristics value,
calculated from the congestion of each neighbor links.

IV. PROBLEM DISCRIPTION

Grid computing is dynamic that it allocates the jobs to the
resources effectively. The main aim of the scheduler in the grid
is to allocate the jobs to the available nodes with the best
available resources. The best match must be allocated from the
list of available jobs and from the list of available resources.
The selection is based on the prediction of the computing
power of the resource [34]. The grid users expect to run their
jobs efficiently. The efficiency depends upon two criteria:
makespan and flow time. These two criteria are very important
in the grid system. Makespan measures the throughput of the
system, and flow time measures its QoS [35]. The expected
Execution Time (ET) is the expected time to complete the job.
This also includes the submit time of each job. The element
ETij of the ET matrix is defined as the amount of time taken to
complete the ith job in the jth resource. The jobs are owned by
different users, and all jobs are interdependent. All the
resources may be dynamically added or removed from the grid.
They use the expected time to compute ET in [36]. The ET
matrix will have N x M entries, where N is the number of
independent jobs to be scheduled and M is the number of
resources currently available. In our experiment, processors
are taken as resources. The Ready time (Readym) indicates the
time in which the resource ‘m’ would have finished the
previously assigned jobs. The completion time of the ith job on
the jth processor/resource is:

 CTij = Readyj + ETij (6)

Max (CTij) is the makespan of the complete schedule.
Makespan is used to measure the throughput of the grid
system. The main objective of this algorithm is to minimize the
makespan. In general the existing heuristic mapping can be
divided into two categories: on-line mode and batch mode. In
the on-line mode, the scheduler is always ready. Whenever a
new job arrives to the scheduler, it is immediately allocated to
one of the existing resources required by that job. Each job is
considered only once for matching and scheduling. In the
batch mode, the jobs and resources are collected and mapped at
a prescheduled time. The batch mode produces better decisions
because the scheduler knows the full details of the available

jobs and resources. The proposed algorithm is also a heuristic
algorithm for the batch mode. The result of the algorithm
will have four values (task, node, starting time, expected
completion time). The number of jobs available for
scheduling is always greater than the number of nodes
available in the grid. The node Mj free time will be known by
using the function free (j). The starting time of job ti on
resource Mj is:
 Bi = free (j) + 1 (7)
Then the new value of free (j) is the starting time + ETij. In
the algorithm, the minimization function is used in order to
find out the best resource:
 F = max (free (j)) (8)
And use the following heuristic information is used:
 ηij =1 / Free(j) (9)
Formula # 9 is used to find out the highest priority node
which is free earlier. All the ants are maintaining a separate
list. Whenever they select the next task and resource, they are
added into the list. The ants calculate the minimize function
‘Fk (kth ant)’ and the pheromone trail updates the value:
 ⌂Tij = 1-ρ / Fk (10)

In this algorithm, two set of tasks are maintained: the
scheduled tasks and newly arrived & unscheduled tasks. The
algorithm starts automatically, whenever the set of scheduled
jobs become empty. According to [37], the first task to be
performed, and the machine in which it is performed are
chosen randomly. Next, the task to be run and the node in
which it is to be run are computed by the following formula:
 Pij = Tij . ηij / Σ Tij . ηij (11)
- ηij is the attractiveness of the move as computed by some

heuristic information indicating a prior desirability of
that move;

- Tij is the pheromone trail level of the move, indicating
how profitable it has been in the past to make that
particular move;

Pij is the probability to move from a state i to a state j
depending on the combination of the above two values.

