
 
 

 

  
Abstract— In this paper, we propose a modified 

hybridization of electromagnetism-like mechanism (EM) and 
particle swarm optimization (PSO) algorithms, called 
mEMPSO, for designing the proposed functional-link based 
Petri recurrent fuzzy neural system (FLPRFNS). The 
mEMPSO implements an instant update particle velocity 
strategy such that each particle updates its information 
instantaneously. For reducing the computational complexity, 
the randomly local search is replaced by PSO algorithm. In 
addition, the proposed FLPRFNS has the following 
characteristics, the consequent part is a functional-link based 
orthogonal basis functions and a Petri layer is adopted to 
eliminate the redundant fuzzy rules computation. In order to 
improve the ability of function approximation and have better 
convergence results, this study uses the functional expansion 
sine and cosine basis functions. Simulation on nonlinear control 
and nonlinear channel equalization are discussed to show the 
effectiveness and performance of our approach. 
 

Index Terms—Electromagnetism-like mechanism, particle 
swarm optimization, functional link, fuzzy neural system, Petri 
net.  
 

I. INTRODUCTION 
Over the decades, the fuzzy systems and the neural 

networks are used successfully in many application areas 
[1-4]. Based on the approximation ability, many adaptive 
control techniques are accompanied with them for 
approximation of system functions or controllers. A major 
drawback of the existing neural fuzzy systems is that their 
application domain is limited to static problems due to the 
feed-forward network structure. Hence, a recurrent fuzzy 
neural network (RFNN) system is proposed to identify and 
control nonlinear systems [5]. Some other recurrent fuzzy 
neural systems also have been proposed for nonlinear 
systems design [6-10]. It has the ability of storing the system 
past information such that it is more suitable than 
feed-forward network for temporal problems. In literature 
[10], we modified the RFNN structure to propose a dynamic 
fuzzy neural system with functional-link based consequent 
part. Alternative functional-link neural networks (FLNN) 
have been developed in applications of function 
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approximation, pattern recognition, and nonlinear channel 
equalization [11-14]. As the results of [12, 15], using the 
functional expansion can effectively increase the 
dimensionality of the input vector. Literature [12] introduces 
that when we select the trigonometric polynomial of 
orthogonal sine and cosine basis functions then the outer 
product terms would have better convergence results. In 
order to improve the ability of function approximation and 
have better convergence results, this study uses the 
functional-link neural system (FLNS) and finite impulse 
response (FIR) filter to construct the consequent part of the 
proposed FLPRFNS. Besides, a Petri net has been developed 
into a powerful tool for modeling, analysis, control, 
optimization, and implementation of various engineering 
systems [16-18]. In order to reduce unnecessary computation 
of fuzzy rules, we adopt the Petri net into the proposed 
FLPRFNS. 

For training the neural networks and fuzzy neural systems, 
the evolutionary algorithms such as genetic algorithm (GA), 
particle swarm optimization (PSO), electromagnetism-like 
mechanism (EM) algorithm, and differential evolution 
algorithms are widely used [19-26]. The EM algorithm is a 
novel meta-heuristic based algorithm for optimization 
problem [21-24]. It simulates the electromagnetism theory by 
considering each particle to be an electrical charge. 
Subsequently, the movement of attraction and repulsion is 
introduced by Coulomb’s law. Obviously, it has the 
advantages of multi-point searches and global optimization. 
However, the corresponding computational complexity due 
to the neighborhood local search should be solved [23]. On 
the other hand, the PSO algorithm is easy to implement and 
has been empirically shown to perform well on many 
optimization problems [25, 26]. Each member in the swarm 
adapts its search patterns by learning from its own experience 
and other members’ experiences. In the PSO, a member in the 
swarm is called a particle. In this paper, we propose a novel 
modified hybrid learning algorithm EM and PSO (mEMPSO) 
where the randomly neighborhood local search of EM is 
replaced by PSO to improve the efficiency of EM for 
designing the FLPRNFS. Moreover, in order to enhance the 
convergent speed, an instant update particle information 
strategy is adopted such that each particle updates its 
information instantaneously. 

