
Recent Advanced Languages and Tools for
Hybrid Systems

K.L. Man∗, T. Krilavičius†, Kaiyu Wan‡

Abstract—Hybrid systems exhibit both discrete and
continuous behavior and thus are notoriously hetero-
geneous and complex. Over years, there are abundant
tools for simulation and verification of hybrid systems.
The goal of this paper is to review existing tools as
well as presenting recent developed tools for simula-
tion and verification of hybrid systems through classi-
cal examples in hybrid academia. Specifically, we use
Bouncing Ball, Tank and Thermostat as three examples to
illustrate simulation tools of BHPC and Hybrid Chi
formalism. In a similar way, classical hybrid system
examples (e.g. bouncing ball and tank) are used to
illustrate the applicability of the verification tools of
KeYmaera, HySAT and iSAT. Afterwards we give a
comparative summary for these tools.

Keywords: hybrid systems, simulation, verification,

tools

1 Introduction

Hybrid systems are systems that exhibit both discrete
and continuous behavior. Such systems have proved
fruitful in a great diversity of engineering application ar-
eas including air-traffic control, automated manufactur-
ing, chemical process control and system control. Also,
hybrid systems are notoriously heterogeneous and com-
plex. Rapid software/hardware development cycle in-
creased demand for the advanced design and implementa-
tion methods. Over the years, formal methods have been
put forward as a tool for modeling and analyzing hybrid
systems. Usage of formal semantics and syntax allows
unambiguous specifications of the systems, and in such a
way provides means for rigorous analysis of correctness
and performance properties. Several reasons generated
much interest in formal techniques.

• Unambiguous models. Formal modeling languages
allow defining systems unambiguously, because syn-
tax and semantics are defined formally, and that

∗Xi’an Jiaotong-Liverpool University (XJTLU), 111 Ren’ai
Road, Suzhou, Jiangsu 215123, China. E-mail: ka.man@xjtlu.edu.
cn. Tel: +86 512 8816 1509. Fax: +86 512 8816 1899.

†Baltic Institute of Advanced Technologies (BPTI), Vilnius,
Lithuania. E-mail: t.krilavicius@gmail.com.

‡Xi’an Jiaotong-Liverpool University (XJTLU), 111 Ren’ai
Road, Suzhou, Jiangsu 215123, China. E-mail: kaiyu.wan@xjtlu.

edu.cn.

includes means to define non-deterministic and
stochastic behavior precisely, too. Moreover, for
the same reasons, unambiguous refinement and code
generation techniques can be applied.

• Strict analysis techniques. Because models are de-
fined using languages with strict semantics, rigorous
reasoning about models is possible. Model check-
ing, theorem proving and specifically designed algo-
rithms, e.g. for stability analysis [26], can be used.

There are several types of formalisms for specification as
shown below.

• Algebraic specifications : Algebraic specification [8]
is a formal process of refining specifications to sys-
tematically develop more efficient programs. Over
the years, through the novel language constructs and
well-de fined formal semantics, several hybrid pro-
cess algebras with efficient algorithmic differentia-
tion equation solvers [12], hybrid Hybrid Chi [7]
and Behavioral Hybrid Process Calculus [25] have
been developed. They can be effectively used to
formally specify hybrid systems. Diverse case stud-
ies (e.g. [30], [31],) show that process algebraic for-
malisms and their tool-sets can be effectively applied
for the formal modeling and analysis of the behavior
of hybrid systems.

• Automaton based specifications: The automaton
based specification is a popular formalism that is
used for representing both discrete and continuous
processes of hybrid systems within a unified frame-
work. Languages that are tailored for describing
models of hybrid systems have been proposed in
the past, some of which have become quite popu-
lar. Many of these languages come with their own
set of analysis tools. Early work on formal models
for hybrid systems includes phase transition systems
[1] and hybrid automata [5],[15]. These models were
further generalized with the introduction of compo-
sitionality of parallel hybrid components in hybrid
I/O automata [27] and hybrid modules [4], [28].

• Some other specifications : In the past, some re-
searchers investigated the languages and tools of

IAENG International Journal of Computer Science, 37:3, IJCS_37_3_04

(Advance online publication: 19 August 2010)

__

combining process algebras with automata model-
ing. By this combination, users can not only reap
on the expressive power of hybrid automata but also
the rigorous proof process provided by the hybrid
process algebra [33], [36], [43].

Computer simulation is a powerful tool for analyzing
and optimizing real-world systems with a wide range of
successful applications. Simulation substitutes extensive
testing after manufacturing and, as such, it can reduce de-
sign costs and time. It provides an appealing approach for
the analysis of dynamic behavior of processes and helps
decision makers identify different possible options by an-
alyzing enormous amounts of data. The design of hybrid
systems is no exception and the most used and popular
tools are indeed simulation based. In this domain, there
are strong industrial offerings that are widely used such
as Simulink/Stateflow tool-set [34] , Modelica [14, 42],
and tools developed in the academic society including
HyVisual [19], Scicos [35], Shift [10], [11], and Charon [3].
Since those tools are illustrated and compared thoroughly
in [9], we will describe the recently developed tools such
as BHPC [25] and Hybrid Chi [29] in this paper.

Formal verification is very appealing as a concept since it
avoids the pitfalls of simulation that cannot guarantee de-
sign correctness. Formal verification is intended to prove
that some properties hold for all admitted modes of op-
eration of the system under analysis. Over the decades,
there are abundant verification tools for hybrid systems
including HyTech [18], Masaccio [16], CheckMate [41],
PHAVer [13], HSolver [40], d/dt [2] etc. This paper will
focus on the recent developed verification tools for hybrid
systems: KeYmaera [23], HySAT [20] and iSAT [21].

The goal of this paper is to review existing tools as well as
presenting recent developed tools for simulation and ver-
ification of hybrid systems through classical examples in
hybrid academia. Specifically, we use Bouncing Ball[25,
pp. 12, 86], Tank [25, pp. 15] and Thermostat [25, pp. 13]
as three examples to illustrate simulation tools of BHPC
and Hybrid Chi formalism. In a similar way, classical hy-
brid system examples (e.g. bouncing ball and water tank)
are used to illustrate the applicability of the verification
tools: KeYmaera, HySAT and iSAT.