V.THORITICAL ANALYSIS

The goal of the proposed scheduling algorithm is to
minimize the total execution time of jobs. As the scheduling
is performed statically, all necessary information about the
jobs in the grid and the processors in the system is assumed to
be available a priori. For the heterogeneous environment, we
used a hybrid approach in which grouping of jobs is done
using FCM clustering algorithm and affinity between jobs
and processors is calculated using ACO algorithm.
Essentially, the expected running time of each job on each
processor must be known, and this information can be stored
in an expected ET matrix. A row in an ET matrix contains
the ET for a single job on each of the available processors,
and so any ET matrix will have n x m entries, where n is the
number of jobs and m is the number of resources or
processors. In order to simulate various possible
heterogeneous scheduling problems as realistically as
possible, we define different types of ET matrix for our
experiments: execution time, submission time, load
balancing and fault tolerance. The task heterogeneity in our
experiment is defined as the processors are not identical, and
each processor can take a differing amount of time to process
any given job with respect to available resources

IAENG International Journal of Computer Science, 37:2, IJCS_37_2_03

(Advance online publication: 13 May 2010)

__

A. Finding Job Clusters

In our approach FCM clustering algorithm is used as the
basic tool for building jobs characterization in grid
environment. Initially, we have given unlabeled dataset of jobs
represented by X = {x1, x2, x3…, xn} where n is the number of
jobs in X. Also each xk ε Rp where p is the number of features
in each input vector. For our approach we used completion
time, submission time and resources required as features. As
far as clusters are concerned, we used three clusters of jobs as
heavy, medium and small workload. They are represented as
V= {v1, v2, v3} ε Rp where vi is the ith cluster center. After the
initialization, next step is the calculation and optimization of
objective function represented in equations (1, 2, 3 and 5). The
objective function represents the degree of membership value
of each job against each cluster and is calculated by using
Euclidean distance. The cluster centers are calculated by using
aggregated mean represented in equation (4). The cluster
centers are updated in every iteration, and the algorithm

continues until 1k kE
−

= −V V < T, where T is the
termination threshold, and k is the iteration number. After
that, these workloads are sent to the ACO algorithm for
optimization.

B. Defining the Pheromone Trial

The fact that jobs will run at different speeds on different
processors means that this problem cannot be approached as
the same sort of grouping problem as for the homogeneous
case. However, we can exploit this fact to use what is perhaps
the more intuitive pheromone trail definition that certain jobs
may have certain affinities with certain processors, and so it
would be useful to store information about good processors for
each job. The pheromone value Tij is selected to represent how
profitable is to schedule a particular job i onto a particular
processor j. For the first time, all processors have value 0.5,
means every job has the same benefit or 50 percent profit
running on any processor. After the heuristic and the fitness
functions are calculated to produce the final pheromone
matrix. The pheromone matrix will thus have a single entry for
each job-processor pair in the problem.

C.The Heuristic and Fitness Functions

The min-min heuristic is a very effective algorithm for this
problem. It suggests that the heuristic value of a particular job
should be proportional to the minimum completion time of the
job, that is the time a job i can be expected to finish on a
processor j. Contrary to conventional ACO algorithm which
was using only one ant for heuristic and fitness function, we
are calculating probability matrix (Pkij) by using k ants. The
minimum completion time of a job i on a processor j is used for
the heuristic function. The resulting ηij function use by the ants
is defined in equation (9). If the job i has minimum completion
time on processor j, then by using ηij for calculating probability
in equation (11), we can find the best processor j for that job i
which can complete job i in minimum time span. The same
procedure is done by each ant having their own heuristic and
fitness function values.

D.Updating the Pheromone Value

For updating the pheromone value, ants should be allowed
to share information about good solutions for a policy.
Allowing only the best ant to leave pheromone after iterating
makes the search much more aggressive, and significantly
improves the performance of ACO algorithms. Using
equations (10, 11), each ant follows the same pheromone
update policy for each pair of job i and processor j in their
own pheromone matrix.

T ij = ρ T ij + ⌂Tij

Where ρ is a parameter which defines the pheromone
evaporation rate and ⌂Tij is the pheromone trial value.

