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Abstract — Time series are composed of sequences
of data items measured at typically uniform intervals.
Time series arise frequently in many scientific and
engineering applications, including finance, medicine,
digital audio, and motion capture.

Time series motifs are repeated similar subseries in
one or multiple time series data. Time series anoma-
lies are unusual subseries in one or multiple time se-
ries data. Finding motifs and anomalies in time series
data are closely related problems and are useful in
many domains, including medicine, motion capture,
meteorology, and finance.

This paper presents a novel approach for both the
motif discovery problem and the anomaly detection
problem. First, we use a subseries join operation to
match similar subseries and to obtain similarity rela-
tionships among subseries of the time series data. The
subseries join algorithm we use can efficiently and ef-
fectively tolerate noise, time-scaling, and phase shifts.
Based on the similarity relationships found among
subseries of the time series data, the motif discovery
and anomaly detection problems can be converted to
graph-theoretic problems solvable by known graph-
theoretic algorithms. Experiments demonstrate the
effectiveness of the proposed approach to discover
motifs and anomalies in real-world time series data.
Experiments also demonstrate that the proposed ap-
proach is efficient when applied to large time series
datasets.
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1 Introduction

A time series is composed of a sequence of values mea-
sured from a continuous signal. The term “time series””
is often used to refer to any such sampled data set with
one independent variable, whether or not that indepen-
dent variable is time. Examples of time series data in-
clude stock prices, scientific measurements, weather data,
music, and motion capture data.

Motifs are approximately repeated subseries in a single
time series data or a time series dataset. For example,
in Figure 1(a), the underlined parts are repeated similar
subseries. Anomalies are unusual subseries in a single
time series data or a time series dataset. Anomalies can
be outliers in a time series that contains approximately
periodic patterns, or a part of a time series that deviates
significantly from some typical behaviour. For example,
in Figure 1(b), the underlined part is quite different from
the other parts of the data that is sine-like.

Motif discovery and anomaly detection are fundamen-
tal tasks and are useful in many real-world applications.
They are often used to analyse other kinds of data. For
example, motifs in Web posts or comments consist of fre-
quently repeated term-based patterns, and can be used
for analyzing people’s opinions or feedback. For an exam-
ple based on time series, consider motifs in the context
of stock prices. Such patterns may be used to predict
trends. Likewise, anomaly detection applied to cardio-
gram data could help a doctor to diagnose heart dis-
ease. Anomaly detection in network traffic analysis could
alert the network administrator of spam or malicious at-
tacks. Given such wide applicability, motif and anomaly
detection are attracting increasing attention from both
academia and industry.

Existing approaches usually handle motif discovery and
anomaly detection separately [1, 2]. They are also lim-
ited in that they can only find similar patterns of the
same length or tolerate a limited amount of time-scaling
and phase-shifting. Some of the existing approaches also
have high computational complexities. Finally, in order
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(a)

(b)

Figure 1: Simulated examples of time series motifs and
anomalies. (a) The approximate repeated subseries that
are underlined are a motif of this time series. (b) The
unusual subseries that is underlined is an anomaly in this
time series.

to solve the problem, we first have to define it well.

In this work, we propose an approach for both motif dis-
covery and anomaly detection, based on a combination of
subseries join and graph theoretic definitions. This ap-
proach is based on a definition of subseries join (and an
efficient algorithm for solving it) that were proposed in
our previous work [3, 4]. Based on subseries join, the mo-
tif discovery and anomaly detection problems can be well-
defined as graph-theoretic problems, then both problems
can be solved using known graph-theoretic algorithms.
This paper also includes more details on the subseries
join algorithm than could be included in our previous
paper [5].

The rest of the paper is organized as follows: In Section 2,
we review previous work and underlying technology for
time series motif discovery and anomaly detection. In

Section 3, we introduce the subseries join operation and
our algorithm for solving it. Section 4 presents our motif
discovery and anomaly detection definitions and solution
methods. We perform empirical evaluations in Section 5
to evaluate the effectiveness and efficiency of the pro-
posed approach. Finally Section 6 provides conclusions
and suggestions for future work.