The structure of this paper is as follows. We present simu-
lation of Bouncing Ball, Tank and Thermostat Bhave and
Hybrid Chi simulators in the second section. In the third
section verification tools KeYmaera, HySAT and iSAT
are used to verify several properties of classical hybrid
system examples. We conclude by giving a comparative
summary for these tools.

2 Simulation of Hybrid Systems

In this section we present several hybrid system simula-
tion examples.

2.1 Selected Examples

Example 2.1 (Bouncing Ball). Bouncing ball is a com-
mon example of hybrid process algebra systems. The
system [25, pp. 12, 86] consists of one ball and a ground
plane. The ball in the system is defined by its altitude
h, vertical speed v and the constant c, which describes
the energy that is lost on every bounce. Also, the ball
is constantly affected by the gravitational acceleration
g = 9.81.

Example 2.2 (Tank). The fluid level in a tank is con-
trolled through a monitor, which continuously senses the
fluid level and turns a pump on and off. The fluid level
changes as a piecewise linear function over time. When
the pump is off, the fluid level, denoted by a variable y,
falls by 2 units per second; when the pump is on, the
fluid level rises by 1 units per second. It is required to
keep the fluid level between 1 and 12 units. The pump
receives a signal from a monitor delayed by 2 time units.
Thus, the signals to turn the pump on and off should be
sent before the threshold is reached.

See detailed description in [25, pp. 15]

Example 2.3 (Thermostat). A thermostat is one of
the best-known introductory examples of hybrid systems.
The room temperature is controlled by a thermostat,
which continuously senses the temperature and switches
a heater on and off. The temperature changes are de-
fined by the ordinary differential equations. When the
heater is off, the temperature decreases according to the
exponential function l(t) = θeKt, where t is time, l is the
temperature in the room, θ is the initial temperature,
and K is a constant determined by the room. When
the heater is on, the temperature increases according to
the function l(t) = θe−Kt + h(1 − e−Kt), where h is a
constant that depends on the power of the heater. The
temperature should be maintained between tempmin and
tempmax. Temperatures tempon and tempoff are the min-
imal and maximal thresholds, when the heater can be
turned on and off, respectively.

See [25, pp. 13] for more details.

2.2 Bhave Toolset

2.2.1 Examples

Example 2.4 (Bouncing Ball). Formal specification of
Bouncing ball from Example2.1 in BHPC is rather sim-
ple.

BouncingBall(h, v) =

[h’ = v ; // dh/dt = v

v’ = -9.81 // dv/dt = -g

| h] // when h = 0, stop

. bounce{v’ = 0;} // bounce action

IAENG International Journal of Computer Science, 37:3, IJCS_37_3_04

(Advance online publication: 19 August 2010)