This paper is organized as follow. Section II illustrates the 
structure of FLPRFNS. In Section III, the proposed 
mEMPSO algorithm is introduced. In Section IV, the 
simulation results of nonlinear control and nonlinear channel 
equalization are presented. Finally, Section V gives the 
conclusion. 
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Figure 1: Diagram of combination of functional link neural system (FLNS) 

and FIR filter (m-dimensional input case). 
 

II. FUNCTIONAL-LINK BASED PETRI RECURRENT FUZZY 
NEURAL SYSTEM 

In this section, the proposed FLPRFNS is introduced. We 
will first introduce the structure of the functional-link neural 
system and its combination of FIR filter for the consequent 
part of the FLPRFNS. 

 

A. Combination of Functional-Link Neural System and FIR 
Filter 

Literature [11] has proposed a functional link net and used 
the function expansion to improve the approximation 
performance. In order to enhance the approximate ability and 
performance of the fuzzy neural system, we combine the 
FLNS with the finite impulse response (FIR) to construct the 
consequent part of fuzzy rules [14]. Fig. 1 depicts the block 
diagram of FLNS-FIR with m inputs. A functional expansion 
block is used to expand the dimension of input to a 
high-dimensional space [12, 13, 15]. According to the results 
of [14], the FLNS with FIR filter can enhance the function 
mapping ability. The FLPRFNS adequately utilizes the 
advantages of FLNS-FIR and characteristics of FIR filter to 
further improve the performance.  

Consider a FLNS-FIR with m inputs 
[ ]T
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To perform the dynamic ability, the inputs are defined as 
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Obviously, a larger number n of time delay terms will 
increase the computation effort of the FLNS-FIR. In this 
paper, we select n=2 to remain the dynamic property and 
control the input number properly. Thus, each set of basis 
functions for the FLNS-FIR is shown in Fig. 1. The 
FLNS-FIR consists of input and trigonometric polynomial 
basis function. The function expansion block comprises a 
subset of orthogonal sine and cosine basis functions. It is 
defined as 
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where N1=3×m×n is the number of basis functions. The 
linking weights of the X1 is  
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where R denotes the rule number of the FLPRFNS. The FIR 
part is defined as 
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where N2=m×n is the number of basis functions. Similar to 
the FLNS part, the linking weights of FIR filter is  
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Then, we define 

                                  ∑
=

=
1

1
1

N

i
iijj wu φ                                                (7) 

                                  ∑
=

++=
2

11

1
)()(2

N

i
iNjiNj wu φ                                (8) 

where wij is the corresponding linking weight and φi is the 
basis trigonometric functional expansion of input variables. 

jiNw )( 1+  and  )( 1 iN +φ  are the corresponding link weight of FIR 
filter and  the past input variables, respectively. The output uj 
of the FLNS-FIR is obtained by 

     jjj uuu 2111 )1( ×−+×= λλ                          (9) 
where 1λ ∈[0 1]. 
 

B. Network Structure of FLPRFNS 
The proposed FLPRFNS realizes a fuzzy if-then rule as 

follows. The jth fuzzy rule is represented as  
Rule j: IF z1 is jA1  , …, zm is mjA , 

THEN juy  =  
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where ( ) ( ) ( ) ( )kOkOz iijijj
12 1 +⋅−= θ , uj are the input and output 

variables, respectively; Aij is the linguistic term of the 
precondition part with Gaussian membership function; m is 
the number of input variables; wij and jNw )1( 1 +  are the linking 
weights; φi denotes the basis trigonometric function. Herein,  
N1 is the number of the function expansion, iN )1( 1 +φ  denotes 
the basis function of past input variable, N2 is the past input 
number.  

Herein, we indicate the signal propagation and the 
operation functions of the nodes in each layer. For 
convenience, the multi-input-single-output case is considered 
here. The schematic diagram of the proposed FLPRFNS is 
shown in Fig. 2. In the following description, )( l

iO  denotes 
the ith output node in layer l. 
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Figure 2: Structure of FLPRFNS. 

 
Layer 1: Input Layer 

For the ith node of layer 1, the net input and the net output 
are represented as 

)()()1( kxkO ii = .                           (10) 
The xi represents the ith input. The nodes in this layer only 
transmit the input values to the next layer directly. 
 
