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     Abstract - A new method of intelligent control for closed 
quantum computation time-independent systems is introduced. 
The introduced method uses recurrent supervised neural 
computing to identify certain parameters of the transformed 
system matrix [ A

~ ]. Linear matrix inequality (LMI) is then used 
to determine the permutation matrix [P] so that a complete 
system transformation {[ B~ ], [ C

~ ], [ D~ ]} is achieved. The 
transformed model is then reduced using singular perturbation 
and state feedback control is implemented to enhance system 
performance. In quantum computation and mechanics, a closed 
system is an isolated system that can’t exchange energy or 
matter with its environment and doesn’t interact with other 
quantum systems. In contrast to an open quantum system, a 
closed quantum system obeys the unitary evolution and thus is 
information lossless that implies state reversibility. The 
experimental simulations show that the new hierarchical control 
simplifies the model of the quantum computing system and thus 
uses a simpler controller that produces the desired performance 
enhancement and system response.  
 
      Index Terms - Linear Matrix Inequality, Model Reduction, 
Quantum Computation, Recurrent Supervised Neural 
Computing, State Feedback Control System.  
 

I. INTRODUCTION 
 
Due to the predicted upcoming failure of Moore’s law, 
quantum computing will occupy an increasingly important 
position in building more compact and less power consuming 
systems [1-6,8,9,12,14-16,18,19,25-28]. Other motivations for 
pursuing the possibility of implementing circuits and systems 
using quantum computing would include items such as: (1) 
power where the internal computations in quantum computing 
systems consume no power and only power is consumed 
when reading and writing operations are performed [14-16]; 
(2) size where the current dense hardware implementations 
are heading towards the atomic threshold at which quantum 
mechanical effects have to be accounted for; and (3) speed 
where if the properties of superposition and entanglement of 
quantum mechanics can be usefully employed in the design of 
circuits and systems, significant computational speed 
enhancements can be expected [1,16,28].  
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       In control applications and system modeling, sometimes 
it is required to identify some of the system parameters. This 
objective can be achieved by the use of artificial neural 
networks (ANN) which are considered as the new generation 
of information processing networks. A neural network is an 
interconnected group of nodes akin to the vast network of 
neurons in the human brain. Artificial neural systems can be 
defined as physical cellular systems which have the capability 
of acquiring, storing and utilizing experiential knowledge 
[5,10,20,22,32,33]. The ANN consists of an interconnected 
group of artificial neurons and processes information using a 
connectionist approach in performing computation. In most 
cases, an ANN is an adaptive system that changes its structure 
based on external or internal information that flows through 
the network during the learning phase. The basic processing 
elements of neural networks are called neurons which perform 
summing operations and nonlinear function computations. 
Neurons are usually organized in layers and forward 
connections where computations are performed in a parallel 
fashion at all nodes and connections. Each connection is 
expressed by a numerical value which is called a weight. The 
learning process of a neuron corresponds to a way of 
changing its weights.  
       When working within system modeling and control 
analysis, there exist equations and inequalities that require 
optimized solutions. An important expression which is used in 
robust control is called linear matrix inequality (LMI) which 
is used to express specific convex optimization problems for 
which there exist powerful numerical solvers [11]. The 
important LMI optimization technique started by the 
Lyapunov theory showing that the differential equation 

)()( tAxtx =&  is stable if and only if there exists a positive 

definite matrix [P] such that . The requirement 
of { , } is what is known as the Lyapunov 
inequality on [P] which is a special case of an LMI. By 
picking any  and then solving the linear equation 

for the matrix [P], it is guaranteed to be 
positive-definite if the given system is stable. The LMI that 
arises in system and control theory can be formulated as 
convex optimization problems that are amenable to computer 
solution and then can be solved using algorithms such as the 
ellipsoid algorithm [11].  
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       In practical control engineering problems, the first step is 
to obtain a mathematical model in order to examine the 
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behavior of the system for the purpose of designing a proper 
controller [5,17,30]. Sometimes, this mathematical 
description involves a certain small parameter (i.e., 
perturbation). Neglecting this small parameter results in 
simplifying the order of the designed controller by reducing 
the order of the system [5-7,10,22,24,30,31]. A reduced order 
model can be obtained by neglecting the fast dynamics (i.e., 
non-dominant eigenvalues) of the system and focusing on the 
slow dynamics (i.e., dominant eigenvalues). This 
simplification and reduction of system modeling leads to 
controller cost minimization. In a control system, due to the 
fact that feedback controllers do not usually consider all of the 
dynamics of the system, model reduction is a very important 
issue where model reduction leads to reducing the order of the 
controller which is directly proportional to the cost. One of 
the methods which are used for the model order reduction is 
known as singular perturbation in which systems that are 
strongly coupled through their slow parts and that are weakly 
coupled through their fast parts are considered. 
       Fig. 1 illustrates the layout of the introduced closed-
system quantum computing control methodology which is 
utilized in this paper.  
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. The introduced control methodology which is utilized for 
closed quantum computing systems. 
 
       In the introduced control methodology shown in Fig. 1, 
Layer 1 is the closed-system quantum computing model using 
the time-independent Schrödinger equation (TISE). Layer 2 is 
the neural network identification of the transformed system 
matrix [ A~ ]. Layer 3 is the LMI technique used in 
determining the permutation matrix which is required for 
system transformation {[ B~ ], [ C~ ], [ D~ ]}. Layer 4 is the 
system transformation. Layer 5 presents the model order 
reduction. Finally, layer 6 presents the state feedback control.   
       This paper is organized as follows: Section II presents 
background on quantum computing, recurrent supervised 
neural computing, linear matrix inequality, model 
transformation, and model order reduction; Section III 
presents the recurrent neural network identification with the 
LMI optimization technique for model order reduction of the 
quantum computing system; An implementation of the neural 
network identification with LMI optimization to the model 
order reduction of the time-independent quantum computing 
system is presented in Section IV; Section V presents the 
application of state feedback controller on the reduced order 
model of the quantum computing system; Conclusions and 
future work are presented in Section VI.    
 

II. FUNDAMENTALS 
 
This section presents important background on quantum 
computing systems, supervised neural networks, LMI and 
model reduction that will be used in Sections III, IV and V.  
 