2 Related Work

The discovery of time series motifs is widely used in var-
ious medical applications, including examining the data
from on-body monitoring sensors [6] and selecting max-
imally informative genes [7]. Time series motifs are also
used in finding patterns in sports motion capture data [8]
and in video surveillance applications [9].

To the best of our knowledge, the first formal definition
of time series motifs was proposed in 2003 [10]. Based on
this work, a fast motif discovery algorithm was recently
presented [1]. However, this work is limited to discov-
ering motifs whose subseries are all of the same length.
Yankov et al. [11] proposed a motif discovery method that
uses a uniform scaling Euclidean distance and a symbolic
representation based on thresholding. Uniform scaling
is important for indexing and matching time series for
motion-capture data [12] and music. The thresholds they
used to convert a time series to a symbolic sequence are
heuristically determined. This method is also only semi-
automatic because the user needs to specify the length of
the motif subseries manually. This arbitrary segmenta-
tion may cause undesirable division of important features
in the data into different segments. Overlapping sliding
windows can be used [13] to avoid division of features but
at the cost of a redundant representation. Generally, a
better definition of a “motif” that does not depend on a
priori knowledge of its shape or length is needed.

Wei et al. proposed an anomaly detection algorithm based
on a symbolic representation of time series [14]. This
representation was later used in finding unusual shapes
in a large image database [2]. This symbolic representa-
tion divides a time series into segments of uniform length.
However, the manual section of the segment length is not
adaptable to the actual behavior of the data. Wavelet
analysis techniques have been widely used for network
intrusion detection [15, 16]. These techniques can adapt
to features at different scales. However, wavelet analysis-
based anomaly detection techniques often have high com-
putation complexity.
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3 Subseries Join

Efficiently searching similarities in a large time series
dataset is still a challenging problem, especially when
partial or subseries matches are needed. Much of pre-
vious work focused on either whole match or subseries
match problems. Whole match finds one or more time
series in a dataset that are similar to a given query time
series. Whole match is a one-to-one match. One exam-
ple of whole match is shown in Figure 2(a). Subseries
match finds similar segments of time series in a time se-
ries dataset given a single query time series. Subseries
match is a one-to-many match, since a single query may
match at different places in a single target time series.
One example of subseries match is shown in Figure 2(b).
However, whole match and subseries match may not work
in many scenarios. For example, when time series are
very long and contain complex features, whole match may
find many meaningless matches. These forms of match
can also do nothing unless a query time series is available.
However, in many cases, it may not be easy to provide
a query series. For example, in anomaly detection, we
don’t know in advance what the anomaly looks like. The
same is true for motif detection: we don’t know in ad-
vance what the motif looks like.

To deal with the above issues, we defined a subseries join
operation [4]. A subseries join finds pairs of similar seg-
ments of time series in two time series datasets.

Subseries join produces many-to-many matches and is a
generalization of both whole match and subseries match.
One example of subseries join is shown in Figure 2(c).

Our formal definition of subseries join is a generalization
of subseries match. Subseries join is a symmetric oper-
ation that returns all pairs of subseries drawn from two
datasets that satisfy a given similarity threshold ε relative
to some metric d and are also of maximal length:

Definition 1 Subseries join: Given two sets of time
series X and Y, the subseries join is the set of all pairs
(Xi,k, Yj,`) of subseries Xi,k ⊆ Xk for Xk ∈ X and Yj,` ⊆
Y` for Y` ∈ Y such that d(Xi,k, Yj,`) ≤ ε, and for which
there does not exist any X ′i,k ⊃ Xi,k and Y ′j,` ⊃ Yj,` where
X ′i,k is longer than Xi,k and contains Xi,k as a proper
subset and where Y ′j,` is longer than Yj,` and contains
Yj,` as a proper subset for which d(X ′i,k, Y

′
j,`) < ε or for

which d(Xi,k, Y
′
j,`) < ε or for which d(X ′i,k, Yj,`) < ε.

