
Abstract—Grid computing is gaining more significance in the 
high-performance computing world. This concept leads to the 
discovery of solutions for complicated problems regarding the 
diversity of available resources among different jobs in the Grid. 
However, the major problem is the optimal job scheduling for 
heterogeneous resources, in which each job needs to be allocated 
to a proper grid’s node with the appropriate resources. An 
important challenge is to solve optimally the scheduling problem, 
because the capability and availability of resources vary 
dynamically and the complexity of scheduling increases with the 
size of the grid. This paper, therefore, presents a framework 
which combines the Fuzzy C-Mean clustering with an Ant 
Colony Optimization (ACO) algorithm to improve the scheduling 
decision when the grid is heterogeneous. In the proposed model, 
the Fuzzy C-Mean algorithm classifies the jobs into appropriate 
classes, and the ACO algorithm maps the jobs to the appropriate 
resources. The ACO is characterized by ant-like mobile agents 
that cooperate and stochastically explore a network, iteratively 
building solutions  based on their own memory and on the traces 
(pheromone levels) left by other agents. The simulation is done 
by using historical information on jobs in a grid. The 
experimental results show that the proposed algorithm can 
allocate jobs more efficiently and more effectively than the 
traditional algorithms for scheduling policies. 

Index Terms—Fuzzy C-Mean, ACO, Job Scheduling.  

I. INTRODUCTION

In high-throughput computing, the grid is used to schedule the 
independent jobs with respect to the dynamically distributed 
resources [1]. Grid computing is the principle of sharing the 
computational resources like processors, storage, network & 
instruments in a secure way. Under this principle, grid 
computing has faced a lot of problems in acquiring flexible, 
secure, and coordinated sharing among dynamic collections of 
resources [1, 3]. The main objective of the scheduler is to 
maximize the resources utilization. The previous research on 
scheduling for distributed systems, such as clusters and 
supercomputers, focused on extracting the maximum 
throughput from the entire system [4, 5]. Grid scheduling is 
responsible for resources discovery, resources selection, and job 
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assignment over distributed nodes of the gird. Grid scheduling 
concentrates on improving response times in a grid containing 
autonomous resources whose availability varies dynamically 
with time. The grid scheduler must interact with the local 
schedulers managing computational resources and must adapt 
its behavior to the changing resources loads. Thus the 
scheduling is conducted from the perspective of the 
application or the user rather than that of the system. Grid 
scheduling involves a series of challenging tasks. These 
include: searching for resources in the collection of 
geographically distributed nodes; and making scheduling 
decisions according to the required quality of service. A grid 
scheduler differs from a scheduler for conventional computing 
systems in several respects. One of the primary differences is 
that the grid scheduler does not have full control over the grid. 
More specifically, the local resources are generally controlled 
not by the grid’s scheduler, but by the local scheduler. Another 
difference is that the grid scheduler cannot assume that it has 
a global view of the grid. The demand for scheduling is to 
achieve high-performance computing. It is very difficult to 
find an optimal resource allocation for specific jobs that 
minimizes the scheduled length of the jobs. The scheduling 
problem is a NP-hard problem [6] and it is not trivial. 

There are basically two approaches to solve this problem. 
The first is based on job characteristics, and the second on a 
distributed resources discovery and allocation system. We 
have studied the feasibility and the usefulness of applying 
heuristics and machine learning techniques to this field. We 
provide a scheduling model [Figure 1] based on Fuzzy 
C-Mean (FCM) clustering and Ant Colony Optimization 
(ACO) algorithm for grid scheduling. In this paper, we 
compare our algorithm with the performance of various 
job-scheduling algorithms in grid computing environment.  

This paper is organized as follows. Section II reviews 
relevant research. Section III gives a brief overview of FCM 
clustering and ACO algorithm. Section IV discusses problem 
description. Sections V and VI present some theoretical 
aspects of the proposed algorithm. Section VII and VIII 
discuss the experimental setup and results. Our conclusion 
and suggestions for future work are given in Section IX. 