   A. Quantum Computation Systems 
     
Quantum computing is a method of computation that uses the 
dynamic process which is governed by the Schrödinger 
equation [1,13,14,28,29]. The one-dimensional time-
dependent Schrödinger equation (TDSE) is as follows: 
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where h is Planck constant (6.626⋅10-34 J⋅s = 4.136⋅10-15 eV⋅s), 
V(x, t) is the applied potential, m is the particle mass, i is the 
imaginary number, ),( txψ  is the quantum state, H is the 
Hamiltonian operator where H = - [(h/2π)2/2m]∇2 + V, and ∇2 
is the Laplacian operator. 
       A general solution to TDSE is the expansion of a 
stationary (time-independent or spatial) basis functions (i.e., 
eigen states) )(rUe

r  using time-dependent (i.e., temporal) 
expansion coefficients ce(t) as follows: 
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The expansion coefficients ce(t) are a scaled complex 
exponentials as follows:   
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where Ee are the energy levels.  
       While the above holds for all physical systems, in 
quantum computing, the time-independent Schrödinger 
equation (TISE) is normally used [1,28]:  
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where the solution ψ  is an expansion over orthogonal basis 

states iφ  defined in a linear complex vector space called 
Hilbert space Η as: 
                                        ∑=

i
iic φψ                               (4) 

where the coefficients ci are called probability amplitudes and 
|ci|2 is the probability that the quantum state ψ  will collapse 

into the (eigen) state iφ . The probability is equal to the inner 

product 
2

|ψφi , with the unitary condition ∑|ci|2 = 1. In 

quantum computing, a linear and unitary operator ℑ is used to 
transform an input vector of quantum bits (qubits) into an 
output vector of qubits. In two-valued quantum computing, 
the qubit is a vector of bits which is defined as follows:               
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       A two-valued quantum state ψ  is a superposition of 

quantum basis states iφ . Thus, for the orthonormal 

computational basis states { }1,0 , one has the following 
quantum state: 
                                10 βαψ +=                                   (6) 

where αα* = |α|2 = p0 ≡ the probability of having state ψ  in 

state 0 , ββ* = |β|2 = p1 ≡ the probability of having state ψ  

in state 1 , and |α|2 + |β|2 = 1. The calculation in quantum 
computing for multiple systems (e.g., the equivalent of a 
register) follow the tensor product (⊗). For example, given 
the quantum states 1ψ  and 2ψ , one has:             
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       A physical system (e.g., the hydrogen atom) that is 
described by the following Equation: 
                    SpindownSpinup 21 cc +=ψ                      (8) 
can be used to physically implement a two-valued quantum 
computing. Another common alternative form of Equation (8) 
is as follows: 

                            
2
1

2
1

21 −++= ccψ                             (9) 

       Many-valued (m-valued) quantum computing can also be 
performed. For the three-valued quantum computing, the 
qubit becomes a 3-dimensional vector quantum discrete digit 
(qudit), and in general, for m-valued quantum computing the 
qudit is of dimension “many” [1,28]. For example, one has for 
the 3-state quantum computing (in the Hilbert space H) the 
following qudits:  
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       A three-valued quantum state is a superposition of three 
quantum orthonormal basis states (vectors). Thus, for the 
orthonormal computational basis states { }2,1,0 , one has 
the following quantum state: 

210 γβαψ ++=  

where αα* = |α|2 = p0 ≡ the probability of having state ψ  in 

state 0 , ββ* = |β|2 = p1 ≡ the probability of having state ψ  

in state 1 , γγ* = |γ|2 = p2 ≡ the probability of having state 

ψ  in state 2 , and |α|2 + |β|2 + |γ|2 = 1.  
       The calculation in quantum computing for m-valued 
multiple systems follow the tensor product in a manner 
similar to the one demonstrated for the higher-dimensional 
qubit in the two-valued quantum computing. 

       Several quantum computing systems were used to 
implement quantum gates from which complete quantum 
circuits and systems were constructed [1,8,12,16,27,28], 
where several of the two-valued and m-valued quantum 
circuit implementations use the two-valued and m-valued 
quantum Swap-based and Not-based gates [1,28]. This can be 
important, since the Swap and Not gates are basic primitives 
in quantum computing from which many other gates are built, 
such as [1,8,12,16,27,28]: (1) two-valued and m-valued Not 
gate, (2) two-valued and m-valued Controlled-Not gate (i.e., 
Feynman gate), (3) two-valued and m-valued Controlled-
Controlled-Not gate (i.e., Toffoli gate), (4) two-valued and m-
valued Swap gate, and (5) two-valued and m-valued 
Controlled-Swap gate (i.e., Fredkin gate).    
       For example, it has been shown that a physical system 
comprising trapped ions under multiple-laser excitations can 
be used to reliably implement m-valued quantum computing 
[12,27]. A physical system in which an atom (or in general a 
particle) is exposed to a specific potential field (i.e., potential 
function) can also be used to implement m-valued quantum 
computing from which the two-valued being a special case 
[1,28] where the distinct energy states are used as the 

ormal basis states.         orthon
      Fig. 2 shows several various physical realization 
methodologies for the implementation of two-valued and m-
valued quantum computing [1,8,12,14-16,18,27,28] where 
Fig. 2a shows the particle spin (i.e., the angular momentum) 
for two-valued quantum computing, Fig. 2b shows energy 
states of quantum systems such as the simple harmonic 
oscillator potential or the particle in finite-walled box 
potential for two-valued and m-valued quantum computing in 
which the resulting distinct energy states are used as the 
orthonormal basis states, Fig. 2c shows light polarization for 
two-valued quantum computing, and Fig. 2d shows cold 
trapped ions for two-valued and m-valued quantum 
computing.  
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Fig. 2. Various technologies that are currently utilized in 
implementing quantum computing. 
 