E. Building a Solution

A simple strategy, following the minimum execution time
approach, would be to allocate each job i, in arbitrary order,
to a processor j picked probabilistically with respect to the
pheromone value between i and j, and the execution time of
completion of i on j (a lower value is preferable). The
solution building technique used for this ACO approach is an
attempt to follow the concept of the best heuristic method.
First, the processor j which completes a job i earliest is
established. A job i then picked to be scheduled next based on
the pheromone value between job i and processor j. The
probability of selecting job j to be scheduled next is given by
equation (11). At this stage, we have k probability matrices
one for each ant. A job is then selected based on the highest
probability among all the matrices, and the chosen job i is
then allocated to processor j. This process is repeated until all
jobs have been scheduled and a complete solution has been
built.

In [37], the algorithm uses only one ant. To overcome this
disadvantage, a new algorithm is proposed. In this method,
the probability matrix (Pkij) is modified by using several ants
(k ants) and the number of ants used is less than or equal to
the number of tasks. From all the possible scheduling lists,
the one having the minimum makespan is found and that
ant’s scheduling list is used. So, at the time of execution, the
scheduler finds the list of available resources (processors) in
the grid, forms the ET matrix, and starts scheduling. The
steps for the proposed algorithm are as follows:
1. Find the classification of workload by FCM clustering.

2. Collect all necessary information of jobs (n) and resources
(m) of the system in the ET matrix and the submit Time
matrix (size should be m x n).

3. Set all the initial values, ρ = 0.05 (pheromone evaporation
value), T = 0.5 (initial pheromone deposit value), Free = 0
(one dimensional matrix of size m), k = m (k is the number
of ants, and m is the number of resources).

4. For each ant (to prepare the scheduling list) do the steps #
5 and 6.

5. Select the task (i) and resource (j) randomly.

6. Repeat the following until all jobs are executed.

a. ηij =1 / Free(j)

IAENG International Journal of Computer Science, 37:2, IJCS_37_2_03

(Advance online publication: 13 May 2010)

__

b. Calculate the pheromone trail value ⌂Tij = 1-ρ / Fk , where
Fk = max(free(j))

c. Update the pheromone trail matrix T ij = ρ T ij + ⌂Tij

d. Calculate the Probability Matrix Pij = Tij . ηij / Σ Tij . ηij

e. Select the highest probability i and j, (the next task i to be
executed on resource j)

7. Find the best feasible solution by using the scheduling list of
all the ants. Best feasible solution leads to the minimum
makespan time of nodes and to the minimum average
waiting time of jobs.

Load balancing and fault tolerance are checked during
runtime. If any load is overloaded, jobs are swapped from one
node to another. Also, if any node fails, all the remaining jobs
are distributed among other nodes.

VI. EXPERIMENTAL SETUP AND RESULTS

In the experiments, we used a workload data from a standard
workload archive [17]. These data consists of 1,000 jobs, from
which 500 are randomly selected for the experiment. Each
job’s record has 18 attributes. However, we focused on the
execution time and submission time of each job. In the
experiments we assumed that each job is allowed to run in each
node by using a space-sharing mechanism. In the
space-sharing mechanism, each processor can serve only one
job at a time. We simulated 10 different performance nodes in
the grid. The experiments were conducted in five parts. The

first part focused only on the execution time of jobs and all
the remaining parts treat both execution and submission
time. The second part took care of the execution time as well
as the submission time of jobs. The third part supports load
balancing between the nodes, the fourth part of the
experiment supports fault tolerance and the fifth part focused
on the affect of the number of users. The experiments showed
the classification of jobs workload into three groups: heavy,
medium and light workload [Figure 2]. Figure 3 shows the
job membership functions given by using FCM clustering
algorithm.

In the experiments, the jobs in workload data are allocated
to three classes, each with number of jobs shown in Table 1.
After classifying of the work load, the workload is given to
the proposed ACO algorithm for grid scheduling. In our
experimental testing, we used 10 heterogeneous nodes and
500 tasks. For the performance measure, we evaluated the
completion time of each node along with the waiting time of
each individual job. We compared the results of the ACO
algorithm with the three traditional job scheduling
algorithms: First-Come-First-Served (FCFS), Largest Job
First (LJF) and Shortest-Job-First (SJF).