Layer 2: Membership Layer 

Each fuzzy set ijA  is constructed by the Gaussian 
membership function. Therefore, the output of the 
membership layer is defined as 
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where ( )( ) ( )( )kOkOz iijijj
12 1 +⋅−= θ , ijm  and ijσ  denote the 

mean and variance of the jth term of the ith input of the 
Gaussian membership function, respectively. 
 
Layer 3: Rule Layer 

Nodes in layer 3 represent rule nodes. The product 
operator is adopted for calculating the firing strength of the 
corresponding rule. Therefore, the output function of each 
inference node here is 

∏=
i
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Layer 4: Petri Layer 

The operation of the Petri layer is described as follows to 
select suitable fired nodes:  
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where tj is the transition and dth is the selected threshold value 
which is set between 10-4 ~10-3 to eliminate redundant fuzzy 
rules computation as our experience. 

 
Layer 5: TSK Layer 
This layer performs the consequent part by the FLNS-FIR. 
The output of this layer is 
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where uj represents the  jth output of the FLNS. Moreover, 
the output nodes of functional link neural network depend on 
the number of the fuzzy rules of the FLPRFNS. 
 
Layer 6: Output Layer 

The output layer which is acted as a defuzzifier is defined 
as 
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where R is the number of the fuzzy rule and y is the output of 
the FLPRFNS. 

As above, the tuning parameters of FLPRFNS are m, σ, θ, 
and w. The number of tuning parameters is 

Rmn ×××+ )43( , where n, m, and R denote the time delay, 
the number of inputs and the number of the fuzzy rule. 
 

III. MODIFIED HYBRIDIZATION OF ELECTROMAGNETISM- LIKE 
MECHANISM AND PARTICLE SWARM OPTIMIZATION 

ALGORITHMS 
This section introduces the modified hybridization of 

electromagnetism-like mechanism and particle swarm 
optimization algorithms (mEMPSO) for designing the 
FLPRFNS.   
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Figure 3: Flowchart of the proposed mEMPSO algorithm. 

 
Fig. 3 depicts the flowchart of the mEMPSO algorithm. 

Our goal is to use the algorithm to minimize the given cost 
function by adjusting the parameters of the FLPRFNS. At 
first, the initial particles are randomly selected from the 
feasible region of searching space. After initialization, each 
particle is evaluated and ranked by the corresponding fitness 
function value. Here the root-mean-square-error (RMSE) is 
adopted. The particle having smallest RMSE value is selected 
to be the best particle in the group (denotes gbest). In addition, 
the best information that the particles ever reached would be 
memorized as population best (denotes pbest). Started from 
the second generation, each particle would update its 
information by using the historical best information. While 
each particle updates its information, the newest best particle 
and the newest best particle in the group would be updated. 
Then, the instant update particles information strategy is 
operated. In this strategy, all particles are updating its 
information instantly one by one from the current best 
information. After the new individual particle is defined, the 
gbest is also updated instantly. Subsequently, the EM 

operation phase, total force calculation and movement, is 
operated. Then, all particles are evaluated by the 
corresponding RMSE and determined the replacement of 
gbest. The particle has the smallest RMSE value is defined as 
xbest. If xbest is better than gbest, gbest is replaced and the 
velocity in next generation would be updated. The process 
will be stopped until the stop criterion is satisfied. Then we 
have the optimal particle x*. The detailed description for the 
EM, PSO, and mEMPSO are introduced as below.  

The mEMPSO for optimization problems is in the form of 
Minimize f(x) 
subject to x∈S,                                                                (16) 

where S={x∈ℜn| lk≤ xk ≤uk, lk, uk∈ℜ, k=1, …, n}, n is problem 
dimension, and f(x) is the objective function, uk and lk are the 
corresponding upper bound and lower bound. Each particle x 
represents a solution with charge. 
 
Initialization 

In this study, each particle denotes a weighting vector 
[ ]Twm  , , , θσ  and the mEMPSO is utilized to find the optimal 
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value [ ]Twm ****  , , , θσ . Typically, initial particles are randomly 
generated from a feasible solution region. 
 