       In general, for an m-valued logic, a quantum state is a 
superposition of m quantum orthonormal basis states (i.e., 
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vectors). Thus, for the orthonormal computational basis states 
{ }1,...,1,0 −m , one has the following quantum state: 
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kk ccc . The calculation in quantum 

computing for m-valued multiple systems follow the tensor 
product in a manner similar to the one used for the case of 
two-valued quantum computing. Example 1 shows the 
implementation of m-valued quantum computing by exposing 
a particle to a potential field U0 where the distinct energy 
states are utilized as the orthonormal basis states. 
Example 1. We assume the following constraints [13,29]: (1) 
finite-walled box potential of specific width (L) and height 
(U0) (i.e., the applied potential value), (2) particle mass m, and 
(3) boundary conditions for the wavefunction continuity. For 
the finite potential well, the solution to the Schrödinger 
equation gives a wavefunction with an exponentially decaying 
penetration into the classicallly forbidden region where 
confining a particle to a smaller space requires a larger 
confinement energy. Since the wavefunction penetration 
effectively “enlarges the box”, the finite well energy levels 
are lower than those for the case of infinite well. For a 
potential which is zero over a length L and has a finite value 
for other values of x, the solution to the Schrödinger equation 
has the form of the free-particle wavefunction for the range of 
(-L/2 < x < L/2) and elsewhere must satisfy the equation:  
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where ( )π2/h=h  is the reduced Planck constant. With the 
following substitution:  
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the TISE may be written in the form:  
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and the general solution is in the form: 
xx DeCex αα −+=Ψ )(  

       Given a potential well as shown in Fig. 3 and a particle of 
energy less than the height of the well, the solutions may be 
of either odd or even parity with respect to the center of the 
well [13,29]. The Schrödinger equation gives trancendental 
forms for both so that numerical solution methods must be 
used. For the even case, one obtains the solution in the form 

22

2
tan kkLk −== βα . Since both sides of the equation are 

dependent on the energy E for which one is solving, the 
equation is trancendental and must be solved numerically. 
The standard constraints on the wavefunction require that 
both of the wavefunction and its derivative be continuous at 
any boundary. Applying such constraints is often the way that 
the solution is forced to fit the physical situation. The ground 

state solution for a finite potential well is the lowest even 
parity state and can be expressed in the form: 

)2/tan(kLk=α  

where . On the other hand, for the odd case, 

one obtains the solution in the form 
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       In the 1-D case, parity refers to the “evenness” or 
“oddness” of a function with respect to the reflection about x 
= 0, where even parity requires  and odd parity 
requires that 

)()( xx −Ψ=Ψ
)()( xx −Ψ−=Ψ . The stated particle in a box 

problem can give some insight into the importance of parity in 
quantum mechanics; the box has a line of symmetry down the 
center of the box (at x = 0), where the basic considerations of 
symmetry demand that the probability for finding the particle 
at -x is the same as the probability for finding the particle at x. 
Thus, the condition on the probability is given by: 

)()()()( xxxx −Ψ−Ψ=ΨΨ ∗∗  
This condition is satisfied if the parity is even or odd, but not 
if the wavefuntion is a linear combination of even and odd 
functions. This can be generalized to the statement that 
wavefunctions must have a definite parity with respect to 
symmetry operations in the physical problem [13,29]. An 
example for the distribution of energy states for the particle in 
finite-walled box is presented in Fig. 3. 
 

 
                            (a)                                               (b) 
 

Fig. 3. Energy levels and wavefunctions of the one-dimensional 
particle in finite-walled box with potential U(x) and the associated 
energy levels En in electron Volts where, as an example, the energy 
levels for an electron in a potential well of depth U0 = 64 eV and 
width L = 0.39 nm are shown in comparison with the energy levels 
of an infinite well of the same size. 
 

       In quantum mechanical systems, a closed system is an 
isolated system that doesn’t exchange energy or matter with 
its environment (i.e., doesn’t dissipate power) and doesn’t 
interact with other quantum systems. While an open quantum 
system interacts with its environment (i.e., its “bath”) and thus 
dissipates power which results in a non-unitary evolution, a 
closed quantum system doesn’t exchange energy or matter 
with its environment and therefore doesn’t dissipate power 
which results in a unitary evolution (i.e., unitary matrix) and 
hence it is information lossless.  
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An artificial neural network is an emulation of a biological 
neural system. The basic model of the neuron is based on the 
functionality of the biological neuron which is the basic 
signaling unit in the nervous system. The process of a neuron 
can be formally modeled as shown in Fig. 4 [20,33]. 

An artificial neural network is an emulation of a biological 
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Fig. 4. A mathematical model of an artificial neuron. Fig. 4. A mathematical model of an artificial neuron. 
  
       As seen in Fig. 4, the internal activity of the neuron can 
be shown to be: 
       As seen in Fig. 4, the internal activity of the neuron can 
be shown to be: 
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       In supervised learning, it is assumed that at each instant 
of time when the input is applied, the desired response of the 
system is available. The difference between the actual and the 
desired response represents an error measure and is used to 
correct the network parameters externally. Since the 
adjustable weights are initially assumed, the error measure 
may be used to adapt the network's weight matrix [W]. A set 
of input and output patterns which is called a training set is 
required for this learning mode. The training algorithm 
estimates directions of the negative error gradient and then 
reduces the error. 
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       For artificial neural networks, there are several learning 
rules used to train the neural network. For example, in the 
Perceptron learning rule, the learning signal is the difference 
between the desired and the actual neuron's response (i.e., 
supervised learning). Another learning rule is the Widrow-
Hoff learning rule which minimizes the squared error between 
the desired output and the neuron's activation value. 
Backpropagation is also one of the important learning 
algorithms in neural networks [20,33].  
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       The supervised recurrent neural network which is used 
for the identification in this paper is based on an 
approximation of the method of steepest descent [20,33]. The 
network tries to match the output of certain neurons to the 
desired values of the system output at specific instant of time. 
Fig. 5 shows a network consisting of a total of N neurons with 
M external input connections for a 2nd order system with two 
neurons and one external input, where the variable g(k) 
denotes the (M x 1) external input vector which is applied to  
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Fig. 5. The utilized second order recurrent neural network 
architecture, where the estimated matrices are given by  
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the network at discrete time k and the variable y(k + 1) 
denotes the corresponding (N x 1) vector of individual neuron 
outputs produced one step later at time (k + 1). 
       The input vector g(k) and one-step delayed output vector 
y(k) are concatenated to form the ((M + N) x 1) vector u(k), 
whose ith element is denoted by ui(k). If Λ denotes the set of 
indices i for which gi(k) is an external input, and denotes 
the set of indices i for which u