TABLE 1: WORKLOAD CLASSES

No Class Total

1 Heavy Job Workload 72

2 Medium Job Workload 66

3 Small Job Workload 362

Figure 2: (a) Pool of Jobs (b) Separate Clusters of Job

Figure 3: Membership Function of Workload

IAENG International Journal of Computer Science, 37:2, IJCS_37_2_03

(Advance online publication: 13 May 2010)

__

A. Jobs with Execution Time only

The results for the first time, where we consider only the
execution time of job are shown in Figures 4 and 5. In Figure
4, we can see that all the nodes have minimum completion
time when using the ACO algorithm as compared to others.
This completion time includes the execution time and the
waiting time of all jobs at their nodes. Similarly, Figure 5
shows that nearly all the jobs have less waiting time than SJF,
LJF and FCFS.

Figure 4: Completion Time of each Node when only the
Execution Time is considered

B. Jobs with Execution and Submission Time

For this case, we include the submit time of each job when
they arrived. So the total waiting time of each job contains the
execution time of all previous jobs plus the time from its
submission to the time when it gets a processor. The results

are shown in Figures 6 and 7. We can conclude that SJF and
the proposed ACO algorithms have similar completion times
as compared to other algorithms when the submission time is
considered.

Figure 6: Completion time of each Node when the
Execution and the Submission Time are considered

C. Load Balancing between Nodes

We implemented a load-balancing mechanism between all
nodes. The proposed algorithm continuously monitors each
node, and, if any node becomes overloaded, the jobs are
migrated from one node to another. The results are shown in
Figures 8 and 9. We can see that all the algorithms are trying
to balance the load at each node, and here our proposed
algorithm ACO has the minimum completion time for each
node.

Waiting time for each job

0%

50%

100%

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

Number of Jobs

W
ai

ti
ng

 T
im

e FCFS

LJF

SJF

ACO

Figure 5: Waiting Time for each job when only the Execution Time is considered

Waiting time for each job

0%

20%

40%

60%

80%

100%

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Number of Jobs

W
ai

tin
g
 T

im
e FCFS

LJF

SJF

ACO

Figure 7: Waiting Time for each job when the Execution and the Submission times are considered

IAENG International Journal of Computer Science, 37:2, IJCS_37_2_03

(Advance online publication: 13 May 2010)

__

Waiting time for each job

0%

20%

40%

60%

80%

100%

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Number of Jobs

W
ai

ti
n
g

T
im

e FCFS

LJF

SJF

ACO

Figure 8: Waiting Time of each job by using Load Balancing Mechanism

D. Fault Tolerance

We considered a scenario in which node 4 failed after some
time. In order to support fault tolerance, jobs on node 4 are
distributed between different nodes taking care of the
completion time as well as the load balancing using
checkpoint-restart during runtime. The results are shown in
Figures 10 and 11. We can see that the proposed ACO
algorithm outperforms all other algorithms despite the failure
of nodes. The overall results are stated in Table 2, which shows
that the proposed ACO algorithm performs best among
different algorithms under different circumstances.

Figure 9: Waiting Time for each Node using Load
Balancing Mechanism

TABLE 2: COMPLETION TIME FOR EACH NODE IN DIFFERENT
SCENARIOS

FCM+ACO
Algorithm

SJF LJF FCFS

 Time Units

Execution time
only

75.1533 272.137 495.316 405.863

Execution +
Submission

times
988.7 1274.5 2990.1 2313.8

With Load
Balancing

Mechanism
838.4 1319.9 1659.2 1640.9

With Fault
Tolerance

Mechanism
1012.8 1663.4 3488.7 2697.2

Figure 10: Waiting Time for each Node when one Node
Fails

Waiting time for each job

0%

20%

40%

60%

80%

100%

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Number of Jobs

W
ai

ti
n
g

T
im

e FCFS

LJF

SJF

ACO

Figure 11: Waiting Time of each job when one Node Fails

IAENG International Journal of Computer Science, 37:2, IJCS_37_2_03

(Advance online publication: 13 May 2010)