__

�
�
��
��
�
�	
�

�
�
�

�
�
��
��
�
�	
�

�
�
�

�
�

�
�
��
�
�
�
��
��
�

�
�
�

�
�

�
�
��
�
�
�
��
��
�

�
�
�

�
�

�
�
��
�
�
�
��
��
�

�
�
�

�
�

�
�
��
�
�
�
��
��
�

�
�
�

�
�

�
�
��
�
�
�
��
��
�

�
�
�

�
�

�
�
��
�
�
�
��
��
�

�
�
�

�
�

�
�
��
�
�
�
��
��
�

�
�
�

�
�

�
�
��
�
�
�
��
��
�

�
�
�

�
�

�
�
��
�
�
�
��
��
�

�
�
�

�
�

�
�
��
�
�
�
��
��
�

�
�
�

�
�

�
�
��
�
�
�
��
��
�

�
�
�

�
�

�
�
��
�
�
�
��
��
�

�
�
�

�
�

�
�
��
�
�
�
��
��
�

�
�
�

�
�

�
�
��
�
�
�
��
��
�

�
�
�

�
�

�
�
��
�
�
�
��
��
�

�
�
�

�
�

�
�
��
�
�
�
��
��
�

�
�
�

�
�

�
�
��
�
�
�
��
��
�

�
�
�

�
�

�
�
��
�
�
�
��
��
�

�
�
�

�
�

�
�
��
�
�
�
��
��
�

�
�
�

�
�
�
��
�
��

�
��
�
��

�
��
�
�
�
�
��
�
�
��
�
��
�
�
��
�
�
�
�
��
�
��
��
�
�
�
��
��

�
��
�
��
��
�
�
�
��
��

�����

�
�
��
��
�
�	
�

�
�
�

�
�

�
�
��
�
�
�
��
��
�

�
�
�

�
�

�
�
��
�
�
�
��
��
�

�
�
�

�
�

�
�
��
�
�
�
��
��
�

�
�
�

�
�

�
�
��
�
�
�
��
��
�

�
�
�

�
�

�
�
��
�
�
�
��
��
�

�
�
�

�
�

�
�
��
�
�
�
��
��
�

�
�
�

�
�

�
�
��
�
�
�
��
��
�

�
�
�

�
�

�
�
��
�
�
�
��
��
�

�
�
�

�
�

�
�
��
�
�
�
��
��
�

�
�
�

�
�

�
�
��
�
�
�
��
��
�

�
�
�

�
�

�
�
��
�
�
�
��
��
�

�
�
�

�
�

�
�
��
�
�
�
��
��
�

�
�
�

�
�
�
��
�
��

�
��
�
��

�
��

�����

�
�
��
��
�
�	
�

�
�
�

�
�

�
�
��
�
�
�
��
��
�

�
�
�

�
�

�
�
��
�
�
�
��
��
�

�
�
�

�
�

�
�
��
�
�
�
��
��
�

�
�
�

�
�

�
�
��
�
�
�
��
��
�

�
�
�

�
�

�
�
��
�
�
�
��
��
�

�
�
�

�
�

�
�
��
�
�
�
��
��
�

�
�
�

�
�

�
�
��
�
�
�
��
��
�

�
�
�

�
�

�
�
��
�
�
�
��
��
�

�
�
�

�
�

�
�
��
�
�
�
��
��
�

�
�
�

�
�

�
�
��
�
�
�
��
��
�

�
�
�

�
�

�
�
��
�
�
�
��
��
�

�
�
�

�
�

�
�
��
�
�
�
��
��
�

�
�
�

�
�
�
��
�
��

�
��
�
��

�
��

���

�
�
��
��
�
�	
�

�
�
�

�
�

�
�
��
�
�
�
��
��
�

�
�
�

�
�

�
�
��
�
�
�
��
��
�

�
�
�

�
�

�
�
��
�
�
�
��
��
�

�
�
�

�
�

�
�
��
�
�
�
��
��
�

�
�
�

�
�

�
�
��
�
�
�
��
��
�

�
�
�

�
�

�
�
��
�
�
�
��
��
�

�
�
�

�
�

�
�
��
�
�
�
��
��
�

�
�
�

�
�

�
�
��
�
�
�
��
��
�

�
�
�

�
�

�
�
��
�
�
�
��
��
�

�
�
�

�
�

�
�
��
�
�
�
��
��
�

�
�
�

�
�

�
�
��
�
�
�
��
��
�

�
�
�

�
�

�
�
��
�
�
�
��
��
�

�
�
�

�
�
�
��
�
��

�
��
�
��

�
��

�����

�
�
��
��
�
�	
�

�
�
�

�
�

�
�
��
�
�
�
��
��
�

�
�
�

�
�

�
�
��
�
�
�
��
��
�

�
�
�

�
�

�
�
��
�
�
�
��
��
�

�
�
�

�
�

�
�
��
�
�
�
��
��
�

�
�
�

�
�

�
�
��
�
�
�
��
��
�

�
�
�

�
�

�
�
��
�
�
�
��
��
�

�
�
�

�
�

�
�
��
�
�
�
��
��
�

�
�
�

�
�

�
�
��
�
�
�
��
��
�

�
�
�

�
�

�
�
��
�
�
�
��
��
�

�
�
�

�
�

�
�
��
�
�
�
��
��
�

�
�
�

�
�

�
�
��
�
�
�
��
��
�

�
�
�

�
�

�
�
��
�
�
�
��
��
�

�
�
�

�
�
�
��
�
��

�
��
�
��

�
��

�����

�
�
�
��
�
��

�
��
�
��

�
��

�
�

�
�
��
�
�
�
��
��
�

�
�
�

�
�

�
�
��
�
�
�
��
��
�

�
�
�

�
�

�
�
��
�
�
�
��
��
�

�
�
�

�
�

�
�
��
�
�
�
��
��
�

�
�
�

�
�

�
�
��
�
�
�
��
��
�

�
�
�

�
�

�
�
��
�
�
�
��
��
�

�
�
�

�
�

�
�
��
�
�
�
��
��
�

�
�
�

�
�

�
�
��
�
�
�
��
��
�

�
�
�

�
�

�
�
��
�
�
�
��
��
�

�
�
�

�
�

�
�
��
�
�
�
��
��
�

�
�
�

�
�

�
�
��
�
�
�
��
��
�

�
�
�

�
�

�
�
��
�
�
�
��
��
�

�
�
�

�	�
	

�
�
�
�
��
�
�
��
�
��
�
�
��
�
�
�

������

�
�
�
�
��
�
�
��
�
��
�
�
��
�
�
�

����

�
�
�
�
��
�
�
��
�
��
�
�
��
�
�
�

���

�
�
�
�
��
�
�
��
�
��
�
�
��
�
�
�

����

�
�
�
�
��
�
�
��
�
��
�
�
��
�
�
�

����

��

�	��

����

�
��
�
��
��
�
�
�
��
��

���	

� 	�
� ���� ���� ���� ���� �	�
 ���� ���
�����
���
���
�	

����������

�
�
�
�
��
�
�
��
�
��
�
�
��
�
�
�

�
�
�
�
��
�
�
��
�
��
�
�
��
�
�
�
�
��
�
��
��
�
�
�
��
��

�
��
�
��
��
�
�
�
��
��

�
��
�
��
��
�
�
�
��
��

�
�
�
�
��
�
�
��
�
��
�
�
��
�
�
�
�
��
�
��
��
�
�
�
��
��

�
��
�
��
��
�
�
�
��
��

�
��
�
��
��
�
�
�
��
��

������������

������������

�������������

Figure 1: Simulation of the bouncing ball, Example 2.4.

-20

-15

-10

-5

 0

 5

 10

 15

 20

 0 1 2 3 4 5

bounceball()

h(time) c(time) v(time) g(time)

Figure 2: Simulation of the bouncing ball, Exam-
ple 2.7.

�
�
��
��
�
�
	
�

�
�
�

�
�
��
��
�
�
	
�

�
�
�

�
�
��
��
�
�
	
�

�
�
�

�
�
�
�
��
�

�
�
�
�
��

�
�
�
�
��

�
�
�
�
��

�
�
�
�
��
�

�
�
�
�
��

�
�
�
�
��
�

��

�
�
��
��
�
�
	
�

�
�
�

�
�
�
�
��
�

�
�
�
�
��

�
�
�
�
��
�

�
�
�
�
��

�
�
�
�
��
�

�����

�
�
��
��
�
�
	
�

�
�
�

�
�
�
�
��
�

�
�
�
�
��

�
�
�
�
��
�

�
�
�
�
��

�
�
�
�
��
�

����	

�
�
��
��
�
�
	
�

�
�
�

������

�
�
��
��
�
�
	
�

�
�
�

������

�
�
��
��
�
�
	
�

�
�
�

����

����

��	

����

��	�

���

��

����

����

���	

����

	�

	���

��

����

��
�

����

����

���

����

��

����

��

� � 	��� ���� �
 ���	���� �
�� ���	 ����

��� �����

������

Figure 3: Simulation of the tank, Example 2.5.

 0

 2

 4

 6

 8

 10

 12

 0 5 10 15 20 25 30

TankControllerSimpler()

Qi(time) V(time) n(time) Qo(time)

Figure 4: Simulation of the tank, Example 2.8.

// bounce with 0.7 velocity loss

. BouncingBall(h, -0.7 * v);

// set simulation parameters

main() = setParams{step=1e-1}

// invoke the bouncing process

.BouncingBall(12, 20);

The system consists of two processes:

• BouncingBall process defines the trajectory and the
bounce action of the ball. The motion is described
by the derivative of the altitude, which is the ver-
tical speed v. The speed is affected by the accel-
eration v̇ = −g. This motion is executed until the
ball touches the ground plane (h = 0) and a discrete
bounce action is executed. As the ball bounces, a
fraction c = 0.7 of its energy is lost, and the ball
changes the direction upwards.