II.RELATED WORK

In grid computing, there are a lot of important issues, 
including job scheduling, information service, information 
security, resource management, routing, and fault tolerance. 
The job scheduling is a major problem, since it is a 
fundamental and crucial step in achieving high performance. 
Job scheduling has been described as a combinatorial 
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optimization problem. Scheduling in a grid can be seen as an 
extension to the scheduling problem on local parallel systems. 
In general, job scheduling predictions in a grid are dependent 
on the job’s execution time and the job’s running time. For 
example, the prediction engine module in [7] is a part of the 
scheduler and offers a history-based approach for estimating 
the run time of job submission. 

Figure 1: Model for Job Scheduling in Grid Environment 

The authors in [8] proposed two modules for predicting the 
completion time of jobs in a service grid and for applying 
evolutionary techniques to job scheduling. The problem of 
estimating a job’s run time from historical data has been 
studied in [9, 10, 11]. All of them adopt the method of making 
predictions for future jobs by applying different job 
characterizations to classify similar previous jobs and then 
using them to make predictions. After detailed analysis, we 
noticed that those methods have unclear definitions of jobs, i.e. 
what are the important features used in measuring the 
similarity of jobs which can be included in the prediction 
module. Another approach to predict application performance 
and to detect of unexpected execution behavior has been 
proposed in [12]. These authors found that the unexpected 
execution behavior is typically caused by an unanticipated load 
on the shared grid resources. Similar predicting application’s 
performance on a given parallel system has been the most 
widely studied in [13, 14]. More recently those studies have 
been extended to distributed systems [15, 16, 38, 39, 40]. 
Traditional performance prediction techniques often focus on 
performance models that are specific to a single architecture or 
a static set of resources. However, computational grid 
environments consist of a collection of dynamic, 
heterogeneous resources and a collection of different jobs. Our 
approach especially examines the implications of the fact that 
the characterization of jobs is expected to affect the mentioned 
resource utilization. Even more interestingly for researchers 
on performance quality. We use information about static 
workload data from the standard workload archive [17] and 
from experiments reported in several publications [18, 19, 20, 
21]. Moreover, these workload traces were used for the 
evaluation of different scheduling strategies for parallel 
systems [22, 23, 24, 25] and for grid research [26, 27, 28, 29, 
30]. These workload traces consist of information about all job 
submissions on a node for a certain period of time which 
usually ranges over several months and several thousands of 
jobs. Therefore, it is reasonable to start with the available 
workload traces information from the computing centers to 

evaluate the impact of jobs characterization in grid. Our 
approach separated the workload data into three classes 
based on job run-time historical data [Figure 1]. Other 
algorithms such as Min-Min, Max-Min, Fast greedy Tabu 
search and Ant system are some of the heuristic algorithms 
which create a static environment. They must predict the 
execution time and workload in advance. In [31], the authors 
have proposed a simple grid simulation architecture using 
ACO. They used the response time and the average 
utilization of resources as the evaluation index. In [32] and 
[33], the authors proposed ACO algorithms, such as job 
finishing ratio which could improve the performance. 

III. OVER VIEW OF FCM AND ACO ALGORITHMS

A. Fuzzy C-Mean Clustering 

This paper aims to cluster jobs according to their 
similarities into groups. Fuzzy C-Mean (FCM) is a famous 
clustering algorithm for building Fuzzy partitions. FCM will 
be used in this approach as the basic tool for building job 
characterizations in grid. The FCM algorithm was 
introduced by Bezdek [15] as an extension to Dunn’s 
algorithm [16] to generate Fuzzy sets for every observed 
feature. Fuzzy clustering methods allow for uncertainty in 
the cluster assignments. Rather than partitioning the data 
into a collection of distinct sets (where each data point is 
assigned to exactly one set), Fuzzy clustering creates a Fuzzy 
pseudo partition, which consists of a collection of Fuzzy sets. 
Fuzzy sets differ from traditional sets in that membership in 
the set is allowed to be uncertain. A Fuzzy set is formalized 
by the following definitions. Let X = {x1, x2, …, xn} be a set 
of given data, where xi є Rn is a set of feature data. The 
minimization objective function of the FCM algorithm is 
frequently used in pattern recognition as follows: 
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Where m is any real number > 1, V= {v1, v2, ..., vc} are the 
cluster centers. U= (μij) nxc is the degree of membership of 
vector xi in cluster k. The value of U must satisfy the 
condition in equation (3). Dik is the norm Euclidean distance 
expressing the similarity between any measured data and the 
center. The cluster centers V can be calculated according to 
the following equations: 
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The algorithm will stop if 1k kE
−

= −V V  < T, where T 

is the termination threshold and k is the iteration number.  