Note that a subseries join computes a subseries match if
one of the input datasets X is a singleton set {X}. In
other words, subseries join does not require a “query”

(a) Whole match

(b) Subseries match

(c) Subseries join

Figure 2: Whole match, subseries match, and subseries
join.
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but can support query-like operations as a special case.
As another special case, which we will in fact use for
motif and anomaly detection, a dataset can be joined
with itself.

Time series datasets

Smooth & segment

Feature sequences &
R-trees

Index

Segmentation &
representation

R-tree join

Dynamic
programming

Matching feature
sequences

Candidate matching
feature sequences

Matching subseries

Figure 3: Overview of the proposed approach.

The subseries join results include similar subseries but ex-
clude dissimilar subseries. The returned similar subseries
consist of motifs, while the excluded dissimilar subseries
without matches may contain anomalies.

In the following, we will briefly describe the subseries join
algorithm that are presented in our previous work [4].
This subseries join algorithm will be applied to efficiently
solve the joint motif discovery and anomaly detection
problem.

The overview of our approach to solving the subseries join
problem is shown in Figure 3. First, each time series in
the dataset is smoothed by an anisotropic diffusion anal-
ysis operation [17] before being broken into segments by
a Canny edge detector [18]. A minimal polynomial enve-

lope is then used to represent each segment in a reduced-
dimensionality space. The tuple of parameters used to
represent each segment is called a feature. Note that a
feature is represented by a finite number of parameters,
no matter how long the corresponding segment is. This
feature representation automatically segments time series
at its own intrinsic discontinuities, which is not possible
in most of previous work. This avoids inappropriately
breaking up subseries with arbitrary segmentation.

We then convert the problem of computing pairs of ap-
proximately matching features into an equivalent spatial
database search. All features in the dataset are indexed
by an R-tree, and then pairs of matching features are
found by an efficient R-tree join operation [19]. We use
an encoding of features so the Euclidean distance used
by the R-tree corresponds exactly to a computation of a
suitable distance between the time series shapes encoded
by the features. Matching features returned by the R-tree
search provide candidates for generating matching feature
sequences. We use a dynamic programming algorithm to
compare and align candidate matching feature sequences.
This dynamic programming algorithm can tolerate small
misalignments, as well as insertions and deletions of fea-
tures, while the encoding of the features themselves can
tolerate time scaling.

Figure 4 illustrates the important steps of our subseries
join algorithm. Given two time series datasets shown in
Figure 4(a), time series in the datasets are non-uniformly
segmented and pairs of matching subseries are found us-
ing dynamic programming, which is shown in Figure 4(b).
Figure 4(c) shows a set of pairs of matching subseries that
satisfy a similarity threshold and are maximal-length.

The main stages of our subseries join algorithm include
smoothing and segmentation, feature representation, in-
dexing, and feature sequence alignment. In the following,
we will introduce and discuss each part separately.

3.1 Smoothing and Segmentation

Perona and Malik [17] proposed a noise reduction method
for images using anisotropic diffusion, which can be seen
as a generalization of Gaussian smoothing but without
the discontinuity migration problem. The Perona-Malik
method uses a filter defined as a modified diffusion pro-
cess that encourages intra-region smoothing while in-
hibiting inter-region smoothing. Their smoothing process
can avoid the blurring and localization problems of filters
based on convolution. Although alternatives are possi-
ble, including bilateral filters [20], anisotropic diffusion
filters are preferred because they automatically generate
a scale space that maintains the positions of discontinu-
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(a) Two time series datasets.

(b) Segmenting and matching subseries.

(c) Subseries join results.

Figure 4: Middle results of subseries join.

ities. The term “anisotropic” generally means that the
smoothing (diffusion) process is different in different di-
rections. In 2D, this refers to different radial directions
around a point. In 1D, it simply means that the smooth-
ing to the left may be different from the smoothing to the
right at each point.