• The process main is the simulation entry point. A
discrete action setParams is invoked, which changes

the parameters for the simulation – the parameter
“step” defines the integration interval length for the
DAE solver. Then, a BouncingBall process is in-
voked with the initial parameters h = 12 and v = 20.

Figure 1 displays the results of bouncing ball simula-
tion. It shows the speed and altitude change over time
together with the discrete action bounce. Visualization
of the model evolution is generated by using a prototype
Message Sequence Plot (MSP) visualization application
[24, 32, 39], proposed in [25, pp. 120-123]. MSP dis-
plays the changes of the system’s process variables to-
gether with the actions that are performed.

The energy of the system is reduced by a fraction in every
bounce, which results in a shorter time span with every
bounce. This leads to Zeno behavior [25, p. 124], where
the system tries to execute an infinite amount of bounces
in a finite amount of time. The simulator prevents such
behavior by forcing a small fraction of the initial integra-
tion interval to simulate regardless of the trajectory exit
conditions and checks the result after the first step. Such

IAENG International Journal of Computer Science, 37:3, IJCS_37_3_04

(Advance online publication: 19 August 2010)

__

�
�
�

�
�
�
�
�
�
��

�
�
�

�
�
�
�
�
�
��
�

�
�
�

�
�
�
�
�
�
��
�

�
�
�

�
�
�
�
�
�
��

�
�
�

�
�
�
�
�
�
��
�

�
�
�

�
�
�
�
�
�
��
�

�
�
�

�
�
�
�
�
�
��
�

�
�
�

�
�
�
�
�
�
��
�

�
�
�

�
�
�
�
�
�
��
�

�
�
�

�
�
�
�
�
�
��
�

�
�
�

�
�
�
�
�
�
��
�

�
�
�

�
�
�
�
�
�
��

�
�
�

�
�
�
�
�
�
��
�

�
�
�

�
�
�
�
�
�
��
�

�
�
�

�
�
�
�
�
�
��
�

�
�
�

�
�
�
�
�
�
��
�

�
�
�

�
�
�
�
�
�
��
�

�
�
�

�
�
�
�
�
�
��
�

�
�
�

�
�
�
�
�
�
��
�

�
�
�

�
�
�
�
�
�
��

�
�
�

�
�
�
�
�
�
��
�

�
�
�

�
�
�
�
�
�
��
�

�
�
��
��
�
�
	
�

�
�
�

�
�
�

�
�
�
�
�
�
��
�

�
�
�

�
�
�
�
�
�
��
�

�
�
��
��
�
�
	
�

�
�
�

�
�
�

�
�
�
�
�
�
��
�

�
�
�

�
�
�
�
�
�
��
�

�
�
��
��
�
�
	
�

�
�
�

�
�
�

�
�
�
�
�
�
��
�

�
�
��
��
�
�
	
�

�
�
�

�
�
�

�
�
�
�
�
�
��
�

�
�
��
��
�
�
	
�

�
�
�

�
�
�

�
�
�
�
�
�
��
�

�
�
�

�
�
�
�
�
�
��
�

�
�
�

�
�
�
�
�
�
��
�

�
�
�

�
�
�
�
�
�
��
�

�
�
�

�
�
�
�
�
�
��
�

�
�
�

�
�
�
�
�
�
��
�

�
�
�

�
�
�
�
�
�
��
�

�
�
�

�
�
�
�
�
�
��
�

�
�
�

�
�
�
�
�
�
��
�

����

�
�
�

�
�
�
�
�
�
��

�
�
�

�
�
�
�
�
�
��
�

�
�
�

�
�
�
�
�
�
��
�

�
�
�

�
�
�
�
�
�
��

�
�
�

�
�
�
�
�
�
��
�

�
�
�

�
�
�
�
�
�
��
�

�
�
�

�
�
�
�
�
�
��

�
�
�

�
�
�
�
�
�
��
�

�
�
�

�
�
�
�
�
�
��
�

�
�
��
��
�
�
	
�

�
�
�

�
�
�

�
�
�
�
�
�
��
�

�
�
�

�
�
�
�
�
�
��
�

����

�
�
�

�
�
�
�
�
�
��

�
�
�

�
�
�
�
�
�
��
�

�
�
�

�
�
�
�
�
�
��
�

�
�
�

�
�
�
�
�
�
��

�
�
�

�
�
�
�
�
�
��
�

�
�
�

�
�
�
�
�
�
��
�

�
�
�

�
�
�
�
�
�
��

�
�
�

�
�
�
�
�
�
��
�

�
�
�

�
�
�
�
�
�
��
�

�
�
�

�
�
�
�
�
�
��
�

�
�
�

�
�
�
�
�
�
��
�

�
�
��
��
�
�
	
�

�
�
�

�
�
�

�
�
�
�
�
�
��

�
�
�

�
�
�
�
�
�
��
�

�
�
�

�
�
�
�
�
�
��

�
�
�

�
�
�
�
�
�
��
�

�
�
�

�
�
�
�
�
�
��

�
�
�

�
�
�
�
�
�
��
�

�
�
��
��
�
�
	
�

�
�
�

�
�
�

�
�
�
�
�
�
��
�

����

�
�
�

�
�
�
�
�
�
��

�
�
�

�
�
�
�
�
�
��
�

�
�
�

�
�
�
�
�
�
��

�
�
�

�
�
�
�
�
�
��
�

�
�
�

�
�
�
�
�
�
��

�
�
�

�
�
�
�
�
�
��
�

�
�
��
��
�
�
	
�

�
�
�

�
�
�

�
�
�
�
�
�
��
�����

����

��

����

����

���	

���

����

����

����

����

����

��

����

����

���	

���

����

�

��������������������������������

������������������������

������������������������

������������������������

������������������������

������������

������������������������

������������������������

���	���	���	���	���	���	

���
���
���
���
���
���

������������������������

������������������������

������������������������

������������������������

������������������������

������������

������������������������

������������������������

���	���	���	���	���	���	

���
���
���
���
���
���

������������������������

�����
��� ���	 ���� �
�� ���� ���	 �	�� ���� ����

��������� �����������

Figure 5: Simulation of the thermostat, Example 2.6.