Evaluation and Ranking 

To evaluate the performance of each particle in training the 
FLPRFNS, we select the root-mean-square-error (RMSE) as 
the following 
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where e denotes the approximate error (or tracking error for 
the control problem) and N denotes the data number. After 
evaluation, all particles are ranked by the corresponding 
RMSE value.  
 
gbest and pbesti Definition 

After evaluation and ranking, the particle which has the 
smallest RMSE value is defined as gbest. The best solution of 
ith particle is also defined as pbesti. 
 
Local Search for mEMPSO 

The local search phase is used to gather the local 
information of each particle. In mEMPSO, the local search is 
implemented by PSO algorithm with an instant velocity 
update strategy. Herein, let X

v
 denotes the particle (i.e., 

[ ]Twm  , , , θσ ), each particle can be updated by the following 
equations 

)))()((                              

))()(()(()1(

22

11

kXkgbestc

kXkpbestckVkV

i

iiii
v

vvv

−+

−+=+

φ

φχ
            (18) 

)1()()1( ++=+ kVkXkX iii

vvv
                                   (19) 

where c1, c2 are positive constants and χ  is control 

parameter of iV
v

. 1φ , 2φ  are random numbers within [0 1].  
 
Total Force Calculation 

In this phase, a charge is assigned for each particle. The 
charge qi of particle xi is determined by 
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Then, according to the electromagnetic theory, the force is 
inversely propositional to the distance between two particles 
and directly proportional to the product of their charges. By 
the superposition principle, the total force vector which is 
exerted on xi is computed by 
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After comparing the RMSE, the direction of the forces 
between the particle and the others is selected. For two 
particles, the one has a smaller RMSE value attracts the other 
one. On the other hand, the particle with larger fitness value 
repels the others. Detailed descriptions can be found in 
literature [21, 23]. 
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Figure 4: The dynamic system control configuration with FLPRFNS 

controller. 
 

Movement 
After determining the total force vector Fi, particle xi 

moves in the direction of the total force by a random step 
length, that is 
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F
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i
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where λ=random(0,1) and 
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Stop Criterion 
 In general, the stop criterion can be chosen as maximum 
generations or specific performance. In this study, the 
maximum generations is used to be the stop criterion. 

IV. SIMULATION RESULT 
To demonstrate the performance of the FLPRFNS and the 

mEMPSO, the simulations regarding nonlinear control and 
signal processing are introduced. The FLPRFNS with 
mEMPSO is applied to nonlinear control system and 
nonlinear time-varying channel equalization. 

A. Nonlinear System Control 
We consider the tracking control of nonlinear system with  
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The reference model is described as 
)()(6.0)1( krkyky rr +=+                  (24) 

where 

⎪
⎪
⎩

⎪⎪
⎨

⎧

≤<

≤+
=

 300100               ,
25

2sin

100   ,
25

2sin
10
2sin

)(
kk

kkk

kr
π

ππ

.      

Note that system state is yp and tracking trajectory vector is yr. 
Fig. 4 shows the dynamic system control configuration by 
FLPRFNS controller and mEMPSO algorithm. The inputs of 
FLPRFNS controller are yp and yr and the output is control 
signal u. The corresponding RMSE function of tracking error 
is defined as 

RMSE=
2/1300

1

2 300/))1()1(( ⎟
⎠
⎞

⎜
⎝
⎛ +−+∑

=k
pr kyky .          (25) 

To show the efficiency and effectiveness of the mEMPSO, 
we have the comparison results of EM, PSO, EMPSO, and 
GA algorithms. For the mEMPSO algorithm, the following 
parameters are chosen 
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- Maximum generations: 300 
- Particle number: 28 
- Control constant: 1 
- Positive constant C1: 2 
- Positive constant C2: 2 

The initial parameters of the FLPRFNS are chosen randomly 
between [-1, 1] and the network structure is 

- Network structure: 2-10-5-5-5-1 
- Parameter number of FLPRFNS: 110 
- Rule number of FLPRFNS: 5 
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Figure 5: The system trajectories after 300 generations (solid line: desired 

trajectory; dashed line: system actual output). 
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Figure 6: The comparison results of different network structure with the same 

number of turning parameters (the number of turning parameters: 154). 
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Figure 7: The comparison results of different networks with the same rule 

number (R=5). 
 