__

VII. EXPERIMENT WITH THE NUMBER OF USERS

We carried out another experiment based on the number of
users with four different cases. The number of users is defined
by three different configurations as shown in Table 3. For 10
users, the completion time for each scheduler with respect to
four different scenarios is stated in the Table 4. For 25 users,
the completion time for each scheduler with respect to four
different scenarios is stated in the Table5. For 50 users, the
completion time for each scheduler with respect to four
different scenarios is stated in the Table 6. From Figures 12,
13, and 14 we can infer that the proposed algorithm performs
better than all the traditional scheduling algorithms. With the
proposed algorithm, the completion time for all jobs is less for
all user configurations as well as for all different scheduling
algorithms. Also as the number of users and number of jobs
increases, the proposed algorithm is performing much better
than the traditional scheduling algorithms. For 10 users’
configuration, the difference between the completion time of
FCM-ACO algorithm and SJF is small, but for 50 users’
configuration, the difference between the two algorithms
increased. This shows that in real time environment where we
have a huge number of users, the proposed algorithm will
definitely perform better as compared to others scheduling
algorithms.

TABLE 3: NUMBER OF USERS & JOBS IN DIFFERENT SCENARIOS

Number
of Users

Jobs per
User

Total Number of Jobs

10 10 100
25 10 250
50 10 500

TABLE 4: COMPLETION TIME FOR 10 USERS

FCM+
ACO SJF LJF FCFS

Time Units

Execution time only 17.04 46.76 279.17 144.96

Execution time +
Submission time

52.753 95.69 423.04 398.88

With Load Balancing
Mechanism

21.319 40.292 860.14 749.38

With Fault Tolerance
Mechanism 206.73 250.67 1143.3 1258.4

Completion Time for 10 Users

0

200

400

600

800

1000

1200

1400

Execution
time only

Execution
time +

Submission
time

With Load
Balancing

Mechanism

With Fault
Tolerance
Mechanism

T
im

e
U

n
it

s ACO

SJF

LJF

FCFS

Figure 12: Completion Time for 10 Users

TABLE 5: COMPLETION TIME FOR 25 USERS

FCM+
ACO

SJF LJF FCFS

 Time Units

Execution time only 43.23 244.80 366.12 300.75

Execution time +
Submission time

32.48 104.96 512.10 280.12

With Load Balancing
Mechanism

129.05 230.62 552.06 381.26

With Fault Tolerance
Mechanism

122.60 208.52 444.82 385.27

TABLE 6: COMPLETION TIME FOR 50 USERS

FCM+
ACO

SJF LJF FCFS

 Time Units

Execution time only 75.15 272.13 495.31 405.86

Execution time +
Submission time 988.7 1274.5 2990.1 2313.8

With Load Balancing
Mechanism 838.4 1319.9 1659.2 1640.9

With Fault Tolerance
Mechanism

1012.8 1663.4 3488.7 2697.2

Completion Time for 25 Users

0

100

200

300

400

500

600

Execution time
only

Execution time
+ Submission

time

With Load
Balancing

Mechanism

With Fault
Tolerance

Mechanism

T
im

e
U

n
it

s ACO

SJF

LJF

FCFS

Figure 13: Completion Time for 25 Users

Completion Time for 50 Users

0
500

1000
1500
2000
2500
3000
3500
4000

Execution
time only

Execution
time +

Submission
time

With Load
Balancing

Mechanism

With Fault
Tolerance

Mechanism

T
im

e
U

n
it

s ACO

SJF

LJF

FCFS

Figure 14: Completion Time for 50 Users

IAENG International Journal of Computer Science, 37:2, IJCS_37_2_03

(Advance online publication: 13 May 2010)