Given a continuous signal X(x), the continuous form of
the 1D anisotropic diffusion filter is given by the solution
to

∂

∂s
X(x, s) =

∂

∂x
·
(
c(x, s)

∂

∂x
X(x, s)

)
(1)

where s is scale. The function c is a conductance function
that returns a value in the range of [0, 1]. It is a func-
tion of the gradient of X and should be a monotonically
decreasing function of the gradient’s magnitude. One of
the following definitions can be chosen:

c(x, s) = exp

(
−
(
κ−1

∂

∂x
X(x, s)

)2
)

(2)

c(x, s) =
1

1 + (
∣∣ ∂
∂xX(x, s)

∣∣ /κ)2
(3)

If we discretize Equation 1 using the sequence X =
(x1, . . . , xn) and replace the scale s with the number of
iterations σ = λ−1s, we get the following implementation:

xσ+1
i = xσi +λc(i+1, σ)(xσi+1−xσi )−λc(i−1, σ)(xσi −xσi−1)

(4)
The boundary conditions are x0i = xi, x

σ
1 = x1, and

xσn = xn. For stability, we must have 0 ≤ λ ≤ 1/4. The
function c is called the conductance function. The con-
ductance values are conceptually interdigitated with the
smoothed signal with ci between xi and xi+1. It should
be computed using c(i, σ) = g(xσi+1 − xσi ). The function
g takes the form given by Equation 2 or Equation 2, but
with the finite difference given replacing the gradient.

The value κ is referred to as the diffusion constant and
controls the rate of conduction. If κ is low, then small in-
tensity gradients are able to block conduction and hence
inhibit diffusion across step edges. A large value, in con-
trast, reduces the influence of intensity gradients on con-
duction. The constant κ can be selected either by hand
or using the “noise estimator” proposed by Canny [18].
An overly small value of the constant κ may cause stair-
cases in smoothing and also greatly slows convergence;
however, the Canny noise estimator generally avoids this
problem. The Canny noise estimator computes a his-
togram of the absolute values of the gradient and sets κ
to the 90% value of its integral at each iteration. How-
ever, the Canny noise estimator is relatively slow, es-
pecially when the number of iterations is large. Since
| ∂∂xX(x, s)| ≈ 2κ is approximately where the value of the
conductance function (Equation 2) drops to zero, an al-
ternative is to set the value of κ to

κ =
|max(X)−min(X)|

2
(5)

The values max(X) and min(X) are the maximum value
and minimum values of X, respectively. This value is
reset after every iteration. If κ = 0, which means all val-
ues in X are equal, then the anisotropic diffusion process
(Given by Equation 4) stops.
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In Figure 5(a), the curve at the bottom is the original
time series. The curves above are the smoothed time
series. The higher the level of the curve, the smoother
the curve is. This smoothing process gives us a scale-
space of smoothed time series.

(a)

(b)

Figure 5: (a) The intrinsic discontinuities are lined up by
red dotted lines at the same positions in different scales.
(b) The hierarchical structure of the scales is marked by
long dashed lines and arrows on the right side of (a).

Anisotropic diffusion smoothes the curve over a scale
space. To extract the boundary points of a series at a
particular scale, the 1D Canny edge detector [18] can
be applied to the smoothed curve. The theory of edge
detection was introduced by Marr and Hildreth in their
early paper [21]. The Canny edge detector detects bound-
aries at the zero-crossings of the second derivative of data
and the gradient magnitude is also above some threshold
εb > 0, i.e.,

∂2

∂x2
X(x, s) = 0 (6)∣∣∣∣ ∂∂xX(x, s)

∣∣∣∣ ≥ εb (7)

The positions of the zero crossings of the second deriva-
tive are invariant under anisotropic diffusion and so can

be aligned across scales. Coarser scales simply eliminate
weaker discontinuities.

In Figure 5(a), all the time series in the scale space
are segmented using the Canny edge detector [18]. The
boundary points between pairs of segments are lined up
at the same positions of different scales, which are are
shown Figure 5(a). The segments at different scales give
a hierarchical structure, an interval tree, which is shown
Figure 5(b).