B. Ant Colony Optimization Algorithm 

The ACO algorithm is based upon a heuristic approach 
and on the behavior of real ants. Each ant deposes the 
chemical pheromone on its path when it searches for food 
from its nest. When each ant moves in a particular direction, 
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the strength of the pheromone increases. With this guidance, 
other ants can also trail along. This idea inspired the discovery 
of the ACO algorithm. This algorithm uses a colony of 
artificial ants that behave as cooperative agents in a 
mathematical space, where they are allowed to search and 
reinforce pathways (solutions) in order to find the optimal 
ones. This approach, which is population-based, has been 
successfully applied to many NP-hard optimization problems. 
The ACO is characterized by ant-like mobile agents that 
cooperate and stochastically explore a network, iteratively 
building solutions  based on their own memory and on the 
traces (pheromone levels) left by other agents. At regular 
intervals, a forward ant is launched from a random source node 
to another random destination node. In its trip, the forward ant 
will select the next processor using a random scheme that 
accounts the path selection probabilities, given by the 
pheromone levels in each neighbor link, and a heuristics value, 
calculated from the congestion of each neighbor links. 

IV. PROBLEM DISCRIPTION

Grid computing is dynamic that it allocates the jobs to the 
resources effectively. The main aim of the scheduler in the grid 
is to allocate the jobs to the available nodes with the best 
available resources. The best match must be allocated from the 
list of available jobs and from the list of available resources. 
The selection is based on the prediction of the computing 
power of the resource [34]. The grid users expect to run their 
jobs efficiently. The efficiency depends upon two criteria: 
makespan and flow time. These two criteria are very important 
in the grid system. Makespan measures the throughput of the 
system, and flow time measures its QoS [35]. The expected 
Execution Time (ET) is the expected time to complete the job. 
This also includes the submit time of each job. The element 
ETij of the ET matrix is defined as the amount of time taken to 
complete the ith job in the jth resource. The jobs are owned by 
different users, and all jobs are interdependent. All the 
resources may be dynamically added or removed from the grid. 
They use the expected time to compute ET in [36]. The ET 
matrix will have N x M entries, where N is the number of 
independent jobs to be scheduled and M is the number of 
resources currently available. In our experiment, processors 
are taken as resources. The Ready time (Readym) indicates the 
time in which the resource ‘m’ would have finished the 
previously assigned jobs. The completion time of the ith job on 
the jth processor/resource is: 

                            CTij = Readyj + ETij                          (6) 

Max (CTij) is the makespan of the complete schedule. 
Makespan is used to measure the throughput of the grid 
system. The main objective of this algorithm is to minimize the 
makespan. In general the existing heuristic mapping can be 
divided into two categories: on-line mode and batch mode. In 
the on-line mode, the scheduler is always ready. Whenever a 
new job arrives to the scheduler, it is immediately allocated to 
one of the existing resources required by that job. Each job is 
considered only once for matching and scheduling. In the 
batch mode, the jobs and resources are collected and mapped at 
a prescheduled time. The batch mode produces better decisions 
because the scheduler knows the full details of the available 

jobs and resources. The proposed algorithm is also a heuristic 
algorithm for the batch mode. The result of the algorithm 
will have four values (task, node, starting time, expected 
completion time). The number of jobs available for 
scheduling is always greater than the number of nodes 
available in the grid. The node Mj free time will be known by 
using the function free (j). The starting time of job ti on 
resource Mj is:  
                              Bi = free (j) + 1                       (7) 
Then the new value of free (j) is the starting time + ETij. In 
the algorithm, the minimization function is used in order to 
find out the best resource:  
                             F = max (free (j))                           (8) 
And use the following heuristic information is used: 
                              ηij =1 / Free(j)                       (9) 
Formula # 9 is used to find out the highest priority node 
which is free earlier. All the ants are maintaining a separate 
list. Whenever they select the next task and resource, they are 
added into the list. The ants calculate the minimize function 
‘Fk (kth ant)’ and the pheromone trail updates the value:  
                                    ⌂Tij = 1-ρ / Fk                               (10) 