ß
i(k) is the output of a neuron 

(which is yi(k)), the following is true:  
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       The (N x (M + N)) recurrent weight matrix of the network 
is represented by the variable [W]. The net internal activity of 
neuron j at time k is given by: 
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where Λ is the union of sets Λ and . At the next time 
step (k + 1), the output of the neuron j is computed by passing 
v
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j(k) through the nonlinearity (.)ϕ  obtaining: 
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       The derivation of the recurrent algorithm can be started 
by using dj(k) to denote the desired (i.e., target) response of 
neuron j  at time k, and ς  to denote the set of neurons that 
are chosen to provide externally reachable outputs. A time-
varying (N x 1) error vector e(k) is defined whose j

(k)

th element 
is given by the following relationship: 

         
⎪⎩

⎪
⎨
⎧ ∈

otherwise               0, 

)(   if  ),( - )( 
 = )(

kjkykd
ke

jj
j

ς

       The objective is to minimize the cost function Etotal which 
is obtained by: 

)( = 
 

total kEE
k
∑  
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       To accomplish this objective, the learning method of 
steepest descent, which requires knowledge of the gradient 
matrix, is used:  

)(  = )( =  = 
  

total
total kEkEEE

kk
WW WW

∇
∂
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∂
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∇ ∑∑  

where  is the gradient of E(k) with respect to the 
weight matrix [W]. In order to train the recurrent network in 
real time, the instantaneous estimate of the gradient is used 

. For the case of a particular weight (k), the 
incremental change (k) made at time k is defined as: 
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where η is the learning-rate parameter. Hence:   
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To determine the partial derivative , the 
network dynamics are derived. The derivation is obtained by 
using the chain rule which provides the following equation: 

)()/( kwky mj l∂∂
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       Differentiating the net internal activity of neuron j with 
respect to (k) yields: lmw
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where ( ))()/( kwkw mji l∂∂  equals "1" only when j = m and  
i = ; otherwise, it is "0". Thus: l
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where  is a Kronecker delta equal to "1" when j = m and 
"0" otherwise, and: 

δ mj
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Having the above equations produce: 
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The initial state of the network at time k = 0 is assumed to be 
zero as follows: 

0 = 
)0(

(0)
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w
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, for {j∈ ß , m∈ , ß l ∈ β∪Λ } 

       The dynamical system is described by the following 
triply indexed set of variables ( ):  j

mlπ
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       For every time step k and all appropriate j, m and , 
system dynamics are controlled by: 

l
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with . 0 = (0)j
mlπ

       The values of and the error signal e )(kj
mlπ j(k) are used 

to compute the corresponding weight changes: 

                              (13) )()(   = )(
 

kkekw j
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Using the weight changes, the updated weight (k + 1) is 
calculated as follows: 

lmw

                             (14) )( + )( = 1)+( kwkwkw mmm lll ∆
Repeating this computation procedure provides the 
minimization of the cost function and the objective is 
therefore achieved. 
       With the many advantages that the ANN has, it is used 
for parameter identification in model transformation for the 
purpose of model order reduction as will be shown in the 
following section. 
 
   C. Linear Matrix Inequality-based Transformation 
 
In this sub-section, the detailed illustration of system 
transformation using LMI optimization will be presented. 
Consider the system:  
                                 )()()( tButAxtx +=&                       (15) 
                                 )()()( tDutCxty +=                           (16) 
In order to determine the transformed [A] matrix, which is 
[ A~ ], the discrete zero input response is obtained. This is 
achieved by providing the system with some initial state 
values and setting the system input to zero (i.e., u(k) = 0). 
Hence, the discrete system of Equations (15) - (16), with the 
initial condition 0)0( xx = , becomes:  
                                     )()1( kxAkx d=+                    (17) 
                                                                  (18) )()( kxky =
We need x(k) as a neural network target to train the network 
to obtain the needed parameters in [ dA~ ] such that the system 

output will be the same for [Ad] and [ dA~ ]. Hence, simulating 
this system provides the state response corresponding to their 
initial values with only the [Ad] matrix is being used. Once 
the input-output data is obtained, transforming the [Ad] matrix 
is achieved using the NN training, as will be explained in 
Section III. The estimated transformed [Ad] matrix is then 
converted back into the continuous form which yields: 
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       Having the [A] and [ A~ ] matrices, the permutation [P] 
matrix is determined using the LMI optimization technique as 
will be illustrated in later sections. The complete system 
transformation can be achieved as follows: assuming 

xPx 1~ −= , the system of Equations (15) - (16) can be re-
written as: 

)()(~)(~ tButxAPtxP +=&  
)()(~)(~ tDutxCPty +=  

where ( )()(~ tyty = ). Pre-multiplying the first equation above 
by [P-1], one obtains: 

)()(~)(~ 111 tBuPtxAPPtxPP −−− +=&  
)()(~)(~ tDutxCPty +=  

which yields the following transformed model: 
                                    )(~)(~~)(~ tuBtxAtx +=&                        (20) 

                                    )(~)(~~)(~ tuDtxCty +=                       (21)                                                   )()(  )(y 21 tCtxCt ξ+=                       (31) 
where the transformed system matrices are given by: 
                                        APPA 1~ −=          (22) 
                                         BPB 1~ −=          (23) 
                                           CPC =

~           (24) 
                                           DD =

~           (25) 
       Transforming the system matrix [A] into the form shown 
in Equation (19) can be achieved based on the following 
definition [23]. 
Definition. Matrix is reducible if either: nMA∈
(a)   n = 1 and A = 0; or 
(b)   n ≥ 2, there is a permutation matrix , and there is   nMP∈
        some integer r with  such that:  11 −≤≤ nr

                                                        (26) ⎥
⎦

⎤
⎢
⎣

⎡
=−

Z
YX

APP
0

1

where , , , and 0rrMX ,∈ rnrnMZ −−∈ , rnrMY −∈ , rrnM ,−∈  
is a zero matrix. 
       The attractive features of the permutation matrix [P] such 
as being orthogonal and invertible have made this 
transformation easy to carry out.  However, the permutation 
matrix structure narrows the applicability of this method to a 
very limited category of applications. Some form of a 
similarity transformation can be used to correct this 
problem; , where  is a linear operator 

defined by  [23]. Therefore, based on [A] and 

[

nnnn RRf ×× →: f
APPAf 1)( −=

A~ ], linear matrix inequalities are used to obtain the 
transformation matrix [P]. Thus, the optimization problem is 
casted as follows: 
              ε<−− − AAPPPP o

p

~toSubjectmin 1         (27) 

which maybe written in an LMI equivalent form as:             
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where S is a symmetric slack matrix [23]. 
 