 18.5

 19

 19.5

 20

 20.5

 0 5 10 15 20 25 30

Thermostat()

l(time)

Figure 6: Simulation of the thermostat, Example 2.9.

situation can be seen in the 16.4 second of the simulation,
when the error is printed.

Example 2.5 (Tank). Formal specification of Tank from
Example 2.2 in BHPC.

const L_min = 1;

const L_max = 12;

const Inflow = 1;

const Outflow = -2;

tank(l) = [l’ = Outflow | l - L_min]

. on

[l’ = Inflow | L_max - l]

. off

. tank(l);

main() = setParams{step=1e-2;tStop=30}.

tank(5);

See simulation results in Figure 3

Example 2.6 (Thermostat). BHPC specification of
Thermostat from Example 2.3. Temperature is main-
tained between tempon (tempOn) and tempoff (tempOff).

const K = 0.1;

const H = 22;

const tempOff = 20.5;

const tempOn = 18.5;

thermostat(l)

= [l’ = 0 - K * l | l - tempOn]

. on

. [l’ = K * (H - l) | (tempOff - l)]

. off

. thermostat(l);

main() = setParams{step=1e-1;tStop=30}

. thermostat(19);

See simulation results in Figure 5

2.3 Simulation of Hybrid Chi: Hybrid Chi
Python Simulator

2.3.1 Examples

Example 2.7 (Bouncing Ball). Formal specification of
Bouncing ball (Example 2.1) from http://se.wtb.tue.

nl/sewiki/chi/hybrid_examples/bouncing_ball in
Hybrid Chi is the following.

model bounceball()=

|[cont h: real= 20.0

, cont v: real= 0.0

, var c : real= 0.5

, var g : real= 10.0

:: eqn dot h = v

, dot v = -g

||*(h <= 0.0 -> v:= -c*v; v <= 0.0 -> skip)

]|

Simulation results are depicted in Figure 2.

Example 2.8 (Tank). Formal specification of Tank from
Example 2.2 in Hybrid Chi specified in CIF [6].

model TankControllerSimpler() =

|[extern var V: cont real = 5

; Qi, Qo: alg real

; n: disc nat = 0

:: |(mode physics = inv dot V = Qi - Qo

& Qi = n

& Qo = -2 * (n-1)

:: physics

)|

||

|(mode closed = when V <= 1

IAENG International Journal of Computer Science, 37:3, IJCS_37_3_04

(Advance online publication: 19 August 2010)

__

now do n := 1 goto opened

, opened = when V >= 12

now do n := 0 goto closed

:: closed

)|

]|

See simulation results in Figure 4

Example 2.9 (Thermostat). Formal specification of
Tank from Example 2.3 in CIF [6].

model Thermostat() =

|[extern var l: cont real = 19

; n: disc nat = 0

:: |(mode physics = inv

dot l = 0.1 * (22 * n - l)

:: physics

)|

||

|(mode off = when l <= 18.5

now do n := 1 goto on

, on = when l >= 20.5

now do n := 0 goto off

:: off

)|

]|

See simulation results in Figure 6

3 Verification of Hybrid Systems

As mentioned previously, modeling and verification of hy-
brid systems are complicated by their heterogeneous na-
ture as well as their sheer complexity. Existing model-
ing techniques for hybrid systems rely upon semantics to
represent the relationship between the discrete and con-
tinuous features of a hybrid system.

However, modeling and analyzing a hybrid system with
all of its details always results in state explosion. Nev-
ertheless, over the years, various techniques, algorithms,
specification logics and software tools have been devel-
oped for simplifying hybrid system models to achieve cer-
tain verification goals.

For illustration purpose, in this section, we present three
recent developed verification tools for hybrid systems:
KeYmaera, HySAT and iSAT along with some classical
hybrid system examples from literature. It is worth men-
tioning that some materials presented in this section are
taken from [23, 20, 21].

3.1 KeYmaera

KeYmaera is an automated and interactive theorem
prover for a natural specification and verification logic for

hybrid systems. KeYmaera supports differential dynamic
logic (dL) and program notation for hybrid automata.
KeYmaera is particularly suitable for verifying paramet-
ric hybrid systems and for verifying collision avoidance in
case studies from train control [38] and air traffic man-
agement [37].

More precisely, KeYmaera is a verification tool for hy-
brid systems and built as a hybrid theorem prover for
hybrid systems. KeYmaera separates the overall verifi-
cation work flow into two phase. In the first phase one
specifies the hybrid system that one would like to ver-
ify along with its correctness properties. In the second
phase, one can use KeYmaera and its automatic proof
strategies to verify the specified property of the hybrid
system.

In KeYmaera, the behavior of hybrid systems can be
specified in a program notation called hybrid program
with the following syntax:

• a ::= a; b Sequential composition that does a

first and then b, where a and b are typical names.

• x:=t Discrete assignment/jump assigning the
value of t to variable x.

• x:=* Random assignment assigns any real value
to variable x non-deterministically.

• if(F) then a fi If-then statement, performs a

if F holds and does nothing otherwise, where F is a
formula of (possibly non-linear) real arithmetic (pos-
sibly including quantifiers).

• if(F) then a else b fi If-then-else statement,
performs a if F holds and performs b otherwise.

• ?F State assertion testing whether formula F is
true in current state (otherwise abort).

• a ++ b Non-deterministic choice following either
a or b.

• while(F) a end While loop, repeats a as long as
F holds, stops before doing a only if F is false (a will
not be stopped in the middle just because F becomes
false at some intermediate state during a).

• a* Non-deterministic repetition, repeating a arbi-
trarily often including 0 times.

• {x’=t,y’=s, F} Continuous evolution along dif-
ferential equation system with terms t,s, option-
ally with domain of maximum evolution or invari-
ant region F, where x and y are variables; and x’

denotes the time time-derivative of x. This domain
constraint F needs to be true at every time during
the evolution, otherwise the system needs to stop
following this continuous mode and move on. One

IAENG International Journal of Computer Science, 37:3, IJCS_37_3_04

(Advance online publication: 19 August 2010)

__

Figure 7: Bouncing ball.

can use systems of differential equations, differential-
algebraic equations, differential inequalities, and dif-
ferential equations with disturbances.

• {x’=t,y’<=s,y’>=r, F} Continuous evolution
along system of differential equations and differen-
tial inequalities with terms t,s,r, optionally with
domain of maximum evolution or invariant region F.
The time-derivative of y needs to stay within r and
s all the time.