Fig. 5 shows the system trajectories after 300 generations 
(solid line: desired trajectory; dashed line: system actual 
output). Obviously, the system output yp can follow the 
desired output yr after training in better performance. That is, 
the FLPRFNS with mEMPSO performs well for the 
nonlinear control. Fig. 6 shows the comparison results of 
different networks with the same number of turning 
parameters and Fig. 7 shows the comparison results of 
different network structure with the same fuzzy rule number. 
We can observe that whether in the same number of turning 
parameters or in the same rule number, the FLPRFNS has 
better training results (in RMSE) than RFNN and PFRNN. In 
addition, the convergent speed of the FLPRFNS is also faster 
than the RFNN and PFRNN. That is, the FLPRFNS can 
obtain better performance using less fuzzy rules for nonlinear 
control problem. Detailed comparison results are also shown 
in Table I. 

For the performance comparison of algorithm, Fig. 8 
shows the comparison results of tracking error RMSE 
(dashed line: mEMPSO, solid blue line: EMPSO, solid black 
line: EM, solid pink line: PSO and solid green line: GA). Fig. 
9 shows the comparison results in RMSE versus evaluations. 
As above results and discussion of Figs. 8 and 9, we can 
conclude that the hybrid learning algorithm mEMPSO has 
good performance in convergent speed and accuracy.   

 
Table I: The comparison results of different network structure. 

Structure. Rule 
number 

The number of 
turning parameters RMSE 

5 35 0.382 
9 63 0.351 

10 70 0.337 
15 105 0.286 
16 112 0.273 

PRFNN 

22 154 0.398 
5 35 0.321 
9 63 0.296 

10 70 0.271 
15 105 0.239 
16 112 0.225 

RFNN 
 

22 154 0.365 
3 66 0.233 
5 110 0.192 FLPRFNS

 
7 154 0.152 
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Figure 8: Comparison results of tracking error RMSE (dashed line: 

mEMPSO, solid blue line: EMPSO, solid black line: EM, solid pink line: 
PSO and solid green line: GA). 
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Figure 9: Comparison results in RMSE versus evaluations for nonlinear 

control.  
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Figure 10: Diagram of nonlinear equalization model for nonlinear channel. 

 

B. Nonlinear Channel Equalization 
For a general nonlinear channel in digital communication 

system as shown in Fig. 10, where L and N denote the linear 
and nonlinear channels, respectively. In Fig. 10, the 
nonlinear channel consists of linear channel cascaded 
nonlinear part in nature. On the other hand, linear and 
nonlinear distortions are concurrent. Therefore, we can 
obtain that nonlinear equalizer should be made up of linear 
and nonlinear filters to compensate for the linear and 
nonlinear distortions. It is depicted in nonlinear equalizer part 
in Fig. 10, where N-1 denotes the nonlinear inverse filter and 
L-1 denotes the linear inverse filter. Therefore, the channel 
characteristic represents random temporal fluctuations by the 
time-varying amplitude factor. The received signal can be 
described as follows 

)()1(...)1()()(ˆ 21 knpksckscksckx p ++−++−+=      (26) 

where s(k) is transmitted signal, and )(ˆ kx  denotes the 
channel state; cl, l=1, 2, …, p, are time-varying amplitude 
factor, and p is the channel order. 

The nonlinear channel equalization is a technique used to 
combat some imperfect phenomenon in high-speed data 
transmission over channels [27]. Fig. 11 shows the block 
diagram of a communication system that is subject to 
inter-symbol interference (ISI) and additive white Gaussian 
noise (AWGN). The transmitted input symbols s(k) is an 
independent and identically distributed discrete-time random 
processes taking its value {-1, +1}. The signal is sent through 
the channel. 