   D. Model Order Reduction via Singular Perturbation 
 
Linear time-invariant models of many physical systems have 
fast and slow dynamics which can be referred to as singularly 
perturbed systems. Neglecting the fast dynamics of a 
singularly perturbed system provides a reduced slow model. 
This gives the advantage of designing simpler lower-
dimensionality reduced order controllers based on the reduced 
model information. To show the formulation of a reduced 
order system model, consider the singularly perturbed system:         
         011211 0     , )( )()( )( x)x(tuBtAtxAtx =++= ξ&            (29) 

                   (30) 022221 0(    , )()()()( ξξξξε =++= )tuBtAtxAt&

where and  are the slow and fast state 

variables, respectively, and are the input 
and output vectors, respectively, { , [ ], [ ]} are 
constant matrices of appropriate dimensions with 

 1mx ℜ∈ 2mℜ∈ξ

 1nu ℜ∈ 2ny ℜ∈
][ iiA iB iC

}2,1{∈i , 
and ε  is a small positive constant. The singularly perturbed 
system in Equations (29) - (31) is simplified by setting 0=ε .    
       By performing the above step, one neglects the system 
fast dynamics assuming that the state variables ξ  have 
reached the quasi-steady state. Hence, by setting 0=ε  in 
Equation (30) and assuming [ ] is nonsingular, produces:  22A

                               (32) )()()( 1
1

2221
1

22 tuBAtxAAt r
−− −−=ξ

where the index r denotes remained (or reduced) model. 
Substituting Equation (32) in Equations (29) - (31) yields the 
reduced order model:  
                                  )()(  )( tuBtxAtx rrrr +=&         (33) 
                              )()()( tuDtxCty rrr +=          (34) 
where:  
                                        (35) 21

1
221211 AAAAAr
−−=

                                         (36) 2
1

22121 BAABBr
−−=

                                         (37) 21
1

2221 AACCCr
−−=

                                           (38) 2
1

222 BACDr
−−=

 
Example 2. Consider the 3rd order system: 
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[ ] [ ] )(0.015     )(1.1271.5)( tutxty rr +=

2x  
3x  

 

Since this is a 3rd order system, there exists three eigenvalues 
which are {-19.886 + 6.519i, -19.886 - 6.519i, -44.228}. 
Using the singular perturbation technique, the system model 
is reduced to the following 2nd order model: 

Since this is a 3rd order system, there exists three eigenvalues 
which are {-19.886 + 6.519i, -19.886 - 6.519i, -44.228}. 
Using the singular perturbation technique, the system model 
is reduced to the following 2nd order model: 

                                                              )(
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)(
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)( tutxtx rr ⎥
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⎤
⎢
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⎡
+⎥

⎦

⎤
⎢
⎣

⎡
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       In order to obtain a state space model for the above 
system, let the dynamics of the system be designated as 
system states ( ). This means that there will be a 5ix th order 
system since there are five dynamical elements in the system. 
The model can be obtained by assigning the following set of 
states { is the current in inductor L  1x 1, is the voltage on 
capacitor C

  2x

1, is the current in inductor L  3x 2, is the 
voltage on capacitor C

  4x

2, and is the current in inductor 
L

  5x
3}. Applying KCL at (a) and (b) and KVL for the three loops 

yields the following state space matrices {A, B, C, D}: 

                                  [ ] [ ] )(0.015     )(1.1271.5)( tutxty rr +=
System output response plots of the original system and the 
reduced model, for a step input, are shown in Fig. 6. 
System output response plots of the original system and the 
reduced model, for a step input, are shown in Fig. 6. 

 

Given the following set of values for the circuit elements that 
are shown in Fig. 7 {  nF, 221 == CC H11 31 µ== LL , 

H33 2 µ=L , Ω== 9321 RR }, the corresponding 5th order 
model is obtained. The eigenvalues of the system are found to 
be 1⋅106 x {-2.0158 + 7.3391i, -2.0158 - 7.3391i, -4.4229, -
4.2273 + 5.2521i, -4.2273 - 5.2521i}. Performing model 
reduction, the system is reduced from its 5th order to a 4th 
order by taking the first four rows of [A] as the first category 
represented by Equation (29) and taking the fifth row of [A] 
as the second category represented by Equation (30). 
Simulation results are shown in Fig. 8.  

Fig. 6. Output step response of the original and reduced order models 
( ___ original, -.-.-. reduced). 
 
       It is seen from the results obtained in Fig. 6 that the 
reduced order model is performing well as compared with the 
original system response.  
       Dynamic systems with much higher dimensions can also 
be processed by following the previously used method where 
the following example illustrates a 5th order RLC system. 
Example 3. Consider the following 5th order RLC network 
which is shown in Fig. 7 [21].  
 
 
 
 
 
 
 

Fig. 7. A 5th order RLC network. 
 