There is a slight paradox here: smoothing across edges
identified by large values of the second derivative is in-
hibited but edges with zero values of the magnitude of
the second derivative are identified as edges by the edge
detectors. This paradox can be resolved by realizing that
step edges are associated with both a large positive spike
and a large negative spike in the second derivative. It
should be noted this definition of boundary points also
segments the curve into regions of positive and negative
acceleration, which is consistent with a categorization of
segments into concave and convex regions.

In summary, the anisotropic diffusion process generates a
scale-space analysis of a signal and segmentation of this
scale space produces a hierarchical representation. Mov-
ing from fine to coarse, two or more segments may be
merged into a single segment at each iteration because of
the erosion of boundary points. As shown in Figure 5(b),
this structure can be represented as a tree.

3.2 Feature Representation

Given a time series X, we denote a segment of X by
A = X[i : j], where i and j are the starting and end-
ing element indices respectively. Inclusive indices for i
and j are used. Then when interpreted in the continu-
ous domain, this is the same as if the segments are split
halfway between samples, and consistent with the inter-
pretation of time series as samples of a continuous func-
tion. Then we use the parameters of length and shape
that are based on a fitting polynomial to characterize it.
Such a representation is called a feature. The length pa-
rameter gives the number of elements in this segment,
specifically, |A| = j − i+ 1.

A polynomial P (A, t) is then used to approximate the
shape of each segment A, with t being a real value
varying over [i − 1/2, j + 1/2]. The linear mapping
ti:j = τ(j− i+ 1) + (i+ 1/2) reparameterizes the polyno-
mial over [0, 1]. We use P (A, τ) = P (A, ti:j(τ)) to repre-
sent this reparameterized polynomial. To derive minimal
envelopes, the constant part of this polynomial can be
replaced with an interval to bound the original fine-scale
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Figure 6: The thin solid curve is the original time series.
The dashed curves are a quadratic polynomial that fits
the original time series. The thick curves are the minimal
quadratic polynomial envelope.

data. A polynomial approximation and the minimal en-
velope of quadratic order are shown in Figure 6. Every
segment in scale space is represented as an nth order poly-
nomial envelope that is mapped to an (n+1)-dimensional
line segments in an abstract “feature space”. Note that
features actually bound segments, instead of merely ap-
proximating them. The spatial join is then over axis-
aligned line segments rather than just points.

Now we will show how distances between polynomial ap-
proximations can be computed and distances between
functions enclosed with minimal polynomial envelopes
can be bounded. Given two polynomials A and B, the
distance between them can be defined as

d2(A,B) = γ

∫ 1

0

(P (A, τ)− P (B, τ))2dτ

+(1− γ)

(
|A| − |B|

max{|A|, |B|}

)2

d(A,B) =
√
d2(A,B) (8)

where P (A, τ) and P (B, τ) are the rescaled polynomials
fitting segments A and B respectively. A rescaled poly-
nomial represents the shape of a segment. and γ is a
weight and 0 ≤ γ ≤ 1.

This distance can be computed analytically from the co-
efficients of the polynomials and the lengths of the seg-
ments. In fact, the polynomial coefficients and the seg-
ment lengths can be placed in a single vector. This vec-
tor can be linearly transformed so that the ordinary Eu-
clidean distances on the transformed coefficients can be
used [4]. We do not apply the Euclidean distance di-

rectly into the original time series data, instead we use
the Euclidean distance over our transformed feature rep-
resentations. We can also compute the min-max bounds
of this distance between line segments, which actually
represent bounds, not just approximations. Thus, our
distance function can deal with time series of different
lengths and noise.

Consider the specific case of quadratic polynomials. We
assume the transformed vector is a = [ax, ay, az, aw],
where ax, ay, and az are transformed coefficients of P (A)
and aw are the transformed length. Now consider a min-
imal polynomial envelope where aI = [aIx, ay, az, aw] and
aIx = [ax, ax] = [ax − h/2, ax + h/2], where we will call
h the radius of the interval. This minimal polynomial
envelope of a feature can be mapped to 4D axis-aligned
line segments [4]. It should be obvious how to extend this
analysis to polynomials of any order.