In this algorithm, two set of tasks are maintained: the 
scheduled tasks and newly arrived & unscheduled tasks. The 
algorithm starts automatically, whenever the set of scheduled 
jobs become empty. According to [37], the first task to be 
performed, and the machine in which it is performed are 
chosen randomly. Next, the task to be run and the node in 
which it is to be run are computed by the following formula: 
                                 Pij = Tij . ηij / Σ Tij . ηij                        (11) 
- ηij is the attractiveness of the move as computed by some 

heuristic information indicating a prior desirability of 
that move; 

- Tij is the pheromone trail level of the move, indicating 
how profitable it has been in the past to make that 
particular move; 

Pij is the probability to move from a state i to a state j 
depending on the combination of the above two values. 

V.THORITICAL ANALYSIS

The goal of the proposed scheduling algorithm is to 
minimize the total execution time of jobs. As the scheduling 
is performed statically, all necessary information about the 
jobs in the grid and the processors in the system is assumed to 
be available a priori. For the heterogeneous environment, we 
used a hybrid approach in which grouping of jobs is done 
using FCM clustering algorithm and affinity between jobs 
and processors is calculated using ACO algorithm. 
Essentially, the expected running time of each job on each 
processor must be known, and this information can be stored 
in an expected ET matrix. A row in an ET matrix contains 
the ET for a single job on each of the available processors, 
and so any ET matrix will have n x m entries, where n is the 
number of jobs and m is the number of resources or 
processors. In order to simulate various possible 
heterogeneous scheduling problems as realistically as 
possible, we define different types of ET matrix for our 
experiments: execution time, submission time, load 
balancing and fault tolerance. The task heterogeneity in our 
experiment is defined as the processors are not identical, and 
each processor can take a differing amount of time to process 
any given job with respect to available resources 
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A. Finding Job Clusters 

In our approach FCM clustering algorithm is used as the 
basic tool for building jobs characterization in grid 
environment. Initially, we have given unlabeled dataset of jobs 
represented by X = {x1, x2, x3…, xn} where n is the number of 
jobs in X. Also each xk ε Rp where p is the number of features 
in each input vector. For our approach we used completion 
time, submission time and resources required as features. As 
far as clusters are concerned, we used three clusters of jobs as 
heavy, medium and small workload. They are represented as 
V= {v1, v2, v3} ε Rp where vi is the ith cluster center. After the 
initialization, next step is the calculation and optimization of 
objective function represented in equations (1, 2, 3 and 5). The 
objective function represents the degree of membership value 
of each job against each cluster and is calculated by using 
Euclidean distance. The cluster centers are calculated by using 
aggregated mean represented in equation (4). The cluster 
centers are updated in every iteration, and the algorithm 

continues until 1k kE
−

= −V V  < T, where T is the 
termination threshold, and k is the iteration number. After 
that, these workloads are sent to the ACO algorithm for 
optimization. 

B. Defining the Pheromone Trial 

The fact that jobs will run at different speeds on different 
processors means that this problem cannot be approached as 
the same sort of grouping problem as for the homogeneous 
case. However, we can exploit this fact to use what is perhaps 
the more intuitive pheromone trail definition that certain jobs 
may have certain affinities with certain processors, and so it 
would be useful to store information about good processors for 
each job. The pheromone value Tij is selected to represent how 
profitable is to schedule a particular job i onto a particular 
processor j. For the first time, all processors have value 0.5, 
means every job has the same benefit or 50 percent profit 
running on any processor. After the heuristic and the fitness 
functions are calculated to produce the final pheromone 
matrix. The pheromone matrix will thus have a single entry for 
each job-processor pair in the problem. 

C.The Heuristic and Fitness Functions 

The min-min heuristic is a very effective algorithm for this 
problem. It suggests that the heuristic value of a particular job 
should be proportional to the minimum completion time of the 
job, that is the time a job i can be expected to finish on a 
processor j. Contrary to conventional ACO algorithm which 
was using only one ant for heuristic and fitness function, we 
are calculating probability matrix (Pkij) by using k ants. The 
minimum completion time of a job i on a processor j is used for 
the heuristic function. The resulting ηij function use by the ants 
is defined in equation (9). If the job i has minimum completion 
time on processor j, then by using ηij for calculating probability 
in equation (11), we can find the best processor j for that job i 
which can complete job i in minimum time span. The same 
procedure is done by each ant having their own heuristic and 
fitness function values. 