__

VIII.CONCLUSION AND FUTURE WORKS

We have studied the job scheduling for a grid environment
as a combinatorial prediction and optimization problem. We
have proposed an intelligent scheduling algorithm in a grid
which uses the FCM clustering technique for predicting three
classifications of job workload and the ACO algorithm for
allocating them to different grid nodes. The proposed hybrid
scheduling is very efficient in terms of calculation, because
classifying the workload in the first step made the calculation
very simple for the ACO algorithm, and it can efficiently
schedule each job with respect to its workload class. The
experimental results, for each part on the completion time of
nodes and the waiting time of each job have shown that the
scheduling system using the proposed algorithm outperforms
all other algorithms and gives optimal results. Also, from all
the traditional scheduling algorithms, only SJF is comparable
to the ACO algorithm. Also as the number of users and
number of jobs increases, the proposed algorithm is
performing much better than the traditional scheduling
algorithms. For future work, our simulation environment will
include more complex characterization of the constraints for
grid scheduling in real time systems.

ACKNOWLEDGMENT

We would like to thank King Fahd University of Petroleum
and Minerals for providing the computing facilities. Special
thanks to anonymous reviewers for their valuable comments
on this paper. Thanks extended to Mr. David Birkett for his
help in proofreading the paper.

REFERENCES

[1] L. Faster C. Kesselman S. Tueske “The anatomy of Grid” Internal Journal
of Super Computer App. 15(3) 200.

[2] L. Faster C. Kesselman “The Grid blue print for a future computing
infrastructure”, chapter2 Morgan Kaufmann Publication 1999.

[3] I. Foster and C. Kesselman, Eds., “The Grid 2 Blueprint for a New
Computing Infrastructure”, San Francisco, CA: Morgan Kaufmann, 2004.

[4] T. L. Casavant, J. G. Kuhl, “Taxonomy of scheduling in general purpose
distributed computing”, IEEE Transactions on Software Engineering
1988; 14(2).

[5] D. G. Feitelson, L. Rudolph, “Job Scheduling Strategies for Parallel
Processing”, Lecture Notes in Computer Science, vol. 1659). Springer:
Heidelberg, 1999.

[6] D. Fernandez-Baca (1989) “Allocation Modules to processors in a
Distributed System”, IEEE Transactions on Software Engineering. Vol.15
(11): Pages 1427-1436

[7] A. Arshad, A. Ashiq, B. Julian, R. Cavanaugh, Frank van Lingen, R.
McClatchey, Muhammad A. Mehmood, H. Newman, C. Steenberg, M.
Thomas, I. Willers, “Predicting the Resource Requirements of a job
submission”, Proceedings of the Conference on Computing in High Energy
and Nuclear Physics 2004.

[8] Y. Gao, H. R. Joshua, Z. Huang., “Adaptive grid job scheduling with
genetic algorithms”, Future Generation Computer Systems, Volume
21, Issue 1, January 2005, Pp. 151-161.

[9] A. Downey, “Predicting Queue Times on Space-Sharing Parallel
Computers”, in International Parallel Processing Symposium, 1997.

[10] R. Gibbons, “A Historical Profiler for Use by Parallel Schedulers”,
Master's thesis, University of Toronto, 1997.

[11] W. Smith, I. Foster, and V. Taylor, “Predicting Application Run Times
Using Historical Information”, Proceedings of the IPPS/SPDP '98
Workshop on Job Scheduling Strategies for Parallel Processing, 1998.

[12] F. Vraalsen, R.A. Aydt, C.L. Mendes, and D.A. Reed, “Performance
Contracts: Predicting and Monitoring Grid Application Behavior”,
Proceedings of the Second International Workshop on Grid Computing,
2001.

[13] P. Mehra, C. H. Schulbach and Yan, “A Comparison of Two Model-Based
Performance-Prediction Techniques for Message-Passing Parallel

Programs”, In Proceedings of the ACM Conference on Measurement &
Modeling of Computer Systems, pp. 181–190, 1994.

[14] R. Saavedra-Barrera, A. J. Smith, and E. Miya, “Performance prediction
by benchmark and machine characterization”, IEEE Transactions on
Computers 38, 12, pp.1659–1679, December 1989.