In real communication systems, the channel is too 
dispersive to cause interference between successive signal 
samples (inter-symbol interference). It will complicate 
reliable transmission and reception. Let )(ˆ kx  denotes the 
channel output. The channel function can be described as 
[28] 

( ))1(,),1(),()(ˆ +−−= pksksksfkx L                  (27) 
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Figure 11: Block diagram of adaptive equalizer. 

 
where p is the channel order. Generally, f is a nonlinear 
function of past transmitted signals, and the channel changes 
slowly but significantly over time; therefore, a nonlinear 
channel equalizer with adaptation ability is needed. The 
channel state is defined as Tnkxkxk )]1(ˆ,),(ˆ[)(ˆ +−⋅⋅⋅≡x . At 
receiving terminal, the inter-symbol interference and 
nonlinear distortion are introduced by the channel; received 
signals x(k) are also assumed to be corrupted by a additive 
noise n(k), that is 

)()(ˆ)( knkxkx +=                              (28) 
where )(kn  is an AWGN which is assumed to be zero mean. 

The function of the equalizer is to re-construct the 
transmitted signal, s(k-d) (d denotes the decision delay), from 
the observed information sequence, x(k), …, x(k-p+1),  from 
which greater speed and reality can be achieved. Thus, the 
mathematical representation of equalizer is  

))1(,),1(),(()(ˆ +−⋅⋅⋅−=− pkxkxkxdks ψ         (29) 

where }1,1{: −→ℜ pψ . Thus, a correct decision by the 
equalizer is 

)()(ˆ dksdks −=− .                            (30) 
Based on the category of s(k-d) (i.e., 1± ), the channel states 

)(ˆ kx  can be partitioned into two classes [29] 

{ }, 1)(|)(ˆ =−=+ dkskxX                        (31) 

{ } 1)(|)(ˆ −=−=− dkskxX  .                   (32) 

The numbers of elements in X+ and X- are denoted as +
sn  and 

−
sn , respectively. The probabilities for s(k-d)=1 and 

s(k-d)=-1 are the same, which means 2/sss nnn == −+  where 
ns is the total number of channel state. Besides, the channel 
states in +X  and −X  are denoted as ),,1(ˆ ++ = si nix L  and 

),,1(ˆ −− = si nix L , respectively. 
Suppose that the channel order is p=2 in the nonlinear 

channel function. For a time-varying channel, the 
coefficients of the channel ci, i=0, …, n, are unknown. The 
nonlinear time-varying channel model is described as [28, 
30] 

)()()1()()( 21 knkHkscksckx +−−+=           (33) 
where c1 and c2 are time-varying coefficients, and H(k) is 
co-channel Interference (CCI) which is described as 

)]1()([)( 1211 −+= kckckH λ                    (34) 
where c11(k) and c12(k) are co-channel time-varying 
coefficients. 
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Figure 12: Block diagram of adaptive equalizer using FLPRFNS. 

 
The time-varying coefficients c1 and c2 are simulated by 

using the second-order Markov model. It is also called 
second-order Butterworth low-pass filter which is derived by 
white Gaussian noise source [31]. In the following 
simulations, Matlab is used to generate a second-order 
low-pass digital Butterworth filter with cutoff frequency 0.1, 
time-varying channel coefficients are provided. Coefficients 
c1(k) and c2(k) are selected around 1 and 0.5, respectively. 
The input to Butterworth filter is a white Gaussian sequence 
code for time-varying coefficients with length of 1000.  

Herein, we use the FLPRFNS to be the adaptive equalizer 
for time-varying channel equalization. As shown in Fig. 12, 
we use the FLPRFNS filter to construct the equalizer and use 
the error to update the parameters of FLPRFNS filter which 
can achieve the adaptive equalizer. In our simulations, we 
choose the independent input sequence s(k) which consists of 
2000 symbols. The first 1000 symbols are used for training 
and the remaining 1000 are used for testing. After training, 
the parameters of the PRFNN, RFNN and FLPRFNS filters 
are fixed, and then the testing is performed. We compare two 
examples (with CCI and without CCI) among these three 
types of PRFNN, RFNN, and FLPRFNS filters.  

At first, we consider the CCI free case (i.e.  H(k)=0). 
Hence, we assume that the time-varying channel is generated 
by (33) and we choose 5 rules to construct the FLPRFNS 
filter. Next, we consider the time-varying channel with the 
co-channel for CCI [28], that is 

3
1211 ))1()((9.0)( −+⋅= kckckH                 (35) 

where the nominal values are c11(k)=1 and c12(k)=0.5. 
In order to show the effectiveness of FLPRFNS, the 

comparison results between FLPRFNS, RFNN, and PRFNN 
are introduced. In addition, two cases are considered, channel 
without CCI (CCI free) and channel with CCI.  
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Figure 13: Comparison results of nonlinear time-varying channel where the 
rule number of RFNN and PRFNN is the same as FLPRFNS without CCI 

(solid-line: FLPRFNS, dashed-line: RFNN, and dotted-line: PRFNN). 