• {\exists R u; (x’=t & y’=s & F)} Continu-
ous evolution along system of differential-algebraic
equations with disturbance u (which may occur
in the terms t,s and formula F), optionally with
domain of maximum evolution or invariant region F.

• R x Variable declaration, declaring x as a real vari-
able (either a state variable or auxiliary variable).

• R x, y, z Variable declaration, declaring x, y

and z as real variables.

The rest of this section presents two hybrid system ex-
amples that are simple enough to be handled and com-
plex enough to expose the strength of the verification tool
KeYmaera.

3.1.1 Bouncing Ball

A slight variant of the Bouncing ball example presented
in Section 2.1 - a ball falls from height h and bounces back
from the ground (h = 0) after an elastic deformation (see
Figure 7). The current speed of the ball is denoted by v,
and t is a clock measuring the falling time. We assume an
arbitrary positive gravity force g and that the ball loses
energy according to a damping factor 0 ≤ c < 1.

The ball loses energy at every bounce, thus the ball never
bounces higher than the initial height. This can be ex-
pressed by the safety property 0 ≤ h ≤ H, where H

denotes the initial energy level, i.e., the initial height if
v = 0. The above problem specification states that the
ball never bounces higher than that, i.e., it always re-
mains within the region 0 ≤ h ≤ H when it starts jump-
ing in an appropriate state.

The hybrid program of the bouncing ball is given below
(note that the block \problem{...} is used to introduce
a problem specification for verification in KeYmaera):

\problem {

/*

* h = height

* v = velocity

* H = height limit

* g = gravitation

* c = elastic dampening factor

at floor (h=0)

*/

/* state variable declarations */

\[R h,v,t; R c,g,H \] (

/* initial state characterization */

g>0 & h>=0&t>=0 & 0<=c&c<1 &

v^2<=2*g*(H-h) & H>=0

-> /* implication */

\[/* system dynamics */

(

/* falling/jumping */

{h’=v,v’=-g,t’=1, h>=0};

if (t>0 & h=0) then /* if on ground */

v := -c*v; /* bounce back */

t := 0

fi.

)* /* repeat these transitions */

/* safety / postcondition */

\] (0<=h & h<=H)

)

}

KeYmaera was applied successfully to verify the safety
property (i.e. 0<=h & h<=H) of the hybrid program de-
scribing the behavior of the bouncing ball. This also con-
cludes that the bounces of the ball always remain within
the expected region.

3.1.2 Water Tank

A slight variant of the Tank example presented in Sec-
tion 2.1 - a water tank (see Figure 8) regulates water
level y between 1 and 12 by filling or emptying the water
tank. The hybrid automaton based specification of the
water tank is given in Figure 9 (note that x denotes the
outgoing water level).

IAENG International Journal of Computer Science, 37:3, IJCS_37_3_04

(Advance online publication: 19 August 2010)

__

Figure 8: Water tank. Figure 9: Hybrid automaton based specification of the water tank.

The hybrid program of the water tank is given below:

\problem {

/* state variable declarations */

\[R y, x, st; x:=0; y:=1; st:=0 \] (

/* initial state characterization */

st = 0

-> /* implication */

\[/* system dynamics */

(/* repeat the following discrete or

continuous transitions */

(?(st=0);

(?(y=10); x:=0; st:=1)

++ {x’=1,y’=1, y<=10}

)

++ (?(st=1);

(?(x=2); st:=2)

++ {x’=1,y’=1, x<=2}

)

++ (?(st=2);

(?(y=5); x:=0; st:=3)

++ {x’=1,y’=-2, y>=5}

)

++ (?(st=3);

(?(x=2); st:=0)

++ {x’=1,y’=-2, x<=2}

)

)*@invariant(1<=y & y<=12

& (st=3-> (y>=5-2*x))

& (st=1 -> (y<=10+x)))

/* safety / postcondition */

\] (1<=y & y<=12)

)

}

KeYmaera was applied successfully to verify the safety
property (i.e. 1<=y & y<=12) of the hybrid program de-
scribing the behavior of the water tank. This also con-
cludes that the water level y is always between 1 and 12
by filling or emptying the water tank.

3.2 HySAT and iSAT

This section briefly presents two bounded model checkers
for hybrid systems.

3.2.1 Bounded Model Checking for Hybrid Sys-
tems

Bounded model checking (BMC) aims at checking
whether a hybrid system has a run of bounded length
k which

• starts in an initial state of the hybrid system;

• obeys the hybrid system transition relation;

• ends in a state in which a certain (desired or unde-
sired) property holds.

The goal of BMC is to construct a formula which is sat-
isfiable if and only if a trace with above properties exists.
In case of satisfiability, any satisfying valuation of this
formula corresponds to such a trace.

IAENG International Journal of Computer Science, 37:3, IJCS_37_3_04

(Advance online publication: 19 August 2010)

__

3.2.2 HySAT

HySAT is a satisfiability checker (SAT) for Boolean com-
binations of arithmetic constraints over real and integer
valued variables. A peculiarity of HySAT, which sets
it apart from many other solvers, is that it is not lim-
ited to linear arithmetic, but can also deal with nonlin-
ear constraints involving transcendental functions. The
algorithmic core of HySAT is a tight integration of re-
cent SAT solving techniques with interval-based arith-
metic constraint solving. For technical details, see [20].

3.2.3 iSAT

iSAT is the successor tool of HySAT which was developed
to facilitate automated reasoning about large Boolean
combinations of non-linear arithmetic constraints involv-
ing transcendental functions. The algorithmic core of
iSAT is based on a tight integration of recent DPLL-
style SAT solving techniques (like lazy clause evaluation,
conflict-driven learning, non-chronological backtracking,
and restarts) with interval-based arithmetic constraint
solving. For technical details, see [21].

3.2.4 Outline of Verified Examples

A series of benchmark examples of hybrid systems includ-
ing the bouncing ball and railroad crossing was carried
out to evaluate the performances of HySAT and iSAT. In
addition to provide counterexamples which are a salient
feature of model checking that help users to understand
the problem in a faulty design, HySAT and iSAT can be
used to search for a counterexample in executions whose
length is bounded by some integer k. If no bug is found
then k is increased until either a bug is found, the prob-
lem becomes intractable or some pre-known upper bound
is reached.