D.Updating the Pheromone Value 

For updating the pheromone value, ants should be allowed 
to share information about good solutions for a policy. 
Allowing only the best ant to leave pheromone after iterating 
makes the search much more aggressive, and significantly 
improves the performance of ACO algorithms. Using 
equations (10, 11), each ant follows the same pheromone 
update policy for each pair of job i and processor j in their 
own pheromone matrix.  

T ij = ρ T ij + ⌂Tij

Where ρ is a parameter which defines the pheromone 
evaporation rate and ⌂Tij is the pheromone trial value. 

E. Building a Solution 

A simple strategy, following the minimum execution time 
approach, would be to allocate each job i, in arbitrary order, 
to a processor j picked probabilistically with respect to the 
pheromone value between i and j, and the execution time of 
completion of i on j (a lower value is preferable). The 
solution building technique used for this ACO approach is an 
attempt to follow the concept of the best heuristic method. 
First, the processor j which completes a job i earliest is 
established. A job i then picked to be scheduled next based on 
the pheromone value between job i and processor j. The 
probability of selecting job j to be scheduled next is given by 
equation (11). At this stage, we have k probability matrices 
one for each ant. A job is then selected based on the highest 
probability among all the matrices, and the chosen job i is 
then allocated to processor j. This process is repeated until all 
jobs have been scheduled and a complete solution has been 
built. 

In [37], the algorithm uses only one ant. To overcome this 
disadvantage, a new algorithm is proposed. In this method, 
the probability matrix (Pkij) is modified by using several ants 
(k ants) and the number of ants used is less than or equal to 
the number of tasks. From all the possible scheduling lists, 
the one having the minimum makespan is found and that 
ant’s scheduling list is used. So, at the time of execution, the 
scheduler finds the list of available resources (processors) in 
the grid, forms the ET matrix, and starts scheduling. The 
steps for the proposed algorithm are as follows: 
1. Find the classification of workload by FCM clustering. 

2. Collect all necessary information of jobs (n) and resources 
(m) of the system in the ET matrix and the submit Time 
matrix (size should be m x n). 

3. Set all the initial values, ρ = 0.05 (pheromone evaporation 
value), T = 0.5 (initial pheromone deposit value), Free = 0 
(one dimensional matrix of size m), k = m (k is the number 
of ants, and m is the number of resources).  

4. For each ant (to prepare the scheduling list) do the steps # 
5 and 6. 

5. Select the task (i) and resource (j) randomly. 

6. Repeat the following until all jobs are executed. 

a. ηij =1 / Free(j) 
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b. Calculate the pheromone trail value ⌂Tij = 1-ρ / Fk , where 
Fk =  max(free(j)) 

c. Update the pheromone trail matrix T ij = ρ T ij + ⌂Tij

d. Calculate the Probability Matrix Pij = Tij . ηij / Σ Tij . ηij

e. Select the highest probability i and j, (the next task i to be 
executed on resource j) 

7. Find the best feasible solution by using the scheduling list of 
all the ants. Best feasible solution leads to the minimum 
makespan time of nodes and to the minimum average 
waiting time of jobs. 

Load balancing and fault tolerance are checked during 
runtime. If any load is overloaded, jobs are swapped from one 
node to another. Also, if any node fails, all the remaining jobs 
are distributed among other nodes. 

VI. EXPERIMENTAL SETUP AND RESULTS

In the experiments, we used a workload data from a standard 
workload archive [17]. These data consists of 1,000 jobs, from 
which 500 are randomly selected for the experiment. Each 
job’s record has 18 attributes. However, we focused on the 
execution time and submission time of each job. In the 
experiments we assumed that each job is allowed to run in each 
node by using a space-sharing mechanism. In the 
space-sharing mechanism, each processor can serve only one 
job at a time. We simulated 10 different performance nodes in 
the grid. The experiments were conducted in five parts. The 

first part focused only on the execution time of jobs and all 
the remaining parts treat both execution and submission 
time. The second part took care of the execution time as well 
as the submission time of jobs. The third part supports load 
balancing between the nodes, the fourth part of the 
experiment supports fault tolerance and the fifth part focused 
on the affect of the number of users. The experiments showed 
the classification of jobs workload into three groups: heavy, 
medium and light workload [Figure 2]. Figure 3 shows the 
job membership functions given by using FCM clustering 
algorithm.  