[15] N. Kapadia, J. Fortes and C. Brodley, “Predictive
Application-Performance Modeling in a Computational Grid
Environment”, In Proceedings of the 8th IEEE Symposium on
High-Performance Distributed Computing, pp. 47–54, August 1999.

[16] A. Petitet, S. Blackford, J.Dongarra, B. Ellis, G. Fagg, K. Roche, and S.
Vadhiyar, “Numerical Libraries and the Grid: The GrADS Experiments
with ScaLAPACK”, Tech. Rep. UT CS-01-460, April 2001.

[17] http://www.cs.huji.ac.il/labs/parallel/workload/ (Archive of information
regarding the workloads on parallel machines)

[18] J. Jann, P. Pattnaik, H. Franke, F. Wang, J. Skovira, and J. Riordan,
“Modeling of Workload in MPPs”, pp. 94–116. Springer–Verlag,
Lecture Notes in Computer Science LNCS 1291, 1997.

[19] C. Ernemann, B. Song, and R. Yahyapour, “Scaling of Workload
Traces”, Vol. 2862 of Lecture Notes in Computer Science, pp. 166–183,
June 24, 2003.

[20] D. G. Feitelson and A. M. Weil, “Utilization and Predictability in
Scheduling the IBM SP2 with Backfilling”, In Proc. 12th Int’l Parallel
and Distributed Processing conference, pages 542–547, CA, 1998.

[21] D. G. Feitelson and B. Nitzberg, “Job Characteristics of a Production
Parallel Scientific Workload on the NASA Ames iPSC/860”, pp.
337–360. Springer, Berlin, Lecture Notes in Computer Science LNCS
949, 1995.

[22] J. Krallmann, U. Schwiegelshohn, and R. Yahyapour, “On the Design
and Evaluation of Job Scheduling Systems”, Springer, Lecture Notes in
Computer Science, LNCS 1659, 1999.

[23] U. Schwiegelshohn and R. Yahyapour, “Analysis of
First-Come-First-Serve Parallel Job Scheduling, “In Proceedings of the
9th SIAM Symposium on Discrete Algorithms, pages 629-638, January
1998.

[24] U. Schwiegelshohn and R. Yahyapour, “Improving
First-Come-First-Serve Job Scheduling by Gang Scheduling”, pp.
180–198. Springer, LNCS 1459, 1998.

[25] D. G. Feitelson, L. Rudolph, U. Schwiegelshohn, and K. C. Sevcik,
“Theory and Practice in Parallel Job Scheduling”, LNCS, 1291:1–34,
1997.

[26] V. Hamscher, U. Schwiegelshohn, A. Streit, and R. Yahyapour,
“Evaluation of Job-Scheduling Strategies for Grid Computing”, pp.
191–202, Springer, Berlin, Lecture Notes in Computer Science LNCS
1971, 2000.

[27] C. Ernemann, V. Hamscher, U. Schwiegelshohn, A. Streit, and R.
Yahyapour, “On Advantages of Grid Computing for Parallel Job
Scheduling”, In Proc. 2nd IEEE/ACM Int’l Symposium on Cluster
Computing and the Grid, May 2002.

[28] G. Sumathi and N. P. Gopalan, “Computational Power and Level of
Parallelism Based Scheduling for Heterogeneous Grid Environments”,
International Journal of Computer Sciences and Engineering Systems,
Vol.2, No.2, April 2008.

[29] L. Keqin, “Job scheduling and processor allocation for grid computing on
meta-computers”, Journal of Parallel and Distributed Computing,
Volume 65 , Issue 11 pp. 1406 – 1418, November 2005.

[30] Y. Pan, Y. Lee, F. Wu, "Job Scheduling of Savant for Grid Computing on
RFID EPC Network," IEEE International Conference on Services
Computing (SCC'05) Vol-2, pp. 75-84, 2005.