For instance, in the bouncing ball example, HySAT and
iSAT can be applied to find an initial hight and an initial
velocity so that the ball hits the ground which is located
at a certain distance from the starting point. They can
also be used in the railroad crossing example to verify
the property: ”When the train is within 10 meters to the
gate, the gate is always fully closed” and to determine in
quantity that the violations are possible for certain time
delay of controller and the trace length of the verifica-
tion/execution.

4 Summary and Future Work

In this paper we review existing tools as well as present-
ing recent developed tools for simulation and verification
of hybrid systems through classical examples in hybrid

academia. Below is a comparative summary for these
tools we present in this paper.

• Behavioural Hybrid Process Calculus (BHPC) is a
hybrid process algebra which was specifically de-
signed for the description of the dynamic behavior
of hybrid systems along with a powerful simulator
called Bhave toolset. Currently, simulation results
obtained by means of the BHPC simulator can also
be visualized and analyzed via Message Sequence
Plots (MSP).

• The Hybrid Chi formalism is suited to modeling, sim-
ulation and verification of hybrid systems. The se-
mantics of Hybrid Chi is defined by means of de-
duction rules (in SOS style) that associate a hybrid
transition system with a Hybrid Chi process. The
Hybrid Chi formalism integrates concepts from dy-
namics and control theory with concepts from com-
puter science, in particular from process algebra and
hybrid automata. Its ‘consistent equation seman-
tics’ enforces state changes to be consistent with de-
lay predicates, that combine the invariant and ow
clauses of hybrid automata.

• KeYmaera is an automated and interactive theo-
rem prover for a natural specification and verifica-
tion logic for hybrid systems. KeYmaera supports
differential dynamic logic (dL), and is particularly
suitable for verifying parametric hybrid systems and
for verifying collision avoidance in case studies from
train control [38] and air traffic management [37].

• HySAT is a satisfiability checker for Boolean combi-
nations of arithmetic constraints over real and inte-
ger valued variables. One of important features of
HySAT is that it is not limited to linear arithmetic,
but can also deal with nonlinear constraints involv-
ing transcendental functions [17].

• iSAT is the successor tool of HySAT which was devel-
oped to facilitate automated reasoning about large
Boolean combinations of non-linear arithmetic con-
straints involving transcendental functions.

Hybrid systems are notoriously heterogeneous, complex
and with different characteristics. These characteristics
necessitate the analyze and compare the available tools.
Therefore users may choose the appropriate tool for their
specific investigated system.

References

[1] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Hen-
zinger, P. H, X. Nicollin, J. Sifakis, and S. Yovine,
The algorithmic analysis of hybrid systems, Theo-
retical Computer Science, February 1995, vol. 138,
pp. 3-34.

IAENG International Journal of Computer Science, 37:3, IJCS_37_3_04

(Advance online publication: 19 August 2010)

__

[2] E. Asarin, T. Dang, and O. Maler, d/dt: A verifi-
cation tool for hybrid systems, in Proc. of the 40th
IEEE Conf. on Decision and Control, 2001, pp. 2893-
2898.

[3] R. Alur, R. Grosu, Y. Hur, V. Kumar, and I. Lee,
Modular specification of hybrid systems in Charon,
in Proc. of the Third Intl. Work. on Hybrid Systems:
Computation and Control, 2000, pp. 6-19.

[4] R. Alur and T. A. Henzinger, Modularity for timed
and hybrid systems, in CONCUR 97: Eight Interna-
tional Conference on Concurrency Theory, 1997, pp.
74-88.

[5] R. Alur, T.A. Henzinger, and P.-H. Ho. Automatic
symbolic verification of embedded systems. IEEE
Transactions on Software Engineering, 22(3):pp. 81-
201, 1996.

[6] D.A. van Beek, P. Collins, D.E. Nadales Agut, J.E.
Rooda, and R.R.H. Schiffelers, New concepts in the
abstract format of the compositional interchange for-
mat, 3rd IFAC Conference on Analysis and Design
of Hybrid Systems, 2009, Zaragoza, Spain, pp. 250-
255.

[7] D. A. van Beek, K. L. Man, M. A. Reniers, J. E.
Rooda and R. R. H. Schiffelers. Syntax and Con-
sistent Equation Semantics of Hybrid Chi, Journal
of Logic and Algebraic Programming, 2006, vol. 68,
number 1-2, pp. 129-210.

[8] Bergstra, J. A., and B. Mahr , Algebraic Specifica-
tion, Academic Press, 1989, ISBN 0-201-41635-2.

[9] L.P. Carloni, R. Passerone, A. Pinto, and A.L.
Sangiovanni-Vincentelli, Languages and Tools for
Hybrid Systems Design, Foundations and Trends in
Electronic Design Automation Vol. 1, No 1/2 (2006)
pp. 1-193

[10] A. Deshpande, A. Gollu, and P. Varaiya, Shift: A
formalism and a programming language for dynamic
networks of hybrid automata, in Hybrid Systems IV,
1997, pp. 113-134.

[11] A. Deshpande, A. Gollu, and P. Varaiya, The SHIFT
programming language for dynamic networks of hy-
brid automata, IEEE Transactions on Automatic
Control, April 1998, vol. 43, pp. 584-597.

[12] Emmanuel M. Tadjouddine, On the Application of
Algorithmic Differentiation to Newton Solvers, Lec-
ture Notes in Engineering and Computer Science:
Proceedings of The International MultiConference
of Engineers and Computer Scientists 2010, IMECS
2010, 17-19 March, 2010, Hong Kong, pp. 1342-1347.

[13] G. Frehse, PHAVer: Algorithmic verification of hy-
brid systems past HyTech, in HSCC, 2005, pp. 258-
273.

[14] P. Fritzson, Principles of Object-oriented Modeling
and Simulation with Modelica 2.1, J. Wiley & Sons,
2004.

[15] T.A. Henzinger, The theory of hybrid automata, In
the Proceedings of the 11th Annual IEEE Sympo-
sium on Logic in Computer Science (LICS 96), 1996,
pp. 278-292.

[16] T. A. Henzinger, Masaccio: A formal model for em-
bedded components, in TCS 00: Theoretical Com-
puter Science, 2000, pp. 549-563.