In the experiments, the jobs in workload data are allocated 
to three classes, each with number of jobs shown in Table 1. 
After classifying of the work load, the workload is given to 
the proposed ACO algorithm for grid scheduling. In our 
experimental testing, we used 10 heterogeneous nodes and 
500 tasks. For the performance measure, we evaluated the 
completion time of each node along with the waiting time of 
each individual job. We compared the results of the ACO 
algorithm with the three traditional job scheduling 
algorithms: First-Come-First-Served (FCFS), Largest Job 
First (LJF) and Shortest-Job-First (SJF). 

TABLE 1: WORKLOAD CLASSES 

No Class Total 

1 Heavy Job Workload 72 

2 Medium Job Workload 66 

3 Small Job Workload 362 

Figure 2: (a) Pool of Jobs (b) Separate Clusters of Job 

Figure 3: Membership Function of Workload
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A. Jobs with Execution Time only 

The results for the first time, where we consider only the 
execution time of job are shown in Figures 4 and 5. In Figure 
4, we can see that all the nodes have minimum completion 
time when using the ACO algorithm as compared to others. 
This completion time includes the execution time and the 
waiting time of all jobs at their nodes. Similarly, Figure 5 
shows that nearly all the jobs have less waiting time than SJF, 
LJF and FCFS. 

Figure 4: Completion Time of each Node when only the 
Execution Time is considered 

B. Jobs with Execution and Submission Time 

For this case, we include the submit time of each job when 
they arrived. So the total waiting time of each job contains the 
execution time of all previous jobs plus the time from its 
submission to the time when it gets a processor. The results 

are shown in Figures 6 and 7. We can conclude that SJF and 
the proposed ACO algorithms have similar completion times 
as compared to other algorithms when the submission time is 
considered. 

Figure 6: Completion time of each Node when the 
Execution and the Submission Time are considered

C. Load Balancing between Nodes 

We implemented a load-balancing mechanism between all 
nodes. The proposed algorithm continuously monitors each 
node, and, if any node becomes overloaded, the jobs are 
migrated from one node to another. The results are shown in 
Figures 8 and 9. We can see that all the algorithms are trying 
to balance the load at each node, and here our proposed 
algorithm ACO has the minimum completion time for each 
node. 
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Figure 5:  Waiting Time for each job when only the Execution Time is considered
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Figure 7: Waiting Time for each job when the Execution and the Submission times are considered 
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Figure 8: Waiting Time of each job by using Load Balancing Mechanism 

D. Fault Tolerance 

We considered a scenario in which node 4 failed after some 
time. In order to support fault tolerance, jobs on node 4 are 
distributed between different nodes taking care of the 
completion time as well as the load balancing using 
checkpoint-restart during runtime. The results are shown in 
Figures 10 and 11. We can see that the proposed ACO 
algorithm outperforms all other algorithms despite the failure 
of nodes. The overall results are stated in Table 2, which shows 
that the proposed ACO algorithm performs best among 
different algorithms under different circumstances.

Figure 9: Waiting Time for each Node using Load 
Balancing Mechanism 

TABLE 2: COMPLETION TIME FOR EACH NODE IN DIFFERENT 
SCENARIOS 

FCM+ACO 
Algorithm 

SJF LJF FCFS 

 Time Units 

Execution time 
only 

75.1533 272.137 495.316 405.863 

Execution + 
Submission 

times 
988.7 1274.5 2990.1 2313.8 

With Load 
Balancing 

Mechanism 
838.4 1319.9 1659.2 1640.9 

With Fault 
Tolerance 

Mechanism 
1012.8 1663.4 3488.7 2697.2 

Figure 10: Waiting Time for each Node when one Node 
Fails 
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Figure 11: Waiting Time of each job when one Node Fails
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VII. EXPERIMENT WITH THE NUMBER OF USERS