       It is well known that the capacitor and the inductor are 
dynamical passive elements, which means that they have the 
ability to store energy. The dynamical equations may be 
derived using the Kirchhoff's current law (KCL) and 
Kirchhoff's voltage law (KVL) [21]. It is well known that the 
current for the capacitor is proportional to the change of its 
voltage, that is: 
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tdv
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and that the voltage across the inductor is proportional to the 
change of its current, that is:   
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Fig. 8. System output step response of the original and reduced 

s ( ___ original, -.-.-reduced). model        

       As can be observed from the results shown in Fig. 8, the 
reduced order model using the singular perturbation method 
has provided an acceptable response when compared with the 
original system response. 
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III. NEURAL ESTIMATION WITH LMI-BASED 
TRANSFORMATION FOR CLOSED REDUCED-ORDER  

QUANTUM COMPUTING SYSTEMS 
 
In this work, it is our objective to search for a similarity 
transformation that can be utilized within the context of 
closed time-independent quantum computing systems to 
decouple a pre-selected eigenvalue set from the system matrix 
[A]. To achieve this objective, training the neural network to 
estimate the transformed discrete system matrix [ dA~ ] is 
performed [5]. For the system of Equations (29) - (31), the 
discrete model of the quantum computing system is obtained 
as follows: 
                                    (39) )()()1( kuBkxAkx dd +=+
                                                   (40) )()()( kuDkxCky dd +=
       The estimated discrete model of Equations (39) - (40) can 
be written in a detailed form as: 
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1
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where k is the time index, and the matrix elements of 
Equations (41) - (42) were shown in Fig. 5.  
       The recurrent neural network that was presented in 
Section II.B can be summarized by defining Λ as the set of 
indices (i) for which is an external input, which is one 
external input in the quantum computing system, and by 
defining ß as the set of indices (i) for which  is an 
internal input (or a neuron output), which is two internal 
inputs (i.e., two system states) in the quantum computing 
system. Also, we define as the combination of the 
internal and external inputs for which Λ. By using this 
setting, training the network depends on the internal activity 
of each neuron which is given by the following equation:  

)(kgi

)(kyi

)(kui

∪∈ ßi

                                                     (43) ∑
∪∈

=
βΛi

ijij kukwkv )()()(

where wji is the weight representing an element in the system 
matrix or input matrix for  and Λ such that ßj∈ ∪∈ ßi

[ ]]~[]~[ dd BA=W . At the next time step (k +1), the output 
(i.e., internal input) of the neuron j is computed by passing the 
activity through the nonlinearity φ(.) as follows: 
                               ))(()1( kvkx jj ϕ=+                              (44) 
       With these equations, based on an approximation of the 
method of steepest descent, the network estimates the system 
matrix [Ad] as illustrated in Equation (17) for zero input 
response. That is, an error can be obtained by matching a true 
state output with a neuron output as follows: 

)(~)()( kxkxke jjj −=  
The objective is to minimize the cost function: 

∑=
k

kEE )(total   

where ∑
∈

=
ςj

j kekE )()( 2
2
1  and ς  denotes the set of indices j 

for the output of the neuron structure. This cost function is 
minimized by estimating the instantaneous gradient of E(k) 
with respect to the weight matrix [W] and then updating [W] 
in the negative direction of this  gradient. In steps, this may be 
proceeded as follows: 
 

-       Initialize the weights, [W], by a set of uniformly 
distributed random numbers. Starting at the instant k = 0, 
use Equations (43) - (44) to compute the output values of 
the N neurons (where ßN = ).  

- For every time step k and all  ,ßj∈ ,ßm∈  and 
∪∈ ßl Λ, compute the dynamics of the system which 

are governed by the triply indexed set of variables:  

⎥
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with initial conditions  and 0)0( =j
mlπ lmδ  is given by 

( ))()( kwkw mji l∂∂ , which is  equal to "1" only when j = 
m and l=i  otherwise it is "0". Notice that for the special 
case of a sigmoidal nonlinearity in the form of a logistic 
function, the derivative )(⋅ϕ&  is given by 

)]1(1)[1())(( +−+= kykykv jjjϕ& .    
- Compute the weight changes corresponding to the error 

signal and system dynamics:  
                                              (45) ∑

∈

=∆
ς

πη
j

j
mjm kkekw )()()( ll

- Update the weights in accordance with: 
                 )()()1( kwkwkw mmm lll ∆+=+            (46) 

- Repeat the computation until the desired identification is 
achieved. 

 

       As was illustrated in Equations (17) - (18), for the 
purpose of estimating only the transformed system matrix 
[ A~ ], the training is based on the zero input response. Once 
the training is complete, the obtained weight matrix [W] is the 
discrete estimated transformed system matrix. Transforming 
the estimated system back to the continuous form yields the 
desired continuous transformed system matrix [ A~ ]. Using the 
LMI optimization technique illustrated in Section II.C, the 
permutation matrix [P] is determined. Hence, a complete 
system transformation, as was shown in Equations (20) - (21), 
is achieved. To perform the order reduction, the system in 
Equations (20) - (21) is written as: 
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where the system transformation enables us to decouple the 
original system into retained (r) and omitted (o) eigenvalues. 
The retained eigenvalues are the dominant eigenvalues (slow 
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dynamics) and the omitted eigenvalues are the non-dominant 
eigenvalues (fast dynamics). Equation (47) maybe written as: 

)()(~)(~)(~ tuBtxAtxAtx rocrrr ++=&  

)()(~)(~ tuBtxAtx oooo +=&  
       The coupling term )(~ txA oc  maybe compensated for by 
solving for )(~ txo  in the second equation above by setting 

)(~ txo
&  to zero using the singular perturbation method (by 

setting 0=ε ). Doing so, the following is obtained: 
                                 )()(~ 1 tuBAtx ooo

−−=           (49) 
Using )(~ txo , we get the reduced model given by:  

                  )(][)(~)(~ 1 tuBBAAtxAtx roocrrr +−+= −&          (50) 

                  )(][)(~)( 1 tuDBACtxCty ooorr +−+= −         (51) 
Hence, the overall reduced order model is: 
                              )()(~  )(~ tuBtxAtx orrorr +=&                      (52) 
                          )()(~)( tuDtxCty orror +=          (53) 
where the detail of the {[ ], [ ], [ ], [ ]} overall 
reduced matrices are shown in Equations (50) - (51). 

orA orB orC orD

Example 4. Consider the 3rd order system: 

       

[ ]xy

uxx

12.01
5.0

1
1

4052
4308
18520

=

⎥
⎥
⎥

⎦

⎤

⎢
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⎢

⎣

⎡
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−−
=&

Since the system is a 3rd order, there are three eigenvalues 
which are {-25.2822, -22, -42.717}. After performing the 
proper transformation and training, the following desired 
diagonal transformed model is obtained: 

[ ] [ uxy

uxx

0019.08581.01856.00405.1
8777.0
7721.0
3343.0

7178.4200
4343.13220
8339.124534.028221.25

+=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−
=&

]

 

This transformed model was simulated with an input signal 
that has different functions to capture most of the system 
dynamics as seen in the state response of Fig. 9 which 
presents the system states while training and converging.  