[31] Z. Xu, X. Hou and J. Sun, “Ant Algorithm-Based Task Scheduling in
Grid Computing”, IEEE CCECE, 2003.

[32] E. Lu, Z. Xu and J. Sun, “An Extendable Grid Simulation Environment
Based on GridSim”, volume LNCS 3032, pages 205–208, 2004.

[33] H. Yan, X. Shen, X. Li and M. Wu, “An Improved Ant Algorithm for Job
Scheduling in Grid Computing”, In Proceedings of the 4th International
Conference on Machine Learning and Cybernetics, 18-21 August 2005.

[34] L. Gong., X. H. Sun, E. Waston, “Performance Modeling and Prediction
of Non-Dedicated Network Computing”, IEEE Transaction on
Computer, Vol. 51 9, pp. 1041–1055, 2002.

[35] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, R. Freund, “Dynamic
Mapping of a Class of Independent Tasks onto Heterogeneous
Computing Systems”, 8th IEEE Heterogeneous Computing Workshop,
pp. 30–44, 1999.

[36] T. D. Braun, H. J. Siegel, N. Beck, L. Boloni, M. Maheswaran, A.
Reuther, J. P. Robertson, “A comparison of eleven static heuristics for
mapping a class of independent tasks onto heterogeneous distributed
computing systems”, Journal of Parallel and Distr. Comp., Vol. 61, No. 6,
pp.810–837, 2001.

[37] S. Fidanova and M. Durchova,”Ant Algorithm for Grid Scheduling
Problem”, Large Scale Computing”, LNCS No. 3743, Springer,
pp.405-412, 2006.

IAENG International Journal of Computer Science, 37:2, IJCS_37_2_03

(Advance online publication: 13 May 2010)

__

[38] L. Liu; Y. Yang; L. Lian; S. Wanbin "Using Ant Colony Optimization for
Super Scheduling in Computational Grid" 2006. APSCC 06. IEEE
Asia-Pacific Conference on Services Computing, Volume, Issue, Dec.
2006 Page(s):539 – 545.

[39] L. Yaohang “A Bio-inspired Adaptive Job Scheduling Mechanism on a
Computational Grid" IJCSNS International Journal of Computer Science
and Network Security, VOL.6 No.3B, March 2006.

[40] A. Abraham, H. Liu, W. Zhang, and TG. Chang. Scheduling jobs on
computational grids using fuzzy particle swarm algorithm. In Proceedings
of 10th International Conference on Knowledge-Based and Intelligent
Information and Engineering Systems, pages 500-507, 2006.

Tarek Helmy is currently with the department of
Information and Computer Science, College of Computer
Science and Engineering at King Fahd University of
Petroleum and Minerals (KFUPM). On leave from the
College of Engineering, Department of Computers
Engineering and Automatic Control, Tanta University,

Egypt. He received his Ph.D. in Intelligent Systems from Kyushu University,
Japan, in 2002. His research interests include Operating Systems, Multi-Agent
Systems, Personalized Web services, and Cooperative Intelligent Systems. He
has published more than 50 papers in major international journals and
conferences in the field of cooperative intelligent agents, artificial intelligence
and operating systems. Dr. Helmy is on the program/organizing committee for
various international journals/conferences in the field of artificial intelligence,
multi-agents, Operating Systems, intelligent and distributed systems.

Zeehasham Rasheed is working as a Research
Engineer in Computer and
Communication Information Technology Research
(CCITR) at Research Institute KFUPM. He completed
his M.S in Computer Science from Information and

Computer Science Department, KFUPM in 2009. His research interests include
Artificial Intelligence, Pattern Recognition, Data mining, Computer Vision,
Bioinformatics and Mobile Programming. After completing B.E in Computer
and Information System Engineering from N.E.D University of Engineering and
Technology, Pakistan, he worked as a Software Engineer for Plexus Private
Limited for one year where he was assigned for Software Testing and Software
Development.

IAENG International Journal of Computer Science, 37:2, IJCS_37_2_03

(Advance online publication: 13 May 2010)

__