We carried out another experiment based on the number of 
users with four different cases.  The number of users is defined 
by three different configurations as shown in Table 3. For 10 
users, the completion time for each scheduler with respect to 
four different scenarios is stated in the Table 4. For 25 users, 
the completion time for each scheduler with respect to four 
different scenarios is stated in the Table5. For 50 users, the 
completion time for each scheduler with respect to four 
different scenarios is stated in the Table 6. From Figures 12, 
13, and 14 we can infer that the proposed algorithm performs 
better than all the traditional scheduling algorithms. With the 
proposed algorithm, the completion time for all jobs is less for 
all user configurations as well as for all different scheduling 
algorithms. Also as the number of users and number of jobs 
increases, the proposed algorithm is performing much better 
than the traditional scheduling algorithms. For 10 users’ 
configuration, the difference between the completion time of 
FCM-ACO algorithm and SJF is small, but for 50 users’ 
configuration, the difference between the two algorithms 
increased. This shows that in real time environment where we 
have a huge number of users, the proposed algorithm will 
definitely perform better as compared to others scheduling 
algorithms. 

TABLE 3: NUMBER OF USERS & JOBS IN DIFFERENT SCENARIOS 

Number 
of Users 

Jobs per 
User 

Total Number of Jobs 

10 10 100 
25 10 250 
50 10 500 

TABLE 4: COMPLETION TIME  FOR 10 USERS 

FCM+ 
ACO  SJF LJF FCFS 

Time Units 

Execution time only 17.04 46.76 279.17 144.96 

Execution time + 
Submission time 

52.753 95.69 423.04 398.88 

With Load Balancing 
Mechanism 

21.319 40.292 860.14 749.38 

With Fault Tolerance 
Mechanism 206.73 250.67 1143.3 1258.4 
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Figure 12: Completion Time for 10 Users 

TABLE 5: COMPLETION TIME  FOR 25 USERS

FCM+ 
ACO  

SJF LJF FCFS 

 Time Units 

Execution time only 43.23 244.80 366.12 300.75 

Execution time + 
Submission time 

32.48 104.96 512.10 280.12 

With Load Balancing 
Mechanism 

129.05 230.62 552.06 381.26 

With Fault Tolerance 
Mechanism 

122.60 208.52 444.82 385.27 

TABLE 6: COMPLETION TIME  FOR 50 USERS 

FCM+ 
ACO  

SJF LJF FCFS 

 Time Units 

Execution time only 75.15 272.13 495.31 405.86 

Execution time + 
Submission time 988.7 1274.5 2990.1 2313.8 

With Load Balancing 
Mechanism 838.4 1319.9 1659.2 1640.9 

With Fault Tolerance 
Mechanism 

1012.8 1663.4 3488.7 2697.2 

Completion Time for 25 Users

0

100

200

300

400

500

600

Execution time
only

Execution time
+ Submission

time

With Load
Balancing

Mechanism

With Fault
Tolerance

Mechanism

T
im

e 
U

n
it

s ACO

SJF

LJF

FCFS

Figure 13: Completion Time for 25 Users 
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Figure 14: Completion Time for 50 Users
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VIII.CONCLUSION AND FUTURE WORKS

We have studied the job scheduling for a grid environment 
as a combinatorial prediction and optimization problem. We 
have proposed an intelligent scheduling algorithm in a grid 
which uses the FCM clustering technique for predicting three 
classifications of job workload and the ACO algorithm for 
allocating them to different grid nodes. The proposed hybrid 
scheduling is very efficient in terms of calculation, because 
classifying the workload in the first step made the calculation 
very simple for the ACO algorithm, and it can efficiently 
schedule each job with respect to its workload class. The 
experimental results, for each part on the completion time of 
nodes and the waiting time of each job have shown that the 
scheduling system using the proposed algorithm outperforms 
all other algorithms and gives optimal results. Also, from all 
the traditional scheduling algorithms, only SJF is comparable 
to the ACO algorithm. Also as the number of users and 
number of jobs increases, the proposed algorithm is 
performing much better than the traditional scheduling 
algorithms. For future work, our simulation environment will 
include more complex characterization of the constraints for 
grid scheduling in real time systems. 
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