 
             (a)                       (b)                             (c) 
 

 

Fig. 9. System state response for the three states for a sequence of 
inputs (1) step, (2) sinusoidal, and (3) step ( ___original state. -.-.-.-.- 
state while convergence). 

       It is important to notice that the eigenvalues of the 
original system are preserved in the transformed model as 
seen in the above diagonal system matrix. Reducing the 3rd 
order transformed model to a 2nd order model yields: 

[ ] [ uxy

uxx

rr

rr

0.0195       0.18561.0405 
1.0482
0.5979

220
10.453425.2822-

+=

⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
−

=&

]

]

 

with the dominant eigenvalues (slow dynamics) preserved as 
desired. However, by comparing this transformation-based 
reduction to the model reduction result of the singular 
perturbation without transformation (reduced 2nd order model) 
which is: 

        
[ ] [ uxy

uxx

rr

rr

0.0125     0.3251.05
1.05
0.775

29.5-8.2
2.7520.9-

+=

⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
=&

the two eigenvalues {-18.79, -31.60} of the non-transformed 
reduced model are totally different from the original system 
eigenvalues. The three different models, the original and the 
two reduced models (with and without transformation), were 
tested for a step input signal and the results were obtained as 
shown in Fig. 10.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 10. Reduced 2nd order models (.… transformed, -.-.-.- non-
transformed) output responses to a step input along with the non-
reduced model ( ____ original) 3rd order system output response. 
 
       As observed from Example 4, the transformed reduced 
order model has achieved the two goals of (1) preserving the 
original system dominant eigenvalues and (2) performing well 
as compared with the original system response. 
   

IV. MODEL REDUCTION OF THE QUANTUM COMPUTING 
SYSTEM USING NEURAL ESTIMATION AND LMI 

TRANSFORMATION 
 
Let us implement the time-independent quantum computing 
closed-system using the particle in finite-walled box potential 
V for the general case of m-valued quantum computing in 
which the resulting distinct energy states are used as the 
orthonormal basis states as was illustrated in Example 1 and 
Figs. 2b and 3.  
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       The dynamical TISE of the one-dimensional particle in 
finite-walled box potential V is expressed as follows: 

0)(
)2/(

2
22

2
=Ψ−+

∂
Ψ∂ VE

h
m

x π
  

which also can be written as: 

 Ψ−=
∂
Ψ∂ )(2

22

2
EVm

x h
 

where m is the particle mass, and )2/( πh=h  is the reduced 
Planck constant (which is also called the Dirac constant) ≅ 
1.055⋅10-34 J⋅s = 6.582⋅10-16 eV⋅s. Thus, for 

⎪⎭

⎪
⎬
⎫
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⎨
⎧

∂
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=′=′
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, the state space 

model of the closed quantum computing system is given as: 
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=

       For simulation reasons, Equations (54) – (55) can also be 
re-written equivalently as follows:   
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       Also, for conducting the simulations, one may often need 
to scale system Equation (56) without changing the system 
dynamics. Thus, by scaling both sides of Equation (56) by a 
scaling factor a, the following set of equations is obtained: 
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       Therefore, one obtains the following set of time-
independent quantum system matrices: 
 

                          A =
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

−

−

01

)(20 2h

VEm
a                           (60) 

                                      B =                                         (61) ⎥
⎦

⎤
⎢
⎣

⎡
0
0

                                   C =                                     (62) [ 1       0 ]
                                      D =                       (63) [ ]0

 

       The specifications of the system matrix in Equation (60) 
for the particle in finite-walled box are determined by (1) 
potential box width L (in nano meter), (2) particle mass m, 
and (3) the potential value V (i.e., potential height in electron 
Volt). As an example, consider the particle in finite-walled 

potential with specifications of (E – V) = 88 MeV and a very 
light particle with mass of N = 10-33 of the electron mass 
(where the electron mass me ≅ 9.109⋅10-27 g = 5.684⋅10-12 
eV/(m/s)2). This system was discretized using the sampling 
rate Ts = 0.005 second and simulated for a zero input. Hence, 
based on the obtained simulated output data and using NN to 
estimate the subsystem matrix [Ac] of Equation (19) with 
learning rate η = 0.015, the following transformed system 
matrix [ A~ ] was obtained: 

                       A~   =  ⎥
⎦

⎤
⎢
⎣

⎡

o

cr

A
AA

0
where [Ar] is set to provide the dominant eigenvalues (slow 
dynamics) and [Ao] is set to provide the non-dominant 
eigenvalues (fast dynamics) of the original system. Thus, 
when training the system, the second state )(~ txo  of the 
transformed model in Equation (47) is unchanged due to the 
restriction of [0  Ao] seen in [ A~ ]. This may lead to an 
undesired starting of the system response, but fast system 
overall convergence.     
       Using [ A~ ] along with [A], the LMI is then implemented 
in order to obtain {[ B~ ], [ C~ ], [ D~ ]} which makes a complete 
model transformation. Finally, by using the singular 
perturbation technique for model order reduction, the reduced 
order model is obtained.  
       Thus, by the implementation of the previously stated 
system specifications and using the squared reduced Planck 
constant of  = 43.324 ⋅ 102h -32 (eV⋅s)2, one obtains the 
following scaled system matrix from Equation (60): 
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)(20 6
21
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VEm
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for which the system simulations were performed for 

. Accordingly, the eigenvalues were 

found to be {-5.0399, -10.9601}. The investigation of the 
proposed method of system modeling for the closed quantum 
computing system using neural network with LMI and model 
order reduction was tested on a PC platform with hardware 
specifications of Intel Pentium 4 CPU 2.40 GHz, and 504 MB 
of RAM, and software specifications of MS Windows XP 
2002 OS and Matlab 6.5 simulator. For a step input, 
simulating the original and transformed reduced order models 
along with the non-transformed reduced order model 
produced the results shown in Fig. 11. 

⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

169.4761
0116.00

A

       As seen in the results shown in Fig. 11, the response of 
the transformed reduced order quantum computing model is 
starting a little off from the original system response. 
However, it has a faster convergence than the non-
transformed reduced order model response.  
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Fig. 11. Input-to-output quantum computing system step responses: 
full order system model (solid blue line), transformed reduced order 
model (dashed black line), and non-transformed reduced order model 
(dashed red line). 
 

V. STATE FEEDBACK CONTROLLER DESIGN FOR THE 
REDUCED-ORDER CLOSED QUANTUM  

COMPUTING MODEL 
 
One can apply several types of control techniques such as the 

 control, robust control, stochastic control, fuzzy control 
and intelligent control, upon the reduced order quantum 
model to meet the given specifications. Yet, in this paper, 
since the closed quantum computing system is a 2

∞H

nd order 
system reduced to a 1st order, we will investigate the system 
stability and enhancing performance by implementing the 
method of the s-domain pole replacement. 
       For the reduced order model in the system of Equations 
(52) - (53), a state feedback controller can be designed. For 
example, assuming that a controller is needed to provide the 
system with faster dynamical response, this can be achieved 
by replacing the system eigenvalues with new faster 
eigenvalues. Hence, let the control input be: 
                             )()(~)( trtxKtu r +−=                       (64) 
where K is to be designed based on the desired system 
eigenvalues.  
       Replacing the control input  in Equations (52) - (53) 
by the above new control input in Equation (64) yields the 
following reduced system: 

)(tu

                 )]()(~[)(~)(~ trtxKBtxAtx rorrorr +−+=&                 (65)        
                 )]()(~[)(~)( trtxKDtxCty rorror +−+=         (66) 
which can be re-written as:  

)()(~)(~)(~ trBtxKBtxAtx orrorrorr +−=&  

)()(~][)(~ trBtxKBAtx orrororr +−=→ &  
)()(~)(~)( trDtxKDtxCty orrorror +−=  
)()(~][)( trDtxKDCty orroror +−=→  

 
       The overall closed-loop model is then written as:  
                             )()(~)(~ trBtxAtx clrcl +=&          (67) 
                             )()(~)( trDtxCty clrcl +=                       (68) 
such that the closed loop system matrix [Acl] will provide the 
new desired system eigenvalues.  
Example 5. For the following non-scaled system: 

A = , B = ,  ⎥
⎦

⎤
⎢
⎣

⎡
−

−
18857.142
385.00

⎥
⎦

⎤
⎢
⎣

⎡
0   

0.077

C = [ ]1       0 , D =  [ ]0
Using the new transformation-based reduction technique, one 
obtains a reduced model given by: 

      
)(]066.0[)(~]197.0[)(
)(]255.5[)(~]901.3[)(~

tutxty
tutxtx

rr

rr

−+−=
−+−=&

 

with the eigenvalue of -3.901. Now, suppose that a new 
eigenvalue λ = -12 that will produce faster system dynamics 
is desired for this reduced order model. This objective is 
achieved by first setting the desired characteristic equation as 
follows 012 =+λ . 
       To determine the feedback control gain K, the 
characteristic equation of the closed-loop system is utilized by 
using Equations (65) - (68) which yields:  

→=− 0)( clAIλ 0][ =−− KBA ororIλ  
after which the feedback gain K is found to be -1.5413. 
Hence, the closed-loop system now has the eigenvalue of -12. 
As stated previously, the objective of replacing eigenvalues is 
to enhance system performance. Simulating the reduced order 
model using sampling rate Ts = 0.005 second and learning rate 
η = 0.015 with the new eigenvalue for the same original 
system input (the step input) has generated the response 
which is shown in Fig. 12. 

 
 

Fig. 12. Enhanced system step responses based on pole placement; 
full order system model (solid blue line), transformed reduced model 
(dashed black line), non-transformed reduced model (dashed red 
line), and the controlled transformed reduced order (dashed pink 
line). 
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       As can be observed from Fig. 12, the new normalized 
system response is faster than the system response obtained 
without pole placement. This shows that even simple state 
feedback control using the transformation-based reduced 
quantum model may achieve the equivalent system 
performance that is obtained using more complex and 
expensive control on the original full order quantum system. 
 

VI. CONCLUSIONS AND FUTURE WORK 
 
This paper introduces a new method of intelligent control for 
the time-independent closed quantum computing systems. 
While an open quantum system interacts with its environment 
and thus dissipates power which results in a non-unitary 
evolution, a closed quantum system doesn’t exchange energy 
or matter with its environment and therefore doesn’t dissipate 
power which results in a unitary evolution and hence it is 
information lossless.  
       In order to achieve the intelligent control via neural 
computing and LMI-based transformation, the 2nd order 
quantum system was simplified by reducing it to a 1st order 
system. This reduction was achieved by the implementation 
of a recurrent supervised neural computation to estimate 
certain elements [Ac] of the transformed system matrix [ A~ ], 
while the other elements [Ar] and [Ao] are set based on the 
system eigenvalues such that [Ar] contains the dominant 
eigenvalues (slow dynamics) and [Ao] contains the non-
dominant eigenvalues (fast dynamics). To obtain the 
transformed matrix [ A~ ], the zero input response was used in 
order to obtain output data related to the state dynamics, 
based only on the system matrix [A]. After the transformed 
system matrix was obtained, the robust control algorithm of 
linear matrix inequality was used to determine the 
permutation matrix [P], which is required to complete system 
transformation matrices {[ B~ ], [ C~ ], [ D~ ]}. The reduction 
process was then performed using the singular perturbation 
method which operates on neglecting the faster-dynamics 
eigenvalues and leaving the dominant slow-dynamics 
eigenvalues to control the quantum system. Simple state 
feedback control using pole placement was then implemented 
on the reduced quantum computing model to obtain the 
desired system response.  
       Future work will investigate the implementation of the 
introduced hierarchical control methodology upon other 
quantum computing systems such as non-linear, relativistic, 
and time-dependent quantum computing circuits and systems. 
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