As shown in Figure 7(a), we can compute the maximum
distance between two features a and b by taking the max-
imum of the distance between end points of two 4D axis-
aligned line segments

dM (a,b) = max{dE(a`,bu), dE(au,b`)} (9)

where

a` = [ax, ay, az, aw]

au = [ax, ay, az, aw]

b` = [bx, by, bz, bw]

bu = [bx, by, bz, bw]

The function d2E is the Euclidean distance, i.e.,

d2E(a`,bu) = (ax − bx)2 + (ay − by)2 + (az − bz)2

+(aw − bw)2

dE(a`,bu) =
√
d2E(a`,bu) (10)

As shown in Figure 7(b), the minimum distance between
two feature points a and b can be computed as follows:

d2m(a,b) = (ay − by)2 + (az − bz)2 + (aw − bw)2

dm(a,b) ={ √
d2m(a,b), if [ax, ax] ∩ [bx, bx] 6= ∅

min{dE(a`,bu), dE(au,b`)}, otherwise

(11)

The minimum distance is used in the R-tree join oper-
ation as a lower bound to guarantee no false dismissals.
The intent here is that the minimal polynomial envelope
bounds the actual data and that we can compute a dis-
tance function between features that is a lower bound on
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bu bv

au av

bu bv

au av

(a) Maximum distance

bu bv bu bv

au av au av

(b) Minimum distance

Figure 7: Compute maximum and minimum distances
between two features represented as line segments.

the actual distance between the data. R-tree join opera-
tion will generate pairs of candidate matching subseries.
Both the maximum distance and the minimum distance
are ultimately used in comparing the candidate matching
subseries.

3.3 Indexing and Search

To build the index, we insert all features at all scales of
the dataset into an R-tree. Every feature is represented
as an nth order polynomial that can be mapped to an
(n+ 1)-dimensional line segment in an abstract “feature
space”. Every time series in the dataset is represented
as a feature sequence. Both the feature sequences of all
time series and the R-tree of the dataset are saved in
secondary storage devices. We can select the scale of
features in the scale space so that the corresponding sub-
R-tree fits into a specific amount of memory space. We
also associate the R-tree leaves with the features in the
feature sequences instead of saving feature representa-
tions redundantly. We use an R-tree join operation [19]
to obtain pairs of features whose minimum distance (11)
is less than a predefined threshold. Based on the associ-
ated leaves of the R-trees, pairs of feature sequences can
be found by counting the number of pairs of matching fea-
tures from each sequence. If this number is greater than
a predefined threshold, these two feature sequences are
taken as a pair of candidate matching feature sequences.

3.4 Feature Sequence Alignment

We use Smith-Waterman (SW) algorithm [22] to align
two candidate matching feature sequences. SW com-
putes local alignments of two discrete sequences. Given
two feature sequences F = (f1, f2, · · · , fm) and G =

(g1, g2, · · · , gn), where m and n are the number of fea-
tures in each sequence, respectively, SW computes the
similarity H(i, j) of two sequences ending at position i
and j, where fi ∈ F and gj ∈ G. The computation of
H(i, j), for 1 ≤ i ≤ m, 1 ≤ j ≤ n, is given by the follow-
ing recurrences:

H(i, j) = max{0, E(i, j), F (i, j), H(i− 1, j − 1) +

score(i, j)}
E(i, j) = max{H(i, j − 1)− α,E(i, j − 1)− β}
F (i, j) = max{H(i− 1, j)− α, F (i− 1, j)− β} (12)

The function score is

score(i, j) =

{
1, if dM (fi, gj) ≤ θ1 and dm(fi, gj) ≤ θ2
0, otherwise

(13)
where θ1 and θ2 are predefined thresholds and θ1 ≥ θ2.
Initialization of H(i, j) is given by H(i, 1) = score(i, 1)
and H(1, j) = score(1, j). The values α and β are the
gap penalties. A trace-back procedure starts from the
element having the highest score. The alignment path is
generated as follows: if the current position is the ele-
ment (i, j), then the next position is max{H(i, j), H(i−
1, j), H(i, j − 1)}, until it reaches zero. The resulting
aligned feature sequences locate the pairs matching sub-
series.