 
For CCI free cases, Fig. 13 shows the comparison results 

of nonlinear time-varying channel where the rule numbers of 
FLPRFNS, RFNN, and PRFNN are the same (R=5), 
solid-line: FLPRFNS, dashed-line: RFNN, and dotted-line: 
PRFNN. In addition, Fig. 14 shows the comparison results of 
nonlinear time-varying channel where the turning parameter 
number of RFNN and PRFNN is similar to FLPRFNS 
without CCI  (FLPRFNS: 110, RFNN: 112, PRFNN: 112), 
solid-line: FLPRFNS, dashed-line: RFNN and dotted-line: 
PRFNN. The comparisons of network structure and bit error 
rate (BER) are shown in Table II. Obviously, the 
performance using our approach is also better than RFNN 
and PRFNN (FLPRFNS has the smaller BER value). 

For the channel with CCI cases, Fig. 15 shows the 
comparison results of FLPRFNS, RFNN, and PRFNN with 
the same fuzzy rule (rule number is 5), solid-line: FLPRFNS, 
dashed-line: RFNN, and dotted-line: PRFNN. Fig. 16 shows 
the comparison results of FLPRFNS, RFNN, and PRFNN 
with the similar tuning parameters (FLPRFNS: 110, RFNN: 
112, PRFNN: 112), solid-line: FLPRFNS, dashed-line: 
RFNN and dotted-line: PRFNN. As above discussion, we can 
see that our approach results better performance and has 
advantages of fewer adjustable parameters and smaller BER 
value even the channel having CCI noise. 
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Figure 14: Comparison results of nonlinear time-varying channel where the 

turning parameter number of RFNN and PRFNN is similar to FLPRFNS 
without CCI (solid-line: FLPRFNS, dashed-line: RFNN and dotted-line: 

PRFNN). 
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Figure 15: Comparison results of nonlinear time-varying channel where the 

rule number of RFNN and PRFNN is the same as FLPRFNS with CCI 
(solid-line: FLPRFNS, dashed-line: RFNN and dotted-line: PRFNN). 
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Figure 16: Comparison results of nonlinear time-varying channel where the 
turning parameter number of RFNN and PRFNN is similar to FLPRFNS with 
CCI (solid-line: FLPRFNS, dashed-line: RFNN and dotted-line: PRFNN). 

 
Table II: Comparison results of network structure, rule number, parameter 

number, and BER for nonlinear time-varying channel (SNR=10 dB). 

 PRFNN RFNN FLPRFNS

Network 
structure 

2-10- 
5-1 

2-32- 
16-1 

2-10- 
5-1 

2-32- 
16-1 

2-10-5- 
5-5-1 

Rule 
number 5 16 5 16 5 

Parameter 
number 35 112 35 112 110 

BER- 
CCI free 0.2882 0.0356 0.1989 0.0168 0.0017 

BER- with 
CCI 0.5103 0.1171 0.3427 0.0823 0.0119 

 

V. CONCLUSION 
In this paper, a hybrid learning algorithm mEMPSO with 

an instant update strategy is proposed to design the 
functional-link based Petri recurrent fuzzy neural system 
(FLPRFNS). In addition, the FLPRFNS uses a functional 
expansion and FIR filter for the consequent part to enhance 
the performance and effectiveness. For training the 
FLPRFNS, the mEMPSO combines the advantages of EM 
and PSO algorithms with instant update stragtegy. Thus, it 
has the properties of multipoint search, global optimization, 
and faster convergence. It does not need any system gradient 
information and each particle obtains the newest information 
instantaneously for optimization. Simulations of nonlinear 
system control and nonlinear time-varying channel 
equalization are shown to demonstrate the effectiveness, 
accuracy, and better convergent performance of the 
FLPRFNS and mEMPSO algorithm. 
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