[17] Christian Herde, HySAT Quick Start
Guide, December 20, 2009, available at
http://hysat.informatik.uni-oldenburg.de/.

[18] T. Henzinger and P. H. Ho, HyTeCh: The Cornell
hybrid technology tool, in Hybrid Systems II, 1995,
pp. 265-293.

[19] C. Hylands, E. A. Lee, J. Liu, X. Liu, S.
Neuendorffer, and H. Zheng, HyVisual: A
hybrid system visual modeler, Tech. Rep.
UCB/ERL M03/1, UC Berkeley, 2003, available at
http://ptolemy.eecs.berkeley.edu/hyvisual/.

[20] Martin Franzle and Christian Herde, HySAT: An ef-
ficient proof engine for bounded model checking of
hybrid systems, Formal Methods in System Design,
2006.

[21] Martin Franzle, Christian Herde, Tino Teige, Ste-
fan Ratschan, and Tobias Schubert, Efficient Solv-
ing of Large Non-Linear Arithmetic Constraint Sys-
tems with Complex Boolean Structure. Journal on
Satisfiability, Boolean Modeling, and Computation,
Volume 1 (2007), pp. 209-236.

[22] KeYmaera: A Hybrid Theorem Prover for Hybrid
Systems, available at http://symbolaris.com/info
/KeYmaera.html/.

[23] Andre Platzer and Jan-David Quesel, KeYmaera: A
hybrid theorem prover for hybrid systems, Lecture
Notes in Engineering and Computer Science : Pro-
ceedings of Automated Reasoning, Third Interna-
tional Joint Conference, IJCAR 2008, Sydney, Aus-
tralia, pp. 171-178.

[24] T. Krilavičius and K.L. Man, Intelligent Automation
and Computer Engineering, chapter Behavioural
Hybrid Process Calculus for Modelling and Analysis
of Hybrid and Electronic Systems, 2009.

[25] T. Krilavčius, Hybrid Techniques for Hybrid Sys-
tems, PhD thesis, Univ. of Twente, 2006.

[26] Langerak, R., Polderman, J. W., and Krilavičius,
Stability analysis for hybrid automata using conser-
vative gains, In Proceedings of Conference on Analy-
sis and Design of Hybrid Systems (ADHS 03), 2003,
pp. 377-382.

IAENG International Journal of Computer Science, 37:3, IJCS_37_3_04

(Advance online publication: 19 August 2010)

__

[27] N. Lynch, R. Segala, F. Vaandrager, and H. Wein-
berg, Hybrid I/O automata, in Hybrid Systems III:
Verification and Control, 1996, pp. 496-510.

[28] J. Lygeros, C. Tomlin, and S. Sastry, Controllers
for reachability specifications for hybrid systems, in
Automatica, Special Issue on Hybrid Systems, 1999.

[29] K.L. Man and R.R.H. Schiffelers, Formal Specifica-
tion and Analysis of Hybrid Systems, Phd thesis,
Univ. of Eindhoven, 2006.

[30] K. L. Man and M. P. Schellekens, Interoperability of
Performance and Functional Analysis for Electronic
System Designs in Behavioural Hybrid Process Cal-
culus (BHPC), Lecture Notes in Electrical Engineer-
ing: Current Trends in Intelligent Systems and Com-
puter Engineering, 2008, Volume 6, pp. 375-394.

[31] K.L. Man, M.P. Schellekens and M. Boubekeur, For-
mal Specification and Analysis of Analog and Mixed-
Signal Circuits Using Process Algebras for Hybrid
Systems, the 3rd IEEE International SoC Confer-
ence, 2006, Seoul, South Korea.

[32] K.L. Man, T. Krilavičius, C. Chen, and H.L. Le-
ung, Application of Bhave Toolset for System Con-
trol and Electronic System Design, Lecture Notes
in Engineering and Computer Science: In Proceed-
ings of the International MultiConference of Engi-
neers and Computer Scientists 2010, IMECS 2010,
March, 2010, Hongkong, pp. 1336-1341.

[33] K.L. Man, H. Leung, M. Mercaldi, and J. Huang,
Performance and functional analysis of tlm models
in the SHE methodology, in the IEEE International
Conference on Computer Science and Software En-
gineering, Wuhan, China, 2008.

[34] S. Neema, Analysis of Matlab Simulink and State-
flow data model, Tech. Rep. ISIS 01-204, March
2001, Vanderbilt University, Nashville.

[35] R. Nikoukhah and S. Steer, SCICOS - a dynamic sys-
tem builder and simulator users guide - version 1.0,
Tech. Rep. 0207, June 1997, INRIA, Rocquencourt,
France.

[36] PAT: Process analysis toolkit, 2009, available at
http://www.comp.nus.edu.sg/pat/.

[37] Andre Platzer and Edmund M. Clarke, Formal ver-
ification of curved flight collision avoidance maneu-
vers: A case study, Lecture Notes in Computer Sci-
ence, volume 5850, In 16th International Symposium
on Formal Methods, FM, Eindhoven, Netherlands,
2009, pp. 547-562.

[38] Andre Platzer and Jan-David Quesel, European
Train Control System: A case study in formal veri-
fication, Lecture Notes in Computer Science volume

5885, In the 11th International Conference on For-
mal Engineering Methods, ICFEM, Rio de Janeiro,
Brasil, 2009, pp. 246-265.

[39] Prototype application for Message Sequence Plot vi-
sualisation, March 2010.

[40] S. Ratschan and Z. She, Safety verification of hy-
brid systems by constraint propagation based ab-
stracition refinement, in HSCC, 2005, pp. 573-589.

[41] B. I. Silva, K. Richeson, B. Krogh, and A. Chuti-
nan, Modeling and verifying hybrid dynamic sys-
tems using CheckMate, in Proceedings of 4th Inter-
national Conference on Automation of Mixed Pro-
cesses, September 2000, pp. 323-328.

[42] M. M. Tiller, Introduction to physical modeling with
Modelica, Kluwer Academic Publishers, 2001.

[43] Tim A.C. Willemse, Embeddings of Hybrid Au-
tomata in Process Algebra, Lecture Notes in Engi-
neering and Computer Science volume 2999, IFM
2004, pp. 343-362.

IAENG International Journal of Computer Science, 37:3, IJCS_37_3_04

(Advance online publication: 19 August 2010)

__