Although the computational complexity of SW is
quadratic, in our prototype system implementation, we
constrained the alignment along the diagonal region,
which improves the computational complexity to be lin-
ear.

Note that a coarse scale contains fewer features than a
fine scale. Therefore, using a coarse scale of features for
the R-tree join operations will produce fewer candidate
matching feature sequences, and then fewer matching
subseries than using a fine scale of features. The aver-
age length of matching subseries using a coarse scale of
features is longer than that using a fine level features.
It means that using a coarse level of features produces
less precise matching subseries that tolerate more differ-
ences than using a fine level of features. Many real-world
applications do not require precise value matches, but re-
quire general shape matches that can tolerate noise and
scaling. Our approach allows for flexible balance between
these by selecting different parameters according to spe-
cific application requirement. This flexibility is hard to
achieve for much of the previous work.
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4 Motif Discovery and Anomaly Detec-
tion

In this section, we will discuss how to use the results of
the subseries join algorithm to solve the problems of mo-
tif discovery and anomaly detection. The results of the
subseries join of one or multiple time series can be con-
verted a graph to find motifs and anomalies, as shown in
Figure 8. Subseries A matches E. Subseries A’, E’, and G
are found to be similar. The same is true for subseries
B, D, and F. Subseries C has no matches. The relation-
ships between subseries can be mapped to an undirected
graph as shown in Figure 9(a). Every vertex represents
a subseries. Every edge between two vertices represents
a matching relationship between a pair of subseries.

We then remove self-loops from the graph. There may
also exist overlapped subseries, for example, A and B. If
the overlap percentage is above a certain threshold (our
prototype used 70% overlap) the overlapped subseries,
such as A and A’, E and E’, are merged. After this pre-
processing, the example shown in Figure 9(a) turns into
Figure 9(b).

A             B   C   D             E               F                  G

A'                                      E '

Figure 8: Subseries join results of a time series.

Now motif discovery can be defined in graph-theoretic
terms. Several alternative graph-theoretic definitions of a
motif can be considered. One possible definition is based
on maximal cliques. A clique in an undirected graph is
a subgraph in which every vertex is connected to every
other vertex in the subgraph. A maximal clique is a com-
plete subgraph that is not contained in any other com-
plete subgraph. Unfortunately, the maximal clique prob-
lem is an NP-complete problem, and the clique enumer-
ation problem is NP-hard. However, there exist many
heuristic algorithms to approximately solve the clique
enumeration problem [23, 24], including parallel algo-
rithms [25, 26] and polynomial-time approximation algo-
rithms [27]. Another possible definition of motif is based

C

A ' E '

G

E

A

B D

F

(a) The graph of subseries join results.

C

A ' (A ) E ' (E )

G

B D

F

(b) Remove self-loops and merge overlapped
vertices A and A′, as well as E and E′.

Figure 9: Convert the subseries join results into a graph.
The maximal cliques that are framed by dashed circles
give the motifs. The isolated vertex C is an anomaly.

on the k-connected subgraph. A k-connected subgraph in
an undirected graph is a subgraph in which every vertex
is connected to at least k other vertices in the subgraph.
Although the k-connected subgraph problem is also NP-
complete, many existing approximation algorithms can
efficiently solve this problem [28].

Anomaly detection can be defined as finding the isolated
vertices in the graph. For example, in Figure 9, the ver-
tex C is an isolated vertex. Finding isolated vertices is
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simpler than finding maximal cliques or k-connected sub-
graphs in a graph, because it requires only linear compu-
tational time.

Based on the above discussion, we propose graph-
theoretic definitions of motif and anomaly based on k-
connectivity as follows.

Definition 2 Motif: Given a time series X construct
a graph G from the results of a subseries join with itself.
A edge connects every pair of subseries (Xi,j , Xk,` in the
join and all subseries in the join are vertices of the graph.
We call the set of vertices (subseries) that belong to any
k-connected subgraph of G a motif (or k-motif).

Definition 3 Anomaly: Given a time series X , we call
Xi,j an anomaly if Xi,j does not join with any other sub-
series of X . In other words, an anomaly is a 1-motif.

In our experiments, we selected k as 20% of the total
number of subseries in the time series X . Since k is usu-
ally small, the computational time can be considered lin-
ear. We also used the Boost Graph Library [29] in our
prototype system implementation.

Note that we assume that an anomaly pattern does not
repeat in a time series, because if an anomaly pattern
repeats, it may be considered as a motif. In real applica-
tions, determining whether a pattern is a motif, anomaly,
or something else is often subjective, related to different
data, domains, and tasks. However, our approach can
help the user to efficiently find candidate targets of inter-
est. The continuum between motifs and anomalies can
also be defined as the number of times a motif repeats
(its k-connectivity or the size of the clique it belongs to).

5 Experimental Results

We evaluate the effectiveness of our proposed approach
for discovering motifs and anomaly in real-world data in-
cluding stock prices [30] and heart rate data [31]. Fig-
ure 10 shows motifs discovered by our prototype system in
a time series of stock prices. Figure 11 shows an anomaly
discovered by our prototype system in a time series of
heart rate data. The found motifs often have similar
shapes of different lengths. Parts of the found motifs
are also overlapped. The properties of the discovered
anomalies, such as height and length, can be controlled
by parameters in the prototype system. The user can
choose different parameters for different data, domains,
and tasks.
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(a) One motif is marked by thick green lines.
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(b) Another motif is marked by thick blue lines.

Figure 10: Motifs discovered in stock prices: NASDAQ
Monthly High, Jan 1, 2007∼Nov 30, 2009.

To evaluate the performance of our approach, the proto-
type system was also tested on a 3.15GB motion capture
dataset [32] containing 3,962,581 frames. A frame is an
element in a motion time series. The dataset contains
various kinds of motion time series data. Each motion
segment consists of time series data ranging in length
from about 300 to 23000 frames. All experiments were
run on Linux Kernel 2.6 PC with 500MB RAM and Pen-
tium IV 3.0GHz CPU. The prototype generated 101,397
segments of the dataset. The prototype system needs
about 3.5 hours for representation and index construc-
tion for the whole dataset. We conduct the proposed
subseries join operation on the whole dataset to discover
motifs, i.e., motion subseries of different styles. The to-
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Figure 11: An anomaly marked by thick red lines discov-
ered in heart rate data.

(a) Length: 91 frames

(b) Length: 85 frames

(c) Length: 109 frames

Figure 12: A motif found in the dataset that consists of
running motions.

tal computational time was 35.6 minutes, while the aver-
age computational time per time series was 0.86 seconds.
Figures 12-14 show some motifs that are similar motions
found in the whole dataset. From the figures, we can see
that the motif motions have similar but different poses,
e.g., the second elements in the running motions. The
motif motions also have different lengths, i.e., different
speeds of motions. This demonstrates that our approach
can tolerate different lengths and scaling.

(a) Length: 148 frames

(b) Length: 143 frames

(c) Length: 126 frames

Figure 13: A motif found in the dataset that consists of
jumping motions.

(a) Length: 119 frames

(b) Length: 127 frames

(c) Length: 153 frames

Figure 14: A motif found in the dataset that consists of
kicking motions.

6 Conclusions

In this paper, we have discussed motif discovery and
anomaly detection for time series data. We propose a
novel approach for both problems. This approach is based
on a new definition of subseries join and an algorithm
to compute subseries join efficiently. Experiments have
demonstrated the effectiveness of our proposed approach
for discovering motifs and anomalies in real-world time
series data. Experiments also show that our approach can
efficiently find motifs and anomalies in a large dataset.
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Our work provides a general solution motif discovery and
anomaly detection on any time series data. Therefore,
our prototype systems need some user-defined parameters
that are tuned for data in a specific domain. At present,
the parameters are selected empirically without any do-
main knowledge involved. In the future, we will apply
this work in some specific domains, such as Web mining
and network security. Domain knowledge can then be
used to automatically tune the system parameters